jcdctmgr.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. /*
  2. * jcdctmgr.c
  3. *
  4. * Copyright (C) 1994-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains the forward-DCT management logic.
  9. * This code selects a particular DCT implementation to be used,
  10. * and it performs related housekeeping chores including coefficient
  11. * quantization.
  12. */
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16. #include "jdct.h" /* Private declarations for DCT subsystem */
  17. /* Private subobject for this module */
  18. typedef struct {
  19. struct jpeg_forward_dct pub;/* public fields */
  20. /* Pointer to the DCT routine actually in use */
  21. forward_DCT_method_ptr do_dct;
  22. /* The actual post-DCT divisors --- not identical to the quant table
  23. * entries, because of scaling (especially for an unnormalized DCT).
  24. * Each table is given in normal array order; note that this must
  25. * be converted from the zigzag order of the quantization tables.
  26. */
  27. DCTELEM * divisors[NUM_QUANT_TBLS];
  28. #ifdef DCT_FLOAT_SUPPORTED
  29. /* Same as above for the floating-point case. */
  30. float_DCT_method_ptr do_float_dct;
  31. FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
  32. #endif
  33. } my_fdct_controller;
  34. typedef my_fdct_controller * my_fdct_ptr;
  35. /*
  36. * Initialize for a processing pass.
  37. * Verify that all referenced Q-tables are present, and set up
  38. * the divisor table for each one.
  39. * In the current implementation, DCT of all components is done during
  40. * the first pass, even if only some components will be output in the
  41. * first scan. Hence all components should be examined here.
  42. */
  43. METHODDEF void
  44. start_pass_fdctmgr( j_compress_ptr cinfo ) {
  45. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  46. int ci, qtblno, i;
  47. jpeg_component_info * compptr;
  48. JQUANT_TBL * qtbl;
  49. //DCTELEM * dtbl;
  50. for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  51. ci++, compptr++ ) {
  52. qtblno = compptr->quant_tbl_no;
  53. /* Make sure specified quantization table is present */
  54. if ( ( qtblno < 0 ) || ( qtblno >= NUM_QUANT_TBLS ) ||
  55. ( cinfo->quant_tbl_ptrs[qtblno] == NULL ) ) {
  56. ERREXIT1( cinfo, JERR_NO_QUANT_TABLE, qtblno );
  57. }
  58. qtbl = cinfo->quant_tbl_ptrs[qtblno];
  59. /* Compute divisors for this quant table */
  60. /* We may do this more than once for same table, but it's not a big deal */
  61. switch ( cinfo->dct_method ) {
  62. #ifdef DCT_ISLOW_SUPPORTED
  63. case JDCT_ISLOW:
  64. /* For LL&M IDCT method, divisors are equal to raw quantization
  65. * coefficients multiplied by 8 (to counteract scaling).
  66. */
  67. if ( fdct->divisors[qtblno] == NULL ) {
  68. fdct->divisors[qtblno] = (DCTELEM *)
  69. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  70. DCTSIZE2 * SIZEOF( DCTELEM ) );
  71. }
  72. dtbl = fdct->divisors[qtblno];
  73. for ( i = 0; i < DCTSIZE2; i++ ) {
  74. dtbl[i] = ( (DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]] ) << 3;
  75. }
  76. break;
  77. #endif
  78. #ifdef DCT_IFAST_SUPPORTED
  79. case JDCT_IFAST:
  80. {
  81. /* For AA&N IDCT method, divisors are equal to quantization
  82. * coefficients scaled by scalefactor[row]*scalefactor[col], where
  83. * scalefactor[0] = 1
  84. * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
  85. * We apply a further scale factor of 8.
  86. */
  87. #define CONST_BITS 14
  88. static const INT16 aanscales[DCTSIZE2] = {
  89. /* precomputed values scaled up by 14 bits: in natural order */
  90. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  91. 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
  92. 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
  93. 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
  94. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  95. 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
  96. 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
  97. 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
  98. };
  99. SHIFT_TEMPS
  100. if ( fdct->divisors[qtblno] == NULL ) {
  101. fdct->divisors[qtblno] = (DCTELEM *)
  102. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  103. DCTSIZE2 * SIZEOF( DCTELEM ) );
  104. }
  105. dtbl = fdct->divisors[qtblno];
  106. for ( i = 0; i < DCTSIZE2; i++ ) {
  107. dtbl[i] = (DCTELEM)
  108. DESCALE( MULTIPLY16V16( (INT32) qtbl->quantval[jpeg_zigzag_order[i]],
  109. (INT32) aanscales[i] ),
  110. CONST_BITS - 3 );
  111. }
  112. }
  113. break;
  114. #endif
  115. #ifdef DCT_FLOAT_SUPPORTED
  116. case JDCT_FLOAT:
  117. {
  118. /* For float AA&N IDCT method, divisors are equal to quantization
  119. * coefficients scaled by scalefactor[row]*scalefactor[col], where
  120. * scalefactor[0] = 1
  121. * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
  122. * We apply a further scale factor of 8.
  123. * What's actually stored is 1/divisor so that the inner loop can
  124. * use a multiplication rather than a division.
  125. */
  126. FAST_FLOAT * fdtbl;
  127. int row, col;
  128. static const double aanscalefactor[DCTSIZE] = {
  129. 1.0, 1.387039845, 1.306562965, 1.175875602,
  130. 1.0, 0.785694958, 0.541196100, 0.275899379
  131. };
  132. if ( fdct->float_divisors[qtblno] == NULL ) {
  133. fdct->float_divisors[qtblno] = (FAST_FLOAT *)
  134. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  135. DCTSIZE2 * SIZEOF( FAST_FLOAT ) );
  136. }
  137. fdtbl = fdct->float_divisors[qtblno];
  138. i = 0;
  139. for ( row = 0; row < DCTSIZE; row++ ) {
  140. for ( col = 0; col < DCTSIZE; col++ ) {
  141. fdtbl[i] = (FAST_FLOAT)
  142. ( 1.0 / ( ( (double) qtbl->quantval[jpeg_zigzag_order[i]] *
  143. aanscalefactor[row] * aanscalefactor[col] * 8.0 ) ) );
  144. i++;
  145. }
  146. }
  147. }
  148. break;
  149. #endif
  150. default:
  151. ERREXIT( cinfo, JERR_NOT_COMPILED );
  152. break;
  153. }
  154. }
  155. }
  156. /*
  157. * Perform forward DCT on one or more blocks of a component.
  158. *
  159. * The input samples are taken from the sample_data[] array starting at
  160. * position start_row/start_col, and moving to the right for any additional
  161. * blocks. The quantized coefficients are returned in coef_blocks[].
  162. */
  163. METHODDEF void
  164. forward_DCT( j_compress_ptr cinfo, jpeg_component_info * compptr,
  165. JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  166. JDIMENSION start_row, JDIMENSION start_col,
  167. JDIMENSION num_blocks ) {
  168. /* This version is used for integer DCT implementations. */
  169. /* This routine is heavily used, so it's worth coding it tightly. */
  170. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  171. forward_DCT_method_ptr do_dct = fdct->do_dct;
  172. DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
  173. DCTELEM workspace[DCTSIZE2];/* work area for FDCT subroutine */
  174. JDIMENSION bi;
  175. sample_data += start_row;/* fold in the vertical offset once */
  176. for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) {
  177. /* Load data into workspace, applying unsigned->signed conversion */
  178. { register DCTELEM * workspaceptr;
  179. register JSAMPROW elemptr;
  180. register int elemr;
  181. workspaceptr = workspace;
  182. for ( elemr = 0; elemr < DCTSIZE; elemr++ ) {
  183. elemptr = sample_data[elemr] + start_col;
  184. #if DCTSIZE == 8 /* unroll the inner loop */
  185. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  186. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  187. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  188. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  189. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  190. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  191. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  192. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  193. #else
  194. { register int elemc;
  195. for ( elemc = DCTSIZE; elemc > 0; elemc-- ) {
  196. *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
  197. }
  198. }
  199. #endif
  200. }
  201. }
  202. /* Perform the DCT */
  203. ( *do_dct )( workspace );
  204. /* Quantize/descale the coefficients, and store into coef_blocks[] */
  205. { register DCTELEM temp, qval;
  206. register int i;
  207. register JCOEFPTR output_ptr = coef_blocks[bi];
  208. for ( i = 0; i < DCTSIZE2; i++ ) {
  209. qval = divisors[i];
  210. temp = workspace[i];
  211. /* Divide the coefficient value by qval, ensuring proper rounding.
  212. * Since C does not specify the direction of rounding for negative
  213. * quotients, we have to force the dividend positive for portability.
  214. *
  215. * In most files, at least half of the output values will be zero
  216. * (at default quantization settings, more like three-quarters...)
  217. * so we should ensure that this case is fast. On many machines,
  218. * a comparison is enough cheaper than a divide to make a special test
  219. * a win. Since both inputs will be nonnegative, we need only test
  220. * for a < b to discover whether a/b is 0.
  221. * If your machine's division is fast enough, define FAST_DIVIDE.
  222. */
  223. #ifdef FAST_DIVIDE
  224. #define DIVIDE_BY( a, b ) a /= b
  225. #else
  226. #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
  227. #endif
  228. if ( temp < 0 ) {
  229. temp = -temp;
  230. temp += qval >> 1;/* for rounding */
  231. DIVIDE_BY( temp, qval );
  232. temp = -temp;
  233. } else {
  234. temp += qval >> 1;/* for rounding */
  235. DIVIDE_BY( temp, qval );
  236. }
  237. output_ptr[i] = (JCOEF) temp;
  238. }
  239. }
  240. }
  241. }
  242. #ifdef DCT_FLOAT_SUPPORTED
  243. METHODDEF void
  244. forward_DCT_float( j_compress_ptr cinfo, jpeg_component_info * compptr,
  245. JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  246. JDIMENSION start_row, JDIMENSION start_col,
  247. JDIMENSION num_blocks ) {
  248. /* This version is used for floating-point DCT implementations. */
  249. /* This routine is heavily used, so it's worth coding it tightly. */
  250. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  251. float_DCT_method_ptr do_dct = fdct->do_float_dct;
  252. FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
  253. FAST_FLOAT workspace[DCTSIZE2];/* work area for FDCT subroutine */
  254. JDIMENSION bi;
  255. sample_data += start_row;/* fold in the vertical offset once */
  256. for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) {
  257. /* Load data into workspace, applying unsigned->signed conversion */
  258. { register FAST_FLOAT * workspaceptr;
  259. register JSAMPROW elemptr;
  260. register int elemr;
  261. workspaceptr = workspace;
  262. for ( elemr = 0; elemr < DCTSIZE; elemr++ ) {
  263. elemptr = sample_data[elemr] + start_col;
  264. #if DCTSIZE == 8 /* unroll the inner loop */
  265. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  266. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  267. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  268. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  269. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  270. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  271. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  272. *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  273. #else
  274. { register int elemc;
  275. for ( elemc = DCTSIZE; elemc > 0; elemc-- ) {
  276. *workspaceptr++ = (FAST_FLOAT)
  277. ( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
  278. }
  279. }
  280. #endif
  281. }
  282. }
  283. /* Perform the DCT */
  284. ( *do_dct )( workspace );
  285. /* Quantize/descale the coefficients, and store into coef_blocks[] */
  286. { register FAST_FLOAT temp;
  287. register int i;
  288. register JCOEFPTR output_ptr = coef_blocks[bi];
  289. for ( i = 0; i < DCTSIZE2; i++ ) {
  290. /* Apply the quantization and scaling factor */
  291. temp = workspace[i] * divisors[i];
  292. /* Round to nearest integer.
  293. * Since C does not specify the direction of rounding for negative
  294. * quotients, we have to force the dividend positive for portability.
  295. * The maximum coefficient size is +-16K (for 12-bit data), so this
  296. * code should work for either 16-bit or 32-bit ints.
  297. */
  298. output_ptr[i] = (JCOEF) ( (int) ( temp + (FAST_FLOAT) 16384.5 ) - 16384 );
  299. }
  300. }
  301. }
  302. }
  303. #endif /* DCT_FLOAT_SUPPORTED */
  304. /*
  305. * Initialize FDCT manager.
  306. */
  307. GLOBAL void
  308. jinit_forward_dct( j_compress_ptr cinfo ) {
  309. my_fdct_ptr fdct;
  310. int i;
  311. fdct = (my_fdct_ptr)
  312. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  313. SIZEOF( my_fdct_controller ) );
  314. cinfo->fdct = (struct jpeg_forward_dct *) fdct;
  315. fdct->pub.start_pass = start_pass_fdctmgr;
  316. switch ( cinfo->dct_method ) {
  317. #ifdef DCT_ISLOW_SUPPORTED
  318. case JDCT_ISLOW:
  319. fdct->pub.forward_DCT = forward_DCT;
  320. fdct->do_dct = jpeg_fdct_islow;
  321. break;
  322. #endif
  323. #ifdef DCT_IFAST_SUPPORTED
  324. case JDCT_IFAST:
  325. fdct->pub.forward_DCT = forward_DCT;
  326. fdct->do_dct = jpeg_fdct_ifast;
  327. break;
  328. #endif
  329. #ifdef DCT_FLOAT_SUPPORTED
  330. case JDCT_FLOAT:
  331. fdct->pub.forward_DCT = forward_DCT_float;
  332. fdct->do_float_dct = jpeg_fdct_float;
  333. break;
  334. #endif
  335. default:
  336. ERREXIT( cinfo, JERR_NOT_COMPILED );
  337. break;
  338. }
  339. /* Mark divisor tables unallocated */
  340. for ( i = 0; i < NUM_QUANT_TBLS; i++ ) {
  341. fdct->divisors[i] = NULL;
  342. #ifdef DCT_FLOAT_SUPPORTED
  343. fdct->float_divisors[i] = NULL;
  344. #endif
  345. }
  346. }