123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- /*
- * jcdctmgr.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the forward-DCT management logic.
- * This code selects a particular DCT implementation to be used,
- * and it performs related housekeeping chores including coefficient
- * quantization.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- /* Private subobject for this module */
- typedef struct {
- struct jpeg_forward_dct pub;/* public fields */
- /* Pointer to the DCT routine actually in use */
- forward_DCT_method_ptr do_dct;
- /* The actual post-DCT divisors --- not identical to the quant table
- * entries, because of scaling (especially for an unnormalized DCT).
- * Each table is given in normal array order; note that this must
- * be converted from the zigzag order of the quantization tables.
- */
- DCTELEM * divisors[NUM_QUANT_TBLS];
- #ifdef DCT_FLOAT_SUPPORTED
- /* Same as above for the floating-point case. */
- float_DCT_method_ptr do_float_dct;
- FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
- #endif
- } my_fdct_controller;
- typedef my_fdct_controller * my_fdct_ptr;
- /*
- * Initialize for a processing pass.
- * Verify that all referenced Q-tables are present, and set up
- * the divisor table for each one.
- * In the current implementation, DCT of all components is done during
- * the first pass, even if only some components will be output in the
- * first scan. Hence all components should be examined here.
- */
- METHODDEF void
- start_pass_fdctmgr( j_compress_ptr cinfo ) {
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- int ci, qtblno, i;
- jpeg_component_info * compptr;
- JQUANT_TBL * qtbl;
- //DCTELEM * dtbl;
- for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++ ) {
- qtblno = compptr->quant_tbl_no;
- /* Make sure specified quantization table is present */
- if ( ( qtblno < 0 ) || ( qtblno >= NUM_QUANT_TBLS ) ||
- ( cinfo->quant_tbl_ptrs[qtblno] == NULL ) ) {
- ERREXIT1( cinfo, JERR_NO_QUANT_TABLE, qtblno );
- }
- qtbl = cinfo->quant_tbl_ptrs[qtblno];
- /* Compute divisors for this quant table */
- /* We may do this more than once for same table, but it's not a big deal */
- switch ( cinfo->dct_method ) {
- #ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- /* For LL&M IDCT method, divisors are equal to raw quantization
- * coefficients multiplied by 8 (to counteract scaling).
- */
- if ( fdct->divisors[qtblno] == NULL ) {
- fdct->divisors[qtblno] = (DCTELEM *)
- ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF( DCTELEM ) );
- }
- dtbl = fdct->divisors[qtblno];
- for ( i = 0; i < DCTSIZE2; i++ ) {
- dtbl[i] = ( (DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]] ) << 3;
- }
- break;
- #endif
- #ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- */
- #define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits: in natural order */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
- if ( fdct->divisors[qtblno] == NULL ) {
- fdct->divisors[qtblno] = (DCTELEM *)
- ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF( DCTELEM ) );
- }
- dtbl = fdct->divisors[qtblno];
- for ( i = 0; i < DCTSIZE2; i++ ) {
- dtbl[i] = (DCTELEM)
- DESCALE( MULTIPLY16V16( (INT32) qtbl->quantval[jpeg_zigzag_order[i]],
- (INT32) aanscales[i] ),
- CONST_BITS - 3 );
- }
- }
- break;
- #endif
- #ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- * What's actually stored is 1/divisor so that the inner loop can
- * use a multiplication rather than a division.
- */
- FAST_FLOAT * fdtbl;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
- if ( fdct->float_divisors[qtblno] == NULL ) {
- fdct->float_divisors[qtblno] = (FAST_FLOAT *)
- ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF( FAST_FLOAT ) );
- }
- fdtbl = fdct->float_divisors[qtblno];
- i = 0;
- for ( row = 0; row < DCTSIZE; row++ ) {
- for ( col = 0; col < DCTSIZE; col++ ) {
- fdtbl[i] = (FAST_FLOAT)
- ( 1.0 / ( ( (double) qtbl->quantval[jpeg_zigzag_order[i]] *
- aanscalefactor[row] * aanscalefactor[col] * 8.0 ) ) );
- i++;
- }
- }
- }
- break;
- #endif
- default:
- ERREXIT( cinfo, JERR_NOT_COMPILED );
- break;
- }
- }
- }
- /*
- * Perform forward DCT on one or more blocks of a component.
- *
- * The input samples are taken from the sample_data[] array starting at
- * position start_row/start_col, and moving to the right for any additional
- * blocks. The quantized coefficients are returned in coef_blocks[].
- */
- METHODDEF void
- forward_DCT( j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks ) {
- /* This version is used for integer DCT implementations. */
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- forward_DCT_method_ptr do_dct = fdct->do_dct;
- DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
- DCTELEM workspace[DCTSIZE2];/* work area for FDCT subroutine */
- JDIMENSION bi;
- sample_data += start_row;/* fold in the vertical offset once */
- for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) {
- /* Load data into workspace, applying unsigned->signed conversion */
- { register DCTELEM * workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
- workspaceptr = workspace;
- for ( elemr = 0; elemr < DCTSIZE; elemr++ ) {
- elemptr = sample_data[elemr] + start_col;
- #if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- #else
- { register int elemc;
- for ( elemc = DCTSIZE; elemc > 0; elemc-- ) {
- *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE;
- }
- }
- #endif
- }
- }
- /* Perform the DCT */
- ( *do_dct )( workspace );
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register DCTELEM temp, qval;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
- for ( i = 0; i < DCTSIZE2; i++ ) {
- qval = divisors[i];
- temp = workspace[i];
- /* Divide the coefficient value by qval, ensuring proper rounding.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- *
- * In most files, at least half of the output values will be zero
- * (at default quantization settings, more like three-quarters...)
- * so we should ensure that this case is fast. On many machines,
- * a comparison is enough cheaper than a divide to make a special test
- * a win. Since both inputs will be nonnegative, we need only test
- * for a < b to discover whether a/b is 0.
- * If your machine's division is fast enough, define FAST_DIVIDE.
- */
- #ifdef FAST_DIVIDE
- #define DIVIDE_BY( a, b ) a /= b
- #else
- #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
- #endif
- if ( temp < 0 ) {
- temp = -temp;
- temp += qval >> 1;/* for rounding */
- DIVIDE_BY( temp, qval );
- temp = -temp;
- } else {
- temp += qval >> 1;/* for rounding */
- DIVIDE_BY( temp, qval );
- }
- output_ptr[i] = (JCOEF) temp;
- }
- }
- }
- }
- #ifdef DCT_FLOAT_SUPPORTED
- METHODDEF void
- forward_DCT_float( j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks ) {
- /* This version is used for floating-point DCT implementations. */
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- float_DCT_method_ptr do_dct = fdct->do_float_dct;
- FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
- FAST_FLOAT workspace[DCTSIZE2];/* work area for FDCT subroutine */
- JDIMENSION bi;
- sample_data += start_row;/* fold in the vertical offset once */
- for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) {
- /* Load data into workspace, applying unsigned->signed conversion */
- { register FAST_FLOAT * workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
- workspaceptr = workspace;
- for ( elemr = 0; elemr < DCTSIZE; elemr++ ) {
- elemptr = sample_data[elemr] + start_col;
- #if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- #else
- { register int elemc;
- for ( elemc = DCTSIZE; elemc > 0; elemc-- ) {
- *workspaceptr++ = (FAST_FLOAT)
- ( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE );
- }
- }
- #endif
- }
- }
- /* Perform the DCT */
- ( *do_dct )( workspace );
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register FAST_FLOAT temp;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
- for ( i = 0; i < DCTSIZE2; i++ ) {
- /* Apply the quantization and scaling factor */
- temp = workspace[i] * divisors[i];
- /* Round to nearest integer.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- * The maximum coefficient size is +-16K (for 12-bit data), so this
- * code should work for either 16-bit or 32-bit ints.
- */
- output_ptr[i] = (JCOEF) ( (int) ( temp + (FAST_FLOAT) 16384.5 ) - 16384 );
- }
- }
- }
- }
- #endif /* DCT_FLOAT_SUPPORTED */
- /*
- * Initialize FDCT manager.
- */
- GLOBAL void
- jinit_forward_dct( j_compress_ptr cinfo ) {
- my_fdct_ptr fdct;
- int i;
- fdct = (my_fdct_ptr)
- ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF( my_fdct_controller ) );
- cinfo->fdct = (struct jpeg_forward_dct *) fdct;
- fdct->pub.start_pass = start_pass_fdctmgr;
- switch ( cinfo->dct_method ) {
- #ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- fdct->pub.forward_DCT = forward_DCT;
- fdct->do_dct = jpeg_fdct_islow;
- break;
- #endif
- #ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- fdct->pub.forward_DCT = forward_DCT;
- fdct->do_dct = jpeg_fdct_ifast;
- break;
- #endif
- #ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- fdct->pub.forward_DCT = forward_DCT_float;
- fdct->do_float_dct = jpeg_fdct_float;
- break;
- #endif
- default:
- ERREXIT( cinfo, JERR_NOT_COMPILED );
- break;
- }
- /* Mark divisor tables unallocated */
- for ( i = 0; i < NUM_QUANT_TBLS; i++ ) {
- fdct->divisors[i] = NULL;
- #ifdef DCT_FLOAT_SUPPORTED
- fdct->float_divisors[i] = NULL;
- #endif
- }
- }
|