spinlock.h 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. #ifndef _ASM_X86_SPINLOCK_H
  2. #define _ASM_X86_SPINLOCK_H
  3. #include <linux/atomic.h>
  4. #include <asm/page.h>
  5. #include <asm/processor.h>
  6. #include <linux/compiler.h>
  7. #include <asm/paravirt.h>
  8. /*
  9. * Your basic SMP spinlocks, allowing only a single CPU anywhere
  10. *
  11. * Simple spin lock operations. There are two variants, one clears IRQ's
  12. * on the local processor, one does not.
  13. *
  14. * These are fair FIFO ticket locks, which are currently limited to 256
  15. * CPUs.
  16. *
  17. * (the type definitions are in asm/spinlock_types.h)
  18. */
  19. #ifdef CONFIG_X86_32
  20. # define LOCK_PTR_REG "a"
  21. # define REG_PTR_MODE "k"
  22. #else
  23. # define LOCK_PTR_REG "D"
  24. # define REG_PTR_MODE "q"
  25. #endif
  26. #if defined(CONFIG_X86_32) && \
  27. (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
  28. /*
  29. * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
  30. * (PPro errata 66, 92)
  31. */
  32. # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
  33. #else
  34. # define UNLOCK_LOCK_PREFIX
  35. #endif
  36. /*
  37. * Ticket locks are conceptually two parts, one indicating the current head of
  38. * the queue, and the other indicating the current tail. The lock is acquired
  39. * by atomically noting the tail and incrementing it by one (thus adding
  40. * ourself to the queue and noting our position), then waiting until the head
  41. * becomes equal to the the initial value of the tail.
  42. *
  43. * We use an xadd covering *both* parts of the lock, to increment the tail and
  44. * also load the position of the head, which takes care of memory ordering
  45. * issues and should be optimal for the uncontended case. Note the tail must be
  46. * in the high part, because a wide xadd increment of the low part would carry
  47. * up and contaminate the high part.
  48. */
  49. static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
  50. {
  51. register struct __raw_tickets inc = { .tail = 1 };
  52. inc = xadd(&lock->tickets, inc);
  53. for (;;) {
  54. if (inc.head == inc.tail)
  55. break;
  56. cpu_relax();
  57. inc.head = ACCESS_ONCE(lock->tickets.head);
  58. }
  59. barrier(); /* make sure nothing creeps before the lock is taken */
  60. }
  61. static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
  62. {
  63. arch_spinlock_t old, new;
  64. old.tickets = ACCESS_ONCE(lock->tickets);
  65. if (old.tickets.head != old.tickets.tail)
  66. return 0;
  67. new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
  68. /* cmpxchg is a full barrier, so nothing can move before it */
  69. return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
  70. }
  71. static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
  72. {
  73. __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
  74. }
  75. static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
  76. {
  77. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  78. return tmp.tail != tmp.head;
  79. }
  80. static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
  81. {
  82. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  83. return (__ticket_t)(tmp.tail - tmp.head) > 1;
  84. }
  85. #ifndef CONFIG_PARAVIRT_SPINLOCKS
  86. static inline int arch_spin_is_locked(arch_spinlock_t *lock)
  87. {
  88. return __ticket_spin_is_locked(lock);
  89. }
  90. static inline int arch_spin_is_contended(arch_spinlock_t *lock)
  91. {
  92. return __ticket_spin_is_contended(lock);
  93. }
  94. #define arch_spin_is_contended arch_spin_is_contended
  95. static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
  96. {
  97. __ticket_spin_lock(lock);
  98. }
  99. static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
  100. {
  101. return __ticket_spin_trylock(lock);
  102. }
  103. static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
  104. {
  105. __ticket_spin_unlock(lock);
  106. }
  107. static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
  108. unsigned long flags)
  109. {
  110. arch_spin_lock(lock);
  111. }
  112. #endif /* CONFIG_PARAVIRT_SPINLOCKS */
  113. static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
  114. {
  115. while (arch_spin_is_locked(lock))
  116. cpu_relax();
  117. }
  118. /*
  119. * Read-write spinlocks, allowing multiple readers
  120. * but only one writer.
  121. *
  122. * NOTE! it is quite common to have readers in interrupts
  123. * but no interrupt writers. For those circumstances we
  124. * can "mix" irq-safe locks - any writer needs to get a
  125. * irq-safe write-lock, but readers can get non-irqsafe
  126. * read-locks.
  127. *
  128. * On x86, we implement read-write locks as a 32-bit counter
  129. * with the high bit (sign) being the "contended" bit.
  130. */
  131. /**
  132. * read_can_lock - would read_trylock() succeed?
  133. * @lock: the rwlock in question.
  134. */
  135. static inline int arch_read_can_lock(arch_rwlock_t *lock)
  136. {
  137. return lock->lock > 0;
  138. }
  139. /**
  140. * write_can_lock - would write_trylock() succeed?
  141. * @lock: the rwlock in question.
  142. */
  143. static inline int arch_write_can_lock(arch_rwlock_t *lock)
  144. {
  145. return lock->write == WRITE_LOCK_CMP;
  146. }
  147. static inline void arch_read_lock(arch_rwlock_t *rw)
  148. {
  149. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
  150. "jns 1f\n"
  151. "call __read_lock_failed\n\t"
  152. "1:\n"
  153. ::LOCK_PTR_REG (rw) : "memory");
  154. }
  155. static inline void arch_write_lock(arch_rwlock_t *rw)
  156. {
  157. asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
  158. "jz 1f\n"
  159. "call __write_lock_failed\n\t"
  160. "1:\n"
  161. ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
  162. : "memory");
  163. }
  164. static inline int arch_read_trylock(arch_rwlock_t *lock)
  165. {
  166. READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
  167. if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
  168. return 1;
  169. READ_LOCK_ATOMIC(inc)(count);
  170. return 0;
  171. }
  172. static inline int arch_write_trylock(arch_rwlock_t *lock)
  173. {
  174. atomic_t *count = (atomic_t *)&lock->write;
  175. if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
  176. return 1;
  177. atomic_add(WRITE_LOCK_CMP, count);
  178. return 0;
  179. }
  180. static inline void arch_read_unlock(arch_rwlock_t *rw)
  181. {
  182. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
  183. :"+m" (rw->lock) : : "memory");
  184. }
  185. static inline void arch_write_unlock(arch_rwlock_t *rw)
  186. {
  187. asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
  188. : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
  189. }
  190. #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
  191. #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
  192. #undef READ_LOCK_SIZE
  193. #undef READ_LOCK_ATOMIC
  194. #undef WRITE_LOCK_ADD
  195. #undef WRITE_LOCK_SUB
  196. #undef WRITE_LOCK_CMP
  197. #define arch_spin_relax(lock) cpu_relax()
  198. #define arch_read_relax(lock) cpu_relax()
  199. #define arch_write_relax(lock) cpu_relax()
  200. /* The {read|write|spin}_lock() on x86 are full memory barriers. */
  201. static inline void smp_mb__after_lock(void) { }
  202. #define ARCH_HAS_SMP_MB_AFTER_LOCK
  203. #endif /* _ASM_X86_SPINLOCK_H */