123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- #ifndef _ASM_X86_SPINLOCK_H
- #define _ASM_X86_SPINLOCK_H
- #include <linux/atomic.h>
- #include <asm/page.h>
- #include <asm/processor.h>
- #include <linux/compiler.h>
- #include <asm/paravirt.h>
- /*
- * Your basic SMP spinlocks, allowing only a single CPU anywhere
- *
- * Simple spin lock operations. There are two variants, one clears IRQ's
- * on the local processor, one does not.
- *
- * These are fair FIFO ticket locks, which are currently limited to 256
- * CPUs.
- *
- * (the type definitions are in asm/spinlock_types.h)
- */
- #ifdef CONFIG_X86_32
- # define LOCK_PTR_REG "a"
- # define REG_PTR_MODE "k"
- #else
- # define LOCK_PTR_REG "D"
- # define REG_PTR_MODE "q"
- #endif
- #if defined(CONFIG_X86_32) && \
- (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
- /*
- * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
- * (PPro errata 66, 92)
- */
- # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
- #else
- # define UNLOCK_LOCK_PREFIX
- #endif
- /*
- * Ticket locks are conceptually two parts, one indicating the current head of
- * the queue, and the other indicating the current tail. The lock is acquired
- * by atomically noting the tail and incrementing it by one (thus adding
- * ourself to the queue and noting our position), then waiting until the head
- * becomes equal to the the initial value of the tail.
- *
- * We use an xadd covering *both* parts of the lock, to increment the tail and
- * also load the position of the head, which takes care of memory ordering
- * issues and should be optimal for the uncontended case. Note the tail must be
- * in the high part, because a wide xadd increment of the low part would carry
- * up and contaminate the high part.
- */
- static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
- {
- register struct __raw_tickets inc = { .tail = 1 };
- inc = xadd(&lock->tickets, inc);
- for (;;) {
- if (inc.head == inc.tail)
- break;
- cpu_relax();
- inc.head = ACCESS_ONCE(lock->tickets.head);
- }
- barrier(); /* make sure nothing creeps before the lock is taken */
- }
- static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
- {
- arch_spinlock_t old, new;
- old.tickets = ACCESS_ONCE(lock->tickets);
- if (old.tickets.head != old.tickets.tail)
- return 0;
- new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
- /* cmpxchg is a full barrier, so nothing can move before it */
- return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
- }
- static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
- {
- __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
- }
- static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
- {
- struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
- return tmp.tail != tmp.head;
- }
- static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
- {
- struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
- return (__ticket_t)(tmp.tail - tmp.head) > 1;
- }
- #ifndef CONFIG_PARAVIRT_SPINLOCKS
- static inline int arch_spin_is_locked(arch_spinlock_t *lock)
- {
- return __ticket_spin_is_locked(lock);
- }
- static inline int arch_spin_is_contended(arch_spinlock_t *lock)
- {
- return __ticket_spin_is_contended(lock);
- }
- #define arch_spin_is_contended arch_spin_is_contended
- static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
- {
- __ticket_spin_lock(lock);
- }
- static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
- {
- return __ticket_spin_trylock(lock);
- }
- static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
- {
- __ticket_spin_unlock(lock);
- }
- static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
- unsigned long flags)
- {
- arch_spin_lock(lock);
- }
- #endif /* CONFIG_PARAVIRT_SPINLOCKS */
- static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
- {
- while (arch_spin_is_locked(lock))
- cpu_relax();
- }
- /*
- * Read-write spinlocks, allowing multiple readers
- * but only one writer.
- *
- * NOTE! it is quite common to have readers in interrupts
- * but no interrupt writers. For those circumstances we
- * can "mix" irq-safe locks - any writer needs to get a
- * irq-safe write-lock, but readers can get non-irqsafe
- * read-locks.
- *
- * On x86, we implement read-write locks as a 32-bit counter
- * with the high bit (sign) being the "contended" bit.
- */
- /**
- * read_can_lock - would read_trylock() succeed?
- * @lock: the rwlock in question.
- */
- static inline int arch_read_can_lock(arch_rwlock_t *lock)
- {
- return lock->lock > 0;
- }
- /**
- * write_can_lock - would write_trylock() succeed?
- * @lock: the rwlock in question.
- */
- static inline int arch_write_can_lock(arch_rwlock_t *lock)
- {
- return lock->write == WRITE_LOCK_CMP;
- }
- static inline void arch_read_lock(arch_rwlock_t *rw)
- {
- asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
- "jns 1f\n"
- "call __read_lock_failed\n\t"
- "1:\n"
- ::LOCK_PTR_REG (rw) : "memory");
- }
- static inline void arch_write_lock(arch_rwlock_t *rw)
- {
- asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
- "jz 1f\n"
- "call __write_lock_failed\n\t"
- "1:\n"
- ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
- : "memory");
- }
- static inline int arch_read_trylock(arch_rwlock_t *lock)
- {
- READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
- if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
- return 1;
- READ_LOCK_ATOMIC(inc)(count);
- return 0;
- }
- static inline int arch_write_trylock(arch_rwlock_t *lock)
- {
- atomic_t *count = (atomic_t *)&lock->write;
- if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
- return 1;
- atomic_add(WRITE_LOCK_CMP, count);
- return 0;
- }
- static inline void arch_read_unlock(arch_rwlock_t *rw)
- {
- asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
- :"+m" (rw->lock) : : "memory");
- }
- static inline void arch_write_unlock(arch_rwlock_t *rw)
- {
- asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
- : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
- }
- #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
- #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
- #undef READ_LOCK_SIZE
- #undef READ_LOCK_ATOMIC
- #undef WRITE_LOCK_ADD
- #undef WRITE_LOCK_SUB
- #undef WRITE_LOCK_CMP
- #define arch_spin_relax(lock) cpu_relax()
- #define arch_read_relax(lock) cpu_relax()
- #define arch_write_relax(lock) cpu_relax()
- /* The {read|write|spin}_lock() on x86 are full memory barriers. */
- static inline void smp_mb__after_lock(void) { }
- #define ARCH_HAS_SMP_MB_AFTER_LOCK
- #endif /* _ASM_X86_SPINLOCK_H */
|