dma-default.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
  7. * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
  8. * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/string.h>
  16. #include <linux/gfp.h>
  17. #include <linux/highmem.h>
  18. #include <asm/cache.h>
  19. #include <asm/io.h>
  20. #include <dma-coherence.h>
  21. static inline struct page *dma_addr_to_page(struct device *dev,
  22. dma_addr_t dma_addr)
  23. {
  24. return pfn_to_page(
  25. plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  26. }
  27. /*
  28. * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
  29. * speculatively fill random cachelines with stale data at any time,
  30. * requiring an extra flush post-DMA.
  31. *
  32. * Warning on the terminology - Linux calls an uncached area coherent;
  33. * MIPS terminology calls memory areas with hardware maintained coherency
  34. * coherent.
  35. */
  36. static inline int cpu_needs_post_dma_flush(struct device *dev)
  37. {
  38. return !plat_device_is_coherent(dev) &&
  39. (current_cpu_type() == CPU_R10000 ||
  40. current_cpu_type() == CPU_R12000 ||
  41. current_cpu_type() == CPU_BMIPS5000);
  42. }
  43. static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  44. {
  45. gfp_t dma_flag;
  46. /* ignore region specifiers */
  47. gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  48. #ifdef CONFIG_ISA
  49. if (dev == NULL)
  50. dma_flag = __GFP_DMA;
  51. else
  52. #endif
  53. #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  54. if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
  55. dma_flag = __GFP_DMA;
  56. else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  57. dma_flag = __GFP_DMA32;
  58. else
  59. #endif
  60. #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  61. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  62. dma_flag = __GFP_DMA32;
  63. else
  64. #endif
  65. #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
  66. if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
  67. dma_flag = __GFP_DMA;
  68. else
  69. #endif
  70. dma_flag = 0;
  71. /* Don't invoke OOM killer */
  72. gfp |= __GFP_NORETRY;
  73. return gfp | dma_flag;
  74. }
  75. void *dma_alloc_noncoherent(struct device *dev, size_t size,
  76. dma_addr_t * dma_handle, gfp_t gfp)
  77. {
  78. void *ret;
  79. gfp = massage_gfp_flags(dev, gfp);
  80. ret = (void *) __get_free_pages(gfp, get_order(size));
  81. if (ret != NULL) {
  82. memset(ret, 0, size);
  83. *dma_handle = plat_map_dma_mem(dev, ret, size);
  84. }
  85. return ret;
  86. }
  87. EXPORT_SYMBOL(dma_alloc_noncoherent);
  88. static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
  89. dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
  90. {
  91. void *ret;
  92. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  93. return ret;
  94. gfp = massage_gfp_flags(dev, gfp);
  95. ret = (void *) __get_free_pages(gfp, get_order(size));
  96. if (ret) {
  97. memset(ret, 0, size);
  98. *dma_handle = plat_map_dma_mem(dev, ret, size);
  99. if (!plat_device_is_coherent(dev)) {
  100. dma_cache_wback_inv((unsigned long) ret, size);
  101. ret = UNCAC_ADDR(ret);
  102. }
  103. }
  104. return ret;
  105. }
  106. void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  107. dma_addr_t dma_handle)
  108. {
  109. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  110. free_pages((unsigned long) vaddr, get_order(size));
  111. }
  112. EXPORT_SYMBOL(dma_free_noncoherent);
  113. static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
  114. dma_addr_t dma_handle, struct dma_attrs *attrs)
  115. {
  116. unsigned long addr = (unsigned long) vaddr;
  117. int order = get_order(size);
  118. if (dma_release_from_coherent(dev, order, vaddr))
  119. return;
  120. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  121. if (!plat_device_is_coherent(dev))
  122. addr = CAC_ADDR(addr);
  123. free_pages(addr, get_order(size));
  124. }
  125. static inline void __dma_sync_virtual(void *addr, size_t size,
  126. enum dma_data_direction direction)
  127. {
  128. switch (direction) {
  129. case DMA_TO_DEVICE:
  130. dma_cache_wback((unsigned long)addr, size);
  131. break;
  132. case DMA_FROM_DEVICE:
  133. dma_cache_inv((unsigned long)addr, size);
  134. break;
  135. case DMA_BIDIRECTIONAL:
  136. dma_cache_wback_inv((unsigned long)addr, size);
  137. break;
  138. default:
  139. BUG();
  140. }
  141. }
  142. /*
  143. * A single sg entry may refer to multiple physically contiguous
  144. * pages. But we still need to process highmem pages individually.
  145. * If highmem is not configured then the bulk of this loop gets
  146. * optimized out.
  147. */
  148. static inline void __dma_sync(struct page *page,
  149. unsigned long offset, size_t size, enum dma_data_direction direction)
  150. {
  151. size_t left = size;
  152. do {
  153. size_t len = left;
  154. if (PageHighMem(page)) {
  155. void *addr;
  156. if (offset + len > PAGE_SIZE) {
  157. if (offset >= PAGE_SIZE) {
  158. page += offset >> PAGE_SHIFT;
  159. offset &= ~PAGE_MASK;
  160. }
  161. len = PAGE_SIZE - offset;
  162. }
  163. addr = kmap_atomic(page);
  164. __dma_sync_virtual(addr + offset, len, direction);
  165. kunmap_atomic(addr);
  166. } else
  167. __dma_sync_virtual(page_address(page) + offset,
  168. size, direction);
  169. offset = 0;
  170. page++;
  171. left -= len;
  172. } while (left);
  173. }
  174. static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
  175. size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
  176. {
  177. if (cpu_needs_post_dma_flush(dev))
  178. __dma_sync(dma_addr_to_page(dev, dma_addr),
  179. dma_addr & ~PAGE_MASK, size, direction);
  180. plat_unmap_dma_mem(dev, dma_addr, size, direction);
  181. }
  182. static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
  183. int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
  184. {
  185. int i;
  186. for (i = 0; i < nents; i++, sg++) {
  187. if (!plat_device_is_coherent(dev))
  188. __dma_sync(sg_page(sg), sg->offset, sg->length,
  189. direction);
  190. sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
  191. sg->offset;
  192. }
  193. return nents;
  194. }
  195. static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
  196. unsigned long offset, size_t size, enum dma_data_direction direction,
  197. struct dma_attrs *attrs)
  198. {
  199. if (!plat_device_is_coherent(dev))
  200. __dma_sync(page, offset, size, direction);
  201. return plat_map_dma_mem_page(dev, page) + offset;
  202. }
  203. static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  204. int nhwentries, enum dma_data_direction direction,
  205. struct dma_attrs *attrs)
  206. {
  207. int i;
  208. for (i = 0; i < nhwentries; i++, sg++) {
  209. if (!plat_device_is_coherent(dev) &&
  210. direction != DMA_TO_DEVICE)
  211. __dma_sync(sg_page(sg), sg->offset, sg->length,
  212. direction);
  213. plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
  214. }
  215. }
  216. static void mips_dma_sync_single_for_cpu(struct device *dev,
  217. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  218. {
  219. if (cpu_needs_post_dma_flush(dev))
  220. __dma_sync(dma_addr_to_page(dev, dma_handle),
  221. dma_handle & ~PAGE_MASK, size, direction);
  222. }
  223. static void mips_dma_sync_single_for_device(struct device *dev,
  224. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  225. {
  226. plat_extra_sync_for_device(dev);
  227. if (!plat_device_is_coherent(dev))
  228. __dma_sync(dma_addr_to_page(dev, dma_handle),
  229. dma_handle & ~PAGE_MASK, size, direction);
  230. }
  231. static void mips_dma_sync_sg_for_cpu(struct device *dev,
  232. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  233. {
  234. int i;
  235. /* Make sure that gcc doesn't leave the empty loop body. */
  236. for (i = 0; i < nelems; i++, sg++) {
  237. if (cpu_needs_post_dma_flush(dev))
  238. __dma_sync(sg_page(sg), sg->offset, sg->length,
  239. direction);
  240. }
  241. }
  242. static void mips_dma_sync_sg_for_device(struct device *dev,
  243. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  244. {
  245. int i;
  246. /* Make sure that gcc doesn't leave the empty loop body. */
  247. for (i = 0; i < nelems; i++, sg++) {
  248. if (!plat_device_is_coherent(dev))
  249. __dma_sync(sg_page(sg), sg->offset, sg->length,
  250. direction);
  251. }
  252. }
  253. int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  254. {
  255. return plat_dma_mapping_error(dev, dma_addr);
  256. }
  257. int mips_dma_supported(struct device *dev, u64 mask)
  258. {
  259. return plat_dma_supported(dev, mask);
  260. }
  261. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  262. enum dma_data_direction direction)
  263. {
  264. BUG_ON(direction == DMA_NONE);
  265. plat_extra_sync_for_device(dev);
  266. if (!plat_device_is_coherent(dev))
  267. __dma_sync_virtual(vaddr, size, direction);
  268. }
  269. EXPORT_SYMBOL(dma_cache_sync);
  270. static struct dma_map_ops mips_default_dma_map_ops = {
  271. .alloc = mips_dma_alloc_coherent,
  272. .free = mips_dma_free_coherent,
  273. .map_page = mips_dma_map_page,
  274. .unmap_page = mips_dma_unmap_page,
  275. .map_sg = mips_dma_map_sg,
  276. .unmap_sg = mips_dma_unmap_sg,
  277. .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
  278. .sync_single_for_device = mips_dma_sync_single_for_device,
  279. .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
  280. .sync_sg_for_device = mips_dma_sync_sg_for_device,
  281. .mapping_error = mips_dma_mapping_error,
  282. .dma_supported = mips_dma_supported
  283. };
  284. struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
  285. EXPORT_SYMBOL(mips_dma_map_ops);
  286. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  287. static int __init mips_dma_init(void)
  288. {
  289. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  290. return 0;
  291. }
  292. fs_initcall(mips_dma_init);