intel_mid_dma.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461
  1. /*
  2. * intel_mid_dma.c - Intel Langwell DMA Drivers
  3. *
  4. * Copyright (C) 2008-10 Intel Corp
  5. * Author: Vinod Koul <vinod.koul@intel.com>
  6. * The driver design is based on dw_dmac driver
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along
  19. * with this program; if not, write to the Free Software Foundation, Inc.,
  20. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  21. *
  22. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23. *
  24. *
  25. */
  26. #include <linux/pci.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/intel_mid_dma.h>
  30. #include <linux/module.h>
  31. #include "dmaengine.h"
  32. #define MAX_CHAN 4 /*max ch across controllers*/
  33. #include "intel_mid_dma_regs.h"
  34. #define INTEL_MID_DMAC1_ID 0x0814
  35. #define INTEL_MID_DMAC2_ID 0x0813
  36. #define INTEL_MID_GP_DMAC2_ID 0x0827
  37. #define INTEL_MFLD_DMAC1_ID 0x0830
  38. #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
  39. #define LNW_PERIPHRAL_MASK_SIZE 0x10
  40. #define LNW_PERIPHRAL_STATUS 0x0
  41. #define LNW_PERIPHRAL_MASK 0x8
  42. struct intel_mid_dma_probe_info {
  43. u8 max_chan;
  44. u8 ch_base;
  45. u16 block_size;
  46. u32 pimr_mask;
  47. };
  48. #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
  49. ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
  50. .max_chan = (_max_chan), \
  51. .ch_base = (_ch_base), \
  52. .block_size = (_block_size), \
  53. .pimr_mask = (_pimr_mask), \
  54. })
  55. /*****************************************************************************
  56. Utility Functions*/
  57. /**
  58. * get_ch_index - convert status to channel
  59. * @status: status mask
  60. * @base: dma ch base value
  61. *
  62. * Modify the status mask and return the channel index needing
  63. * attention (or -1 if neither)
  64. */
  65. static int get_ch_index(int *status, unsigned int base)
  66. {
  67. int i;
  68. for (i = 0; i < MAX_CHAN; i++) {
  69. if (*status & (1 << (i + base))) {
  70. *status = *status & ~(1 << (i + base));
  71. pr_debug("MDMA: index %d New status %x\n", i, *status);
  72. return i;
  73. }
  74. }
  75. return -1;
  76. }
  77. /**
  78. * get_block_ts - calculates dma transaction length
  79. * @len: dma transfer length
  80. * @tx_width: dma transfer src width
  81. * @block_size: dma controller max block size
  82. *
  83. * Based on src width calculate the DMA trsaction length in data items
  84. * return data items or FFFF if exceeds max length for block
  85. */
  86. static int get_block_ts(int len, int tx_width, int block_size)
  87. {
  88. int byte_width = 0, block_ts = 0;
  89. switch (tx_width) {
  90. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  91. byte_width = 1;
  92. break;
  93. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  94. byte_width = 2;
  95. break;
  96. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  97. default:
  98. byte_width = 4;
  99. break;
  100. }
  101. block_ts = len/byte_width;
  102. if (block_ts > block_size)
  103. block_ts = 0xFFFF;
  104. return block_ts;
  105. }
  106. /*****************************************************************************
  107. DMAC1 interrupt Functions*/
  108. /**
  109. * dmac1_mask_periphral_intr - mask the periphral interrupt
  110. * @mid: dma device for which masking is required
  111. *
  112. * Masks the DMA periphral interrupt
  113. * this is valid for DMAC1 family controllers only
  114. * This controller should have periphral mask registers already mapped
  115. */
  116. static void dmac1_mask_periphral_intr(struct middma_device *mid)
  117. {
  118. u32 pimr;
  119. if (mid->pimr_mask) {
  120. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  121. pimr |= mid->pimr_mask;
  122. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  123. }
  124. return;
  125. }
  126. /**
  127. * dmac1_unmask_periphral_intr - unmask the periphral interrupt
  128. * @midc: dma channel for which masking is required
  129. *
  130. * UnMasks the DMA periphral interrupt,
  131. * this is valid for DMAC1 family controllers only
  132. * This controller should have periphral mask registers already mapped
  133. */
  134. static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
  135. {
  136. u32 pimr;
  137. struct middma_device *mid = to_middma_device(midc->chan.device);
  138. if (mid->pimr_mask) {
  139. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  140. pimr &= ~mid->pimr_mask;
  141. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  142. }
  143. return;
  144. }
  145. /**
  146. * enable_dma_interrupt - enable the periphral interrupt
  147. * @midc: dma channel for which enable interrupt is required
  148. *
  149. * Enable the DMA periphral interrupt,
  150. * this is valid for DMAC1 family controllers only
  151. * This controller should have periphral mask registers already mapped
  152. */
  153. static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
  154. {
  155. dmac1_unmask_periphral_intr(midc);
  156. /*en ch interrupts*/
  157. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  158. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  159. return;
  160. }
  161. /**
  162. * disable_dma_interrupt - disable the periphral interrupt
  163. * @midc: dma channel for which disable interrupt is required
  164. *
  165. * Disable the DMA periphral interrupt,
  166. * this is valid for DMAC1 family controllers only
  167. * This controller should have periphral mask registers already mapped
  168. */
  169. static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
  170. {
  171. /*Check LPE PISR, make sure fwd is disabled*/
  172. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
  173. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  174. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  175. return;
  176. }
  177. /*****************************************************************************
  178. DMA channel helper Functions*/
  179. /**
  180. * mid_desc_get - get a descriptor
  181. * @midc: dma channel for which descriptor is required
  182. *
  183. * Obtain a descriptor for the channel. Returns NULL if none are free.
  184. * Once the descriptor is returned it is private until put on another
  185. * list or freed
  186. */
  187. static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
  188. {
  189. struct intel_mid_dma_desc *desc, *_desc;
  190. struct intel_mid_dma_desc *ret = NULL;
  191. spin_lock_bh(&midc->lock);
  192. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  193. if (async_tx_test_ack(&desc->txd)) {
  194. list_del(&desc->desc_node);
  195. ret = desc;
  196. break;
  197. }
  198. }
  199. spin_unlock_bh(&midc->lock);
  200. return ret;
  201. }
  202. /**
  203. * mid_desc_put - put a descriptor
  204. * @midc: dma channel for which descriptor is required
  205. * @desc: descriptor to put
  206. *
  207. * Return a descriptor from lwn_desc_get back to the free pool
  208. */
  209. static void midc_desc_put(struct intel_mid_dma_chan *midc,
  210. struct intel_mid_dma_desc *desc)
  211. {
  212. if (desc) {
  213. spin_lock_bh(&midc->lock);
  214. list_add_tail(&desc->desc_node, &midc->free_list);
  215. spin_unlock_bh(&midc->lock);
  216. }
  217. }
  218. /**
  219. * midc_dostart - begin a DMA transaction
  220. * @midc: channel for which txn is to be started
  221. * @first: first descriptor of series
  222. *
  223. * Load a transaction into the engine. This must be called with midc->lock
  224. * held and bh disabled.
  225. */
  226. static void midc_dostart(struct intel_mid_dma_chan *midc,
  227. struct intel_mid_dma_desc *first)
  228. {
  229. struct middma_device *mid = to_middma_device(midc->chan.device);
  230. /* channel is idle */
  231. if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
  232. /*error*/
  233. pr_err("ERR_MDMA: channel is busy in start\n");
  234. /* The tasklet will hopefully advance the queue... */
  235. return;
  236. }
  237. midc->busy = true;
  238. /*write registers and en*/
  239. iowrite32(first->sar, midc->ch_regs + SAR);
  240. iowrite32(first->dar, midc->ch_regs + DAR);
  241. iowrite32(first->lli_phys, midc->ch_regs + LLP);
  242. iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
  243. iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
  244. iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
  245. iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
  246. pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
  247. (int)first->sar, (int)first->dar, first->cfg_hi,
  248. first->cfg_lo, first->ctl_hi, first->ctl_lo);
  249. first->status = DMA_IN_PROGRESS;
  250. iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
  251. }
  252. /**
  253. * midc_descriptor_complete - process completed descriptor
  254. * @midc: channel owning the descriptor
  255. * @desc: the descriptor itself
  256. *
  257. * Process a completed descriptor and perform any callbacks upon
  258. * the completion. The completion handling drops the lock during the
  259. * callbacks but must be called with the lock held.
  260. */
  261. static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
  262. struct intel_mid_dma_desc *desc)
  263. __releases(&midc->lock) __acquires(&midc->lock)
  264. {
  265. struct dma_async_tx_descriptor *txd = &desc->txd;
  266. dma_async_tx_callback callback_txd = NULL;
  267. struct intel_mid_dma_lli *llitem;
  268. void *param_txd = NULL;
  269. dma_cookie_complete(txd);
  270. callback_txd = txd->callback;
  271. param_txd = txd->callback_param;
  272. if (desc->lli != NULL) {
  273. /*clear the DONE bit of completed LLI in memory*/
  274. llitem = desc->lli + desc->current_lli;
  275. llitem->ctl_hi &= CLEAR_DONE;
  276. if (desc->current_lli < desc->lli_length-1)
  277. (desc->current_lli)++;
  278. else
  279. desc->current_lli = 0;
  280. }
  281. spin_unlock_bh(&midc->lock);
  282. if (callback_txd) {
  283. pr_debug("MDMA: TXD callback set ... calling\n");
  284. callback_txd(param_txd);
  285. }
  286. if (midc->raw_tfr) {
  287. desc->status = DMA_SUCCESS;
  288. if (desc->lli != NULL) {
  289. pci_pool_free(desc->lli_pool, desc->lli,
  290. desc->lli_phys);
  291. pci_pool_destroy(desc->lli_pool);
  292. desc->lli = NULL;
  293. }
  294. list_move(&desc->desc_node, &midc->free_list);
  295. midc->busy = false;
  296. }
  297. spin_lock_bh(&midc->lock);
  298. }
  299. /**
  300. * midc_scan_descriptors - check the descriptors in channel
  301. * mark completed when tx is completete
  302. * @mid: device
  303. * @midc: channel to scan
  304. *
  305. * Walk the descriptor chain for the device and process any entries
  306. * that are complete.
  307. */
  308. static void midc_scan_descriptors(struct middma_device *mid,
  309. struct intel_mid_dma_chan *midc)
  310. {
  311. struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
  312. /*tx is complete*/
  313. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  314. if (desc->status == DMA_IN_PROGRESS)
  315. midc_descriptor_complete(midc, desc);
  316. }
  317. return;
  318. }
  319. /**
  320. * midc_lli_fill_sg - Helper function to convert
  321. * SG list to Linked List Items.
  322. *@midc: Channel
  323. *@desc: DMA descriptor
  324. *@sglist: Pointer to SG list
  325. *@sglen: SG list length
  326. *@flags: DMA transaction flags
  327. *
  328. * Walk through the SG list and convert the SG list into Linked
  329. * List Items (LLI).
  330. */
  331. static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
  332. struct intel_mid_dma_desc *desc,
  333. struct scatterlist *sglist,
  334. unsigned int sglen,
  335. unsigned int flags)
  336. {
  337. struct intel_mid_dma_slave *mids;
  338. struct scatterlist *sg;
  339. dma_addr_t lli_next, sg_phy_addr;
  340. struct intel_mid_dma_lli *lli_bloc_desc;
  341. union intel_mid_dma_ctl_lo ctl_lo;
  342. union intel_mid_dma_ctl_hi ctl_hi;
  343. int i;
  344. pr_debug("MDMA: Entered midc_lli_fill_sg\n");
  345. mids = midc->mid_slave;
  346. lli_bloc_desc = desc->lli;
  347. lli_next = desc->lli_phys;
  348. ctl_lo.ctl_lo = desc->ctl_lo;
  349. ctl_hi.ctl_hi = desc->ctl_hi;
  350. for_each_sg(sglist, sg, sglen, i) {
  351. /*Populate CTL_LOW and LLI values*/
  352. if (i != sglen - 1) {
  353. lli_next = lli_next +
  354. sizeof(struct intel_mid_dma_lli);
  355. } else {
  356. /*Check for circular list, otherwise terminate LLI to ZERO*/
  357. if (flags & DMA_PREP_CIRCULAR_LIST) {
  358. pr_debug("MDMA: LLI is configured in circular mode\n");
  359. lli_next = desc->lli_phys;
  360. } else {
  361. lli_next = 0;
  362. ctl_lo.ctlx.llp_dst_en = 0;
  363. ctl_lo.ctlx.llp_src_en = 0;
  364. }
  365. }
  366. /*Populate CTL_HI values*/
  367. ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
  368. desc->width,
  369. midc->dma->block_size);
  370. /*Populate SAR and DAR values*/
  371. sg_phy_addr = sg_phys(sg);
  372. if (desc->dirn == DMA_MEM_TO_DEV) {
  373. lli_bloc_desc->sar = sg_phy_addr;
  374. lli_bloc_desc->dar = mids->dma_slave.dst_addr;
  375. } else if (desc->dirn == DMA_DEV_TO_MEM) {
  376. lli_bloc_desc->sar = mids->dma_slave.src_addr;
  377. lli_bloc_desc->dar = sg_phy_addr;
  378. }
  379. /*Copy values into block descriptor in system memroy*/
  380. lli_bloc_desc->llp = lli_next;
  381. lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
  382. lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
  383. lli_bloc_desc++;
  384. }
  385. /*Copy very first LLI values to descriptor*/
  386. desc->ctl_lo = desc->lli->ctl_lo;
  387. desc->ctl_hi = desc->lli->ctl_hi;
  388. desc->sar = desc->lli->sar;
  389. desc->dar = desc->lli->dar;
  390. return 0;
  391. }
  392. /*****************************************************************************
  393. DMA engine callback Functions*/
  394. /**
  395. * intel_mid_dma_tx_submit - callback to submit DMA transaction
  396. * @tx: dma engine descriptor
  397. *
  398. * Submit the DMA trasaction for this descriptor, start if ch idle
  399. */
  400. static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  401. {
  402. struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
  403. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
  404. dma_cookie_t cookie;
  405. spin_lock_bh(&midc->lock);
  406. cookie = dma_cookie_assign(tx);
  407. if (list_empty(&midc->active_list))
  408. list_add_tail(&desc->desc_node, &midc->active_list);
  409. else
  410. list_add_tail(&desc->desc_node, &midc->queue);
  411. midc_dostart(midc, desc);
  412. spin_unlock_bh(&midc->lock);
  413. return cookie;
  414. }
  415. /**
  416. * intel_mid_dma_issue_pending - callback to issue pending txn
  417. * @chan: chan where pending trascation needs to be checked and submitted
  418. *
  419. * Call for scan to issue pending descriptors
  420. */
  421. static void intel_mid_dma_issue_pending(struct dma_chan *chan)
  422. {
  423. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  424. spin_lock_bh(&midc->lock);
  425. if (!list_empty(&midc->queue))
  426. midc_scan_descriptors(to_middma_device(chan->device), midc);
  427. spin_unlock_bh(&midc->lock);
  428. }
  429. /**
  430. * intel_mid_dma_tx_status - Return status of txn
  431. * @chan: chan for where status needs to be checked
  432. * @cookie: cookie for txn
  433. * @txstate: DMA txn state
  434. *
  435. * Return status of DMA txn
  436. */
  437. static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
  438. dma_cookie_t cookie,
  439. struct dma_tx_state *txstate)
  440. {
  441. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  442. enum dma_status ret;
  443. ret = dma_cookie_status(chan, cookie, txstate);
  444. if (ret != DMA_SUCCESS) {
  445. spin_lock_bh(&midc->lock);
  446. midc_scan_descriptors(to_middma_device(chan->device), midc);
  447. spin_unlock_bh(&midc->lock);
  448. ret = dma_cookie_status(chan, cookie, txstate);
  449. }
  450. return ret;
  451. }
  452. static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
  453. {
  454. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  455. struct dma_slave_config *slave = (struct dma_slave_config *)arg;
  456. struct intel_mid_dma_slave *mid_slave;
  457. BUG_ON(!midc);
  458. BUG_ON(!slave);
  459. pr_debug("MDMA: slave control called\n");
  460. mid_slave = to_intel_mid_dma_slave(slave);
  461. BUG_ON(!mid_slave);
  462. midc->mid_slave = mid_slave;
  463. return 0;
  464. }
  465. /**
  466. * intel_mid_dma_device_control - DMA device control
  467. * @chan: chan for DMA control
  468. * @cmd: control cmd
  469. * @arg: cmd arg value
  470. *
  471. * Perform DMA control command
  472. */
  473. static int intel_mid_dma_device_control(struct dma_chan *chan,
  474. enum dma_ctrl_cmd cmd, unsigned long arg)
  475. {
  476. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  477. struct middma_device *mid = to_middma_device(chan->device);
  478. struct intel_mid_dma_desc *desc, *_desc;
  479. union intel_mid_dma_cfg_lo cfg_lo;
  480. if (cmd == DMA_SLAVE_CONFIG)
  481. return dma_slave_control(chan, arg);
  482. if (cmd != DMA_TERMINATE_ALL)
  483. return -ENXIO;
  484. spin_lock_bh(&midc->lock);
  485. if (midc->busy == false) {
  486. spin_unlock_bh(&midc->lock);
  487. return 0;
  488. }
  489. /*Suspend and disable the channel*/
  490. cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
  491. cfg_lo.cfgx.ch_susp = 1;
  492. iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
  493. iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
  494. midc->busy = false;
  495. /* Disable interrupts */
  496. disable_dma_interrupt(midc);
  497. midc->descs_allocated = 0;
  498. spin_unlock_bh(&midc->lock);
  499. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  500. if (desc->lli != NULL) {
  501. pci_pool_free(desc->lli_pool, desc->lli,
  502. desc->lli_phys);
  503. pci_pool_destroy(desc->lli_pool);
  504. desc->lli = NULL;
  505. }
  506. list_move(&desc->desc_node, &midc->free_list);
  507. }
  508. return 0;
  509. }
  510. /**
  511. * intel_mid_dma_prep_memcpy - Prep memcpy txn
  512. * @chan: chan for DMA transfer
  513. * @dest: destn address
  514. * @src: src address
  515. * @len: DMA transfer len
  516. * @flags: DMA flags
  517. *
  518. * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
  519. * The periphral txn details should be filled in slave structure properly
  520. * Returns the descriptor for this txn
  521. */
  522. static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
  523. struct dma_chan *chan, dma_addr_t dest,
  524. dma_addr_t src, size_t len, unsigned long flags)
  525. {
  526. struct intel_mid_dma_chan *midc;
  527. struct intel_mid_dma_desc *desc = NULL;
  528. struct intel_mid_dma_slave *mids;
  529. union intel_mid_dma_ctl_lo ctl_lo;
  530. union intel_mid_dma_ctl_hi ctl_hi;
  531. union intel_mid_dma_cfg_lo cfg_lo;
  532. union intel_mid_dma_cfg_hi cfg_hi;
  533. enum dma_slave_buswidth width;
  534. pr_debug("MDMA: Prep for memcpy\n");
  535. BUG_ON(!chan);
  536. if (!len)
  537. return NULL;
  538. midc = to_intel_mid_dma_chan(chan);
  539. BUG_ON(!midc);
  540. mids = midc->mid_slave;
  541. BUG_ON(!mids);
  542. pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
  543. midc->dma->pci_id, midc->ch_id, len);
  544. pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
  545. mids->cfg_mode, mids->dma_slave.direction,
  546. mids->hs_mode, mids->dma_slave.src_addr_width);
  547. /*calculate CFG_LO*/
  548. if (mids->hs_mode == LNW_DMA_SW_HS) {
  549. cfg_lo.cfg_lo = 0;
  550. cfg_lo.cfgx.hs_sel_dst = 1;
  551. cfg_lo.cfgx.hs_sel_src = 1;
  552. } else if (mids->hs_mode == LNW_DMA_HW_HS)
  553. cfg_lo.cfg_lo = 0x00000;
  554. /*calculate CFG_HI*/
  555. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  556. /*SW HS only*/
  557. cfg_hi.cfg_hi = 0;
  558. } else {
  559. cfg_hi.cfg_hi = 0;
  560. if (midc->dma->pimr_mask) {
  561. cfg_hi.cfgx.protctl = 0x0; /*default value*/
  562. cfg_hi.cfgx.fifo_mode = 1;
  563. if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
  564. cfg_hi.cfgx.src_per = 0;
  565. if (mids->device_instance == 0)
  566. cfg_hi.cfgx.dst_per = 3;
  567. if (mids->device_instance == 1)
  568. cfg_hi.cfgx.dst_per = 1;
  569. } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
  570. if (mids->device_instance == 0)
  571. cfg_hi.cfgx.src_per = 2;
  572. if (mids->device_instance == 1)
  573. cfg_hi.cfgx.src_per = 0;
  574. cfg_hi.cfgx.dst_per = 0;
  575. }
  576. } else {
  577. cfg_hi.cfgx.protctl = 0x1; /*default value*/
  578. cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
  579. midc->ch_id - midc->dma->chan_base;
  580. }
  581. }
  582. /*calculate CTL_HI*/
  583. ctl_hi.ctlx.reser = 0;
  584. ctl_hi.ctlx.done = 0;
  585. width = mids->dma_slave.src_addr_width;
  586. ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
  587. pr_debug("MDMA:calc len %d for block size %d\n",
  588. ctl_hi.ctlx.block_ts, midc->dma->block_size);
  589. /*calculate CTL_LO*/
  590. ctl_lo.ctl_lo = 0;
  591. ctl_lo.ctlx.int_en = 1;
  592. ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
  593. ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
  594. /*
  595. * Here we need some translation from "enum dma_slave_buswidth"
  596. * to the format for our dma controller
  597. * standard intel_mid_dmac's format
  598. * 1 Byte 0b000
  599. * 2 Bytes 0b001
  600. * 4 Bytes 0b010
  601. */
  602. ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
  603. ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
  604. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  605. ctl_lo.ctlx.tt_fc = 0;
  606. ctl_lo.ctlx.sinc = 0;
  607. ctl_lo.ctlx.dinc = 0;
  608. } else {
  609. if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
  610. ctl_lo.ctlx.sinc = 0;
  611. ctl_lo.ctlx.dinc = 2;
  612. ctl_lo.ctlx.tt_fc = 1;
  613. } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
  614. ctl_lo.ctlx.sinc = 2;
  615. ctl_lo.ctlx.dinc = 0;
  616. ctl_lo.ctlx.tt_fc = 2;
  617. }
  618. }
  619. pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
  620. ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
  621. enable_dma_interrupt(midc);
  622. desc = midc_desc_get(midc);
  623. if (desc == NULL)
  624. goto err_desc_get;
  625. desc->sar = src;
  626. desc->dar = dest ;
  627. desc->len = len;
  628. desc->cfg_hi = cfg_hi.cfg_hi;
  629. desc->cfg_lo = cfg_lo.cfg_lo;
  630. desc->ctl_lo = ctl_lo.ctl_lo;
  631. desc->ctl_hi = ctl_hi.ctl_hi;
  632. desc->width = width;
  633. desc->dirn = mids->dma_slave.direction;
  634. desc->lli_phys = 0;
  635. desc->lli = NULL;
  636. desc->lli_pool = NULL;
  637. return &desc->txd;
  638. err_desc_get:
  639. pr_err("ERR_MDMA: Failed to get desc\n");
  640. midc_desc_put(midc, desc);
  641. return NULL;
  642. }
  643. /**
  644. * intel_mid_dma_prep_slave_sg - Prep slave sg txn
  645. * @chan: chan for DMA transfer
  646. * @sgl: scatter gather list
  647. * @sg_len: length of sg txn
  648. * @direction: DMA transfer dirtn
  649. * @flags: DMA flags
  650. * @context: transfer context (ignored)
  651. *
  652. * Prepares LLI based periphral transfer
  653. */
  654. static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
  655. struct dma_chan *chan, struct scatterlist *sgl,
  656. unsigned int sg_len, enum dma_transfer_direction direction,
  657. unsigned long flags, void *context)
  658. {
  659. struct intel_mid_dma_chan *midc = NULL;
  660. struct intel_mid_dma_slave *mids = NULL;
  661. struct intel_mid_dma_desc *desc = NULL;
  662. struct dma_async_tx_descriptor *txd = NULL;
  663. union intel_mid_dma_ctl_lo ctl_lo;
  664. pr_debug("MDMA: Prep for slave SG\n");
  665. if (!sg_len) {
  666. pr_err("MDMA: Invalid SG length\n");
  667. return NULL;
  668. }
  669. midc = to_intel_mid_dma_chan(chan);
  670. BUG_ON(!midc);
  671. mids = midc->mid_slave;
  672. BUG_ON(!mids);
  673. if (!midc->dma->pimr_mask) {
  674. /* We can still handle sg list with only one item */
  675. if (sg_len == 1) {
  676. txd = intel_mid_dma_prep_memcpy(chan,
  677. mids->dma_slave.dst_addr,
  678. mids->dma_slave.src_addr,
  679. sgl->length,
  680. flags);
  681. return txd;
  682. } else {
  683. pr_warn("MDMA: SG list is not supported by this controller\n");
  684. return NULL;
  685. }
  686. }
  687. pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
  688. sg_len, direction, flags);
  689. txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
  690. if (NULL == txd) {
  691. pr_err("MDMA: Prep memcpy failed\n");
  692. return NULL;
  693. }
  694. desc = to_intel_mid_dma_desc(txd);
  695. desc->dirn = direction;
  696. ctl_lo.ctl_lo = desc->ctl_lo;
  697. ctl_lo.ctlx.llp_dst_en = 1;
  698. ctl_lo.ctlx.llp_src_en = 1;
  699. desc->ctl_lo = ctl_lo.ctl_lo;
  700. desc->lli_length = sg_len;
  701. desc->current_lli = 0;
  702. /* DMA coherent memory pool for LLI descriptors*/
  703. desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
  704. midc->dma->pdev,
  705. (sizeof(struct intel_mid_dma_lli)*sg_len),
  706. 32, 0);
  707. if (NULL == desc->lli_pool) {
  708. pr_err("MID_DMA:LLI pool create failed\n");
  709. return NULL;
  710. }
  711. desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
  712. if (!desc->lli) {
  713. pr_err("MID_DMA: LLI alloc failed\n");
  714. pci_pool_destroy(desc->lli_pool);
  715. return NULL;
  716. }
  717. midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
  718. if (flags & DMA_PREP_INTERRUPT) {
  719. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  720. midc->dma_base + MASK_BLOCK);
  721. pr_debug("MDMA:Enabled Block interrupt\n");
  722. }
  723. return &desc->txd;
  724. }
  725. /**
  726. * intel_mid_dma_free_chan_resources - Frees dma resources
  727. * @chan: chan requiring attention
  728. *
  729. * Frees the allocated resources on this DMA chan
  730. */
  731. static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
  732. {
  733. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  734. struct middma_device *mid = to_middma_device(chan->device);
  735. struct intel_mid_dma_desc *desc, *_desc;
  736. if (true == midc->busy) {
  737. /*trying to free ch in use!!!!!*/
  738. pr_err("ERR_MDMA: trying to free ch in use\n");
  739. }
  740. spin_lock_bh(&midc->lock);
  741. midc->descs_allocated = 0;
  742. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  743. list_del(&desc->desc_node);
  744. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  745. }
  746. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  747. list_del(&desc->desc_node);
  748. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  749. }
  750. list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
  751. list_del(&desc->desc_node);
  752. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  753. }
  754. spin_unlock_bh(&midc->lock);
  755. midc->in_use = false;
  756. midc->busy = false;
  757. /* Disable CH interrupts */
  758. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
  759. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
  760. pm_runtime_put(&mid->pdev->dev);
  761. }
  762. /**
  763. * intel_mid_dma_alloc_chan_resources - Allocate dma resources
  764. * @chan: chan requiring attention
  765. *
  766. * Allocates DMA resources on this chan
  767. * Return the descriptors allocated
  768. */
  769. static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
  770. {
  771. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  772. struct middma_device *mid = to_middma_device(chan->device);
  773. struct intel_mid_dma_desc *desc;
  774. dma_addr_t phys;
  775. int i = 0;
  776. pm_runtime_get_sync(&mid->pdev->dev);
  777. if (mid->state == SUSPENDED) {
  778. if (dma_resume(&mid->pdev->dev)) {
  779. pr_err("ERR_MDMA: resume failed");
  780. return -EFAULT;
  781. }
  782. }
  783. /* ASSERT: channel is idle */
  784. if (test_ch_en(mid->dma_base, midc->ch_id)) {
  785. /*ch is not idle*/
  786. pr_err("ERR_MDMA: ch not idle\n");
  787. pm_runtime_put(&mid->pdev->dev);
  788. return -EIO;
  789. }
  790. dma_cookie_init(chan);
  791. spin_lock_bh(&midc->lock);
  792. while (midc->descs_allocated < DESCS_PER_CHANNEL) {
  793. spin_unlock_bh(&midc->lock);
  794. desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
  795. if (!desc) {
  796. pr_err("ERR_MDMA: desc failed\n");
  797. pm_runtime_put(&mid->pdev->dev);
  798. return -ENOMEM;
  799. /*check*/
  800. }
  801. dma_async_tx_descriptor_init(&desc->txd, chan);
  802. desc->txd.tx_submit = intel_mid_dma_tx_submit;
  803. desc->txd.flags = DMA_CTRL_ACK;
  804. desc->txd.phys = phys;
  805. spin_lock_bh(&midc->lock);
  806. i = ++midc->descs_allocated;
  807. list_add_tail(&desc->desc_node, &midc->free_list);
  808. }
  809. spin_unlock_bh(&midc->lock);
  810. midc->in_use = true;
  811. midc->busy = false;
  812. pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
  813. return i;
  814. }
  815. /**
  816. * midc_handle_error - Handle DMA txn error
  817. * @mid: controller where error occurred
  818. * @midc: chan where error occurred
  819. *
  820. * Scan the descriptor for error
  821. */
  822. static void midc_handle_error(struct middma_device *mid,
  823. struct intel_mid_dma_chan *midc)
  824. {
  825. midc_scan_descriptors(mid, midc);
  826. }
  827. /**
  828. * dma_tasklet - DMA interrupt tasklet
  829. * @data: tasklet arg (the controller structure)
  830. *
  831. * Scan the controller for interrupts for completion/error
  832. * Clear the interrupt and call for handling completion/error
  833. */
  834. static void dma_tasklet(unsigned long data)
  835. {
  836. struct middma_device *mid = NULL;
  837. struct intel_mid_dma_chan *midc = NULL;
  838. u32 status, raw_tfr, raw_block;
  839. int i;
  840. mid = (struct middma_device *)data;
  841. if (mid == NULL) {
  842. pr_err("ERR_MDMA: tasklet Null param\n");
  843. return;
  844. }
  845. pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
  846. raw_tfr = ioread32(mid->dma_base + RAW_TFR);
  847. raw_block = ioread32(mid->dma_base + RAW_BLOCK);
  848. status = raw_tfr | raw_block;
  849. status &= mid->intr_mask;
  850. while (status) {
  851. /*txn interrupt*/
  852. i = get_ch_index(&status, mid->chan_base);
  853. if (i < 0) {
  854. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  855. return;
  856. }
  857. midc = &mid->ch[i];
  858. if (midc == NULL) {
  859. pr_err("ERR_MDMA:Null param midc\n");
  860. return;
  861. }
  862. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  863. status, midc->ch_id, i);
  864. midc->raw_tfr = raw_tfr;
  865. midc->raw_block = raw_block;
  866. spin_lock_bh(&midc->lock);
  867. /*clearing this interrupts first*/
  868. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
  869. if (raw_block) {
  870. iowrite32((1 << midc->ch_id),
  871. mid->dma_base + CLEAR_BLOCK);
  872. }
  873. midc_scan_descriptors(mid, midc);
  874. pr_debug("MDMA:Scan of desc... complete, unmasking\n");
  875. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  876. mid->dma_base + MASK_TFR);
  877. if (raw_block) {
  878. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  879. mid->dma_base + MASK_BLOCK);
  880. }
  881. spin_unlock_bh(&midc->lock);
  882. }
  883. status = ioread32(mid->dma_base + RAW_ERR);
  884. status &= mid->intr_mask;
  885. while (status) {
  886. /*err interrupt*/
  887. i = get_ch_index(&status, mid->chan_base);
  888. if (i < 0) {
  889. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  890. return;
  891. }
  892. midc = &mid->ch[i];
  893. if (midc == NULL) {
  894. pr_err("ERR_MDMA:Null param midc\n");
  895. return;
  896. }
  897. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  898. status, midc->ch_id, i);
  899. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
  900. spin_lock_bh(&midc->lock);
  901. midc_handle_error(mid, midc);
  902. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  903. mid->dma_base + MASK_ERR);
  904. spin_unlock_bh(&midc->lock);
  905. }
  906. pr_debug("MDMA:Exiting takslet...\n");
  907. return;
  908. }
  909. static void dma_tasklet1(unsigned long data)
  910. {
  911. pr_debug("MDMA:in takslet1...\n");
  912. return dma_tasklet(data);
  913. }
  914. static void dma_tasklet2(unsigned long data)
  915. {
  916. pr_debug("MDMA:in takslet2...\n");
  917. return dma_tasklet(data);
  918. }
  919. /**
  920. * intel_mid_dma_interrupt - DMA ISR
  921. * @irq: IRQ where interrupt occurred
  922. * @data: ISR cllback data (the controller structure)
  923. *
  924. * See if this is our interrupt if so then schedule the tasklet
  925. * otherwise ignore
  926. */
  927. static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
  928. {
  929. struct middma_device *mid = data;
  930. u32 tfr_status, err_status;
  931. int call_tasklet = 0;
  932. tfr_status = ioread32(mid->dma_base + RAW_TFR);
  933. err_status = ioread32(mid->dma_base + RAW_ERR);
  934. if (!tfr_status && !err_status)
  935. return IRQ_NONE;
  936. /*DMA Interrupt*/
  937. pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
  938. pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
  939. tfr_status &= mid->intr_mask;
  940. if (tfr_status) {
  941. /*need to disable intr*/
  942. iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
  943. iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
  944. pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
  945. call_tasklet = 1;
  946. }
  947. err_status &= mid->intr_mask;
  948. if (err_status) {
  949. iowrite32((err_status << INT_MASK_WE),
  950. mid->dma_base + MASK_ERR);
  951. call_tasklet = 1;
  952. }
  953. if (call_tasklet)
  954. tasklet_schedule(&mid->tasklet);
  955. return IRQ_HANDLED;
  956. }
  957. static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
  958. {
  959. return intel_mid_dma_interrupt(irq, data);
  960. }
  961. static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
  962. {
  963. return intel_mid_dma_interrupt(irq, data);
  964. }
  965. /**
  966. * mid_setup_dma - Setup the DMA controller
  967. * @pdev: Controller PCI device structure
  968. *
  969. * Initialize the DMA controller, channels, registers with DMA engine,
  970. * ISR. Initialize DMA controller channels.
  971. */
  972. static int mid_setup_dma(struct pci_dev *pdev)
  973. {
  974. struct middma_device *dma = pci_get_drvdata(pdev);
  975. int err, i;
  976. /* DMA coherent memory pool for DMA descriptor allocations */
  977. dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
  978. sizeof(struct intel_mid_dma_desc),
  979. 32, 0);
  980. if (NULL == dma->dma_pool) {
  981. pr_err("ERR_MDMA:pci_pool_create failed\n");
  982. err = -ENOMEM;
  983. goto err_dma_pool;
  984. }
  985. INIT_LIST_HEAD(&dma->common.channels);
  986. dma->pci_id = pdev->device;
  987. if (dma->pimr_mask) {
  988. dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
  989. LNW_PERIPHRAL_MASK_SIZE);
  990. if (dma->mask_reg == NULL) {
  991. pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
  992. err = -ENOMEM;
  993. goto err_ioremap;
  994. }
  995. } else
  996. dma->mask_reg = NULL;
  997. pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
  998. /*init CH structures*/
  999. dma->intr_mask = 0;
  1000. dma->state = RUNNING;
  1001. for (i = 0; i < dma->max_chan; i++) {
  1002. struct intel_mid_dma_chan *midch = &dma->ch[i];
  1003. midch->chan.device = &dma->common;
  1004. dma_cookie_init(&midch->chan);
  1005. midch->ch_id = dma->chan_base + i;
  1006. pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
  1007. midch->dma_base = dma->dma_base;
  1008. midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
  1009. midch->dma = dma;
  1010. dma->intr_mask |= 1 << (dma->chan_base + i);
  1011. spin_lock_init(&midch->lock);
  1012. INIT_LIST_HEAD(&midch->active_list);
  1013. INIT_LIST_HEAD(&midch->queue);
  1014. INIT_LIST_HEAD(&midch->free_list);
  1015. /*mask interrupts*/
  1016. iowrite32(MASK_INTR_REG(midch->ch_id),
  1017. dma->dma_base + MASK_BLOCK);
  1018. iowrite32(MASK_INTR_REG(midch->ch_id),
  1019. dma->dma_base + MASK_SRC_TRAN);
  1020. iowrite32(MASK_INTR_REG(midch->ch_id),
  1021. dma->dma_base + MASK_DST_TRAN);
  1022. iowrite32(MASK_INTR_REG(midch->ch_id),
  1023. dma->dma_base + MASK_ERR);
  1024. iowrite32(MASK_INTR_REG(midch->ch_id),
  1025. dma->dma_base + MASK_TFR);
  1026. disable_dma_interrupt(midch);
  1027. list_add_tail(&midch->chan.device_node, &dma->common.channels);
  1028. }
  1029. pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
  1030. /*init dma structure*/
  1031. dma_cap_zero(dma->common.cap_mask);
  1032. dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
  1033. dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
  1034. dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
  1035. dma->common.dev = &pdev->dev;
  1036. dma->common.device_alloc_chan_resources =
  1037. intel_mid_dma_alloc_chan_resources;
  1038. dma->common.device_free_chan_resources =
  1039. intel_mid_dma_free_chan_resources;
  1040. dma->common.device_tx_status = intel_mid_dma_tx_status;
  1041. dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
  1042. dma->common.device_issue_pending = intel_mid_dma_issue_pending;
  1043. dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
  1044. dma->common.device_control = intel_mid_dma_device_control;
  1045. /*enable dma cntrl*/
  1046. iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
  1047. /*register irq */
  1048. if (dma->pimr_mask) {
  1049. pr_debug("MDMA:Requesting irq shared for DMAC1\n");
  1050. err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
  1051. IRQF_SHARED, "INTEL_MID_DMAC1", dma);
  1052. if (0 != err)
  1053. goto err_irq;
  1054. } else {
  1055. dma->intr_mask = 0x03;
  1056. pr_debug("MDMA:Requesting irq for DMAC2\n");
  1057. err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
  1058. IRQF_SHARED, "INTEL_MID_DMAC2", dma);
  1059. if (0 != err)
  1060. goto err_irq;
  1061. }
  1062. /*register device w/ engine*/
  1063. err = dma_async_device_register(&dma->common);
  1064. if (0 != err) {
  1065. pr_err("ERR_MDMA:device_register failed: %d\n", err);
  1066. goto err_engine;
  1067. }
  1068. if (dma->pimr_mask) {
  1069. pr_debug("setting up tasklet1 for DMAC1\n");
  1070. tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
  1071. } else {
  1072. pr_debug("setting up tasklet2 for DMAC2\n");
  1073. tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
  1074. }
  1075. return 0;
  1076. err_engine:
  1077. free_irq(pdev->irq, dma);
  1078. err_irq:
  1079. if (dma->mask_reg)
  1080. iounmap(dma->mask_reg);
  1081. err_ioremap:
  1082. pci_pool_destroy(dma->dma_pool);
  1083. err_dma_pool:
  1084. pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
  1085. return err;
  1086. }
  1087. /**
  1088. * middma_shutdown - Shutdown the DMA controller
  1089. * @pdev: Controller PCI device structure
  1090. *
  1091. * Called by remove
  1092. * Unregister DMa controller, clear all structures and free interrupt
  1093. */
  1094. static void middma_shutdown(struct pci_dev *pdev)
  1095. {
  1096. struct middma_device *device = pci_get_drvdata(pdev);
  1097. dma_async_device_unregister(&device->common);
  1098. pci_pool_destroy(device->dma_pool);
  1099. if (device->mask_reg)
  1100. iounmap(device->mask_reg);
  1101. if (device->dma_base)
  1102. iounmap(device->dma_base);
  1103. free_irq(pdev->irq, device);
  1104. return;
  1105. }
  1106. /**
  1107. * intel_mid_dma_probe - PCI Probe
  1108. * @pdev: Controller PCI device structure
  1109. * @id: pci device id structure
  1110. *
  1111. * Initialize the PCI device, map BARs, query driver data.
  1112. * Call setup_dma to complete contoller and chan initilzation
  1113. */
  1114. static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
  1115. const struct pci_device_id *id)
  1116. {
  1117. struct middma_device *device;
  1118. u32 base_addr, bar_size;
  1119. struct intel_mid_dma_probe_info *info;
  1120. int err;
  1121. pr_debug("MDMA: probe for %x\n", pdev->device);
  1122. info = (void *)id->driver_data;
  1123. pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
  1124. info->max_chan, info->ch_base,
  1125. info->block_size, info->pimr_mask);
  1126. err = pci_enable_device(pdev);
  1127. if (err)
  1128. goto err_enable_device;
  1129. err = pci_request_regions(pdev, "intel_mid_dmac");
  1130. if (err)
  1131. goto err_request_regions;
  1132. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  1133. if (err)
  1134. goto err_set_dma_mask;
  1135. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  1136. if (err)
  1137. goto err_set_dma_mask;
  1138. device = kzalloc(sizeof(*device), GFP_KERNEL);
  1139. if (!device) {
  1140. pr_err("ERR_MDMA:kzalloc failed probe\n");
  1141. err = -ENOMEM;
  1142. goto err_kzalloc;
  1143. }
  1144. device->pdev = pci_dev_get(pdev);
  1145. base_addr = pci_resource_start(pdev, 0);
  1146. bar_size = pci_resource_len(pdev, 0);
  1147. device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
  1148. if (!device->dma_base) {
  1149. pr_err("ERR_MDMA:ioremap failed\n");
  1150. err = -ENOMEM;
  1151. goto err_ioremap;
  1152. }
  1153. pci_set_drvdata(pdev, device);
  1154. pci_set_master(pdev);
  1155. device->max_chan = info->max_chan;
  1156. device->chan_base = info->ch_base;
  1157. device->block_size = info->block_size;
  1158. device->pimr_mask = info->pimr_mask;
  1159. err = mid_setup_dma(pdev);
  1160. if (err)
  1161. goto err_dma;
  1162. pm_runtime_put_noidle(&pdev->dev);
  1163. pm_runtime_allow(&pdev->dev);
  1164. return 0;
  1165. err_dma:
  1166. iounmap(device->dma_base);
  1167. err_ioremap:
  1168. pci_dev_put(pdev);
  1169. kfree(device);
  1170. err_kzalloc:
  1171. err_set_dma_mask:
  1172. pci_release_regions(pdev);
  1173. pci_disable_device(pdev);
  1174. err_request_regions:
  1175. err_enable_device:
  1176. pr_err("ERR_MDMA:Probe failed %d\n", err);
  1177. return err;
  1178. }
  1179. /**
  1180. * intel_mid_dma_remove - PCI remove
  1181. * @pdev: Controller PCI device structure
  1182. *
  1183. * Free up all resources and data
  1184. * Call shutdown_dma to complete contoller and chan cleanup
  1185. */
  1186. static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
  1187. {
  1188. struct middma_device *device = pci_get_drvdata(pdev);
  1189. pm_runtime_get_noresume(&pdev->dev);
  1190. pm_runtime_forbid(&pdev->dev);
  1191. middma_shutdown(pdev);
  1192. pci_dev_put(pdev);
  1193. kfree(device);
  1194. pci_release_regions(pdev);
  1195. pci_disable_device(pdev);
  1196. }
  1197. /* Power Management */
  1198. /*
  1199. * dma_suspend - PCI suspend function
  1200. *
  1201. * @pci: PCI device structure
  1202. * @state: PM message
  1203. *
  1204. * This function is called by OS when a power event occurs
  1205. */
  1206. static int dma_suspend(struct device *dev)
  1207. {
  1208. struct pci_dev *pci = to_pci_dev(dev);
  1209. int i;
  1210. struct middma_device *device = pci_get_drvdata(pci);
  1211. pr_debug("MDMA: dma_suspend called\n");
  1212. for (i = 0; i < device->max_chan; i++) {
  1213. if (device->ch[i].in_use)
  1214. return -EAGAIN;
  1215. }
  1216. dmac1_mask_periphral_intr(device);
  1217. device->state = SUSPENDED;
  1218. pci_save_state(pci);
  1219. pci_disable_device(pci);
  1220. pci_set_power_state(pci, PCI_D3hot);
  1221. return 0;
  1222. }
  1223. /**
  1224. * dma_resume - PCI resume function
  1225. *
  1226. * @pci: PCI device structure
  1227. *
  1228. * This function is called by OS when a power event occurs
  1229. */
  1230. int dma_resume(struct device *dev)
  1231. {
  1232. struct pci_dev *pci = to_pci_dev(dev);
  1233. int ret;
  1234. struct middma_device *device = pci_get_drvdata(pci);
  1235. pr_debug("MDMA: dma_resume called\n");
  1236. pci_set_power_state(pci, PCI_D0);
  1237. pci_restore_state(pci);
  1238. ret = pci_enable_device(pci);
  1239. if (ret) {
  1240. pr_err("MDMA: device can't be enabled for %x\n", pci->device);
  1241. return ret;
  1242. }
  1243. device->state = RUNNING;
  1244. iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
  1245. return 0;
  1246. }
  1247. static int dma_runtime_suspend(struct device *dev)
  1248. {
  1249. struct pci_dev *pci_dev = to_pci_dev(dev);
  1250. struct middma_device *device = pci_get_drvdata(pci_dev);
  1251. device->state = SUSPENDED;
  1252. return 0;
  1253. }
  1254. static int dma_runtime_resume(struct device *dev)
  1255. {
  1256. struct pci_dev *pci_dev = to_pci_dev(dev);
  1257. struct middma_device *device = pci_get_drvdata(pci_dev);
  1258. device->state = RUNNING;
  1259. iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
  1260. return 0;
  1261. }
  1262. static int dma_runtime_idle(struct device *dev)
  1263. {
  1264. struct pci_dev *pdev = to_pci_dev(dev);
  1265. struct middma_device *device = pci_get_drvdata(pdev);
  1266. int i;
  1267. for (i = 0; i < device->max_chan; i++) {
  1268. if (device->ch[i].in_use)
  1269. return -EAGAIN;
  1270. }
  1271. return pm_schedule_suspend(dev, 0);
  1272. }
  1273. /******************************************************************************
  1274. * PCI stuff
  1275. */
  1276. static struct pci_device_id intel_mid_dma_ids[] = {
  1277. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
  1278. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1279. { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1280. { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
  1281. { 0, }
  1282. };
  1283. MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
  1284. static const struct dev_pm_ops intel_mid_dma_pm = {
  1285. .runtime_suspend = dma_runtime_suspend,
  1286. .runtime_resume = dma_runtime_resume,
  1287. .runtime_idle = dma_runtime_idle,
  1288. .suspend = dma_suspend,
  1289. .resume = dma_resume,
  1290. };
  1291. static struct pci_driver intel_mid_dma_pci_driver = {
  1292. .name = "Intel MID DMA",
  1293. .id_table = intel_mid_dma_ids,
  1294. .probe = intel_mid_dma_probe,
  1295. .remove = __devexit_p(intel_mid_dma_remove),
  1296. #ifdef CONFIG_PM
  1297. .driver = {
  1298. .pm = &intel_mid_dma_pm,
  1299. },
  1300. #endif
  1301. };
  1302. static int __init intel_mid_dma_init(void)
  1303. {
  1304. pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
  1305. INTEL_MID_DMA_DRIVER_VERSION);
  1306. return pci_register_driver(&intel_mid_dma_pci_driver);
  1307. }
  1308. fs_initcall(intel_mid_dma_init);
  1309. static void __exit intel_mid_dma_exit(void)
  1310. {
  1311. pci_unregister_driver(&intel_mid_dma_pci_driver);
  1312. }
  1313. module_exit(intel_mid_dma_exit);
  1314. MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
  1315. MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
  1316. MODULE_LICENSE("GPL v2");
  1317. MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);