12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562 |
- /*
- * random.c -- A strong random number generator
- *
- * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
- /*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the SHA
- * hash of the contents of the "entropy pool". The SHA hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of SHA from its output. Even if it is possible to
- * analyze SHA in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of SHA, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are three exported interfaces; the first is one designed to
- * be used from within the kernel:
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer.
- *
- * The two other interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_device_randomness(const void *buf, unsigned int size);
- * void add_input_randomness(unsigned int type, unsigned int code,
- * unsigned int value);
- * void add_interrupt_randomness(int irq, int irq_flags);
- * void add_disk_randomness(struct gendisk *disk);
- *
- * add_device_randomness() is for adding data to the random pool that
- * is likely to differ between two devices (or possibly even per boot).
- * This would be things like MAC addresses or serial numbers, or the
- * read-out of the RTC. This does *not* add any actual entropy to the
- * pool, but it initializes the pool to different values for devices
- * that might otherwise be identical and have very little entropy
- * available to them (particularly common in the embedded world).
- *
- * add_input_randomness() uses the input layer interrupt timing, as well as
- * the event type information from the hardware.
- *
- * add_interrupt_randomness() uses the interrupt timing as random
- * inputs to the entropy pool. Using the cycle counters and the irq source
- * as inputs, it feeds the randomness roughly once a second.
- *
- * add_disk_randomness() uses what amounts to the seek time of block
- * layer request events, on a per-disk_devt basis, as input to the
- * entropy pool. Note that high-speed solid state drives with very low
- * seek times do not make for good sources of entropy, as their seek
- * times are usually fairly consistent.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
- */
- #include <linux/utsname.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <linux/fs.h>
- #include <linux/genhd.h>
- #include <linux/interrupt.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/percpu.h>
- #include <linux/cryptohash.h>
- #include <linux/fips.h>
- #include <linux/ptrace.h>
- #include <linux/kmemcheck.h>
- #include <linux/syscalls.h>
- #include <linux/completion.h>
- #ifdef CONFIG_GENERIC_HARDIRQS
- # include <linux/irq.h>
- #endif
- #include <asm/processor.h>
- #include <asm/uaccess.h>
- #include <asm/irq.h>
- #include <asm/irq_regs.h>
- #include <asm/io.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/random.h>
- /*
- * Configuration information
- */
- #define INPUT_POOL_WORDS 128
- #define OUTPUT_POOL_WORDS 32
- #define SEC_XFER_SIZE 512
- #define EXTRACT_SIZE 10
- #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
- /*
- * The minimum number of bits of entropy before we wake up a read on
- * /dev/random. Should be enough to do a significant reseed.
- */
- #ifdef CONFIG_CRYPTO_FIPS
- static int random_read_wakeup_thresh = 256;
- #else
- static int random_read_wakeup_thresh = 64;
- #endif
- /*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
- #ifdef CONFIG_CRYPTO_FIPS
- static int random_write_wakeup_thresh = 320;
- #else
- static int random_write_wakeup_thresh = 128;
- #endif
- /*
- * When the input pool goes over trickle_thresh, start dropping most
- * samples to avoid wasting CPU time and reduce lock contention.
- */
- static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
- static DEFINE_PER_CPU(int, trickle_count);
- /*
- * A pool of size .poolwords is stirred with a primitive polynomial
- * of degree .poolwords over GF(2). The taps for various sizes are
- * defined below. They are chosen to be evenly spaced (minimum RMS
- * distance from evenly spaced; the numbers in the comments are a
- * scaled squared error sum) except for the last tap, which is 1 to
- * get the twisting happening as fast as possible.
- */
- static struct poolinfo {
- int poolwords;
- int tap1, tap2, tap3, tap4, tap5;
- } poolinfo_table[] = {
- /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
- { 128, 103, 76, 51, 25, 1 },
- /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
- { 32, 26, 20, 14, 7, 1 },
- #if 0
- /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
- { 2048, 1638, 1231, 819, 411, 1 },
- /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
- { 1024, 817, 615, 412, 204, 1 },
- /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
- { 1024, 819, 616, 410, 207, 2 },
- /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
- { 512, 411, 308, 208, 104, 1 },
- /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
- { 512, 409, 307, 206, 102, 2 },
- /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
- { 512, 409, 309, 205, 103, 2 },
- /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
- { 256, 205, 155, 101, 52, 1 },
- /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
- { 128, 103, 78, 51, 27, 2 },
- /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
- { 64, 52, 39, 26, 14, 1 },
- #endif
- };
- #define POOLBITS poolwords*32
- #define POOLBYTES poolwords*4
- /*
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a twisted Generalized Feedback Shift Reigster
- *
- * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
- * Transactions on Modeling and Computer Simulation 2(3):179-194.
- * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
- * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
- *
- * Thanks to Colin Plumb for suggesting this.
- *
- * We have not analyzed the resultant polynomial to prove it primitive;
- * in fact it almost certainly isn't. Nonetheless, the irreducible factors
- * of a random large-degree polynomial over GF(2) are more than large enough
- * that periodicity is not a concern.
- *
- * The input hash is much less sensitive than the output hash. All
- * that we want of it is that it be a good non-cryptographic hash;
- * i.e. it not produce collisions when fed "random" data of the sort
- * we expect to see. As long as the pool state differs for different
- * inputs, we have preserved the input entropy and done a good job.
- * The fact that an intelligent attacker can construct inputs that
- * will produce controlled alterations to the pool's state is not
- * important because we don't consider such inputs to contribute any
- * randomness. The only property we need with respect to them is that
- * the attacker can't increase his/her knowledge of the pool's state.
- * Since all additions are reversible (knowing the final state and the
- * input, you can reconstruct the initial state), if an attacker has
- * any uncertainty about the initial state, he/she can only shuffle
- * that uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
- *
- * The chosen system lets the state of the pool be (essentially) the input
- * modulo the generator polymnomial. Now, for random primitive polynomials,
- * this is a universal class of hash functions, meaning that the chance
- * of a collision is limited by the attacker's knowledge of the generator
- * polynomail, so if it is chosen at random, an attacker can never force
- * a collision. Here, we use a fixed polynomial, but we *can* assume that
- * ###--> it is unknown to the processes generating the input entropy. <-###
- * Because of this important property, this is a good, collision-resistant
- * hash; hash collisions will occur no more often than chance.
- */
- /*
- * Static global variables
- */
- static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
- static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
- static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
- static struct fasync_struct *fasync;
- #if 0
- static bool debug;
- module_param(debug, bool, 0644);
- #define DEBUG_ENT(fmt, arg...) do { \
- if (debug) \
- printk(KERN_DEBUG "random %04d %04d %04d: " \
- fmt,\
- input_pool.entropy_count,\
- blocking_pool.entropy_count,\
- nonblocking_pool.entropy_count,\
- ## arg); } while (0)
- #else
- #define DEBUG_ENT(fmt, arg...) do {} while (0)
- #endif
- /**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
- *
- **********************************************************************/
- struct entropy_store;
- struct entropy_store {
- /* read-only data: */
- struct poolinfo *poolinfo;
- __u32 *pool;
- const char *name;
- struct entropy_store *pull;
- int limit;
- /* read-write data: */
- spinlock_t lock;
- unsigned add_ptr;
- unsigned input_rotate;
- int entropy_count;
- int entropy_total;
- unsigned int initialized:1;
- __u8 last_data[EXTRACT_SIZE];
- };
- static __u32 input_pool_data[INPUT_POOL_WORDS];
- static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
- static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
- static struct entropy_store input_pool = {
- .poolinfo = &poolinfo_table[0],
- .name = "input",
- .limit = 1,
- .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
- .pool = input_pool_data
- };
- static struct entropy_store blocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "blocking",
- .limit = 1,
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
- .pool = blocking_pool_data
- };
- static struct entropy_store nonblocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "nonblocking",
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
- .pool = nonblocking_pool_data
- };
- static __u32 const twist_table[8] = {
- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
- /*
- * This function adds bytes into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_bits if this is appropriate.
- *
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
- */
- static void _mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes, __u8 out[64])
- {
- unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
- int input_rotate;
- int wordmask = r->poolinfo->poolwords - 1;
- const char *bytes = in;
- __u32 w;
- tap1 = r->poolinfo->tap1;
- tap2 = r->poolinfo->tap2;
- tap3 = r->poolinfo->tap3;
- tap4 = r->poolinfo->tap4;
- tap5 = r->poolinfo->tap5;
- smp_rmb();
- input_rotate = ACCESS_ONCE(r->input_rotate);
- i = ACCESS_ONCE(r->add_ptr);
- /* mix one byte at a time to simplify size handling and churn faster */
- while (nbytes--) {
- w = rol32(*bytes++, input_rotate & 31);
- i = (i - 1) & wordmask;
- /* XOR in the various taps */
- w ^= r->pool[i];
- w ^= r->pool[(i + tap1) & wordmask];
- w ^= r->pool[(i + tap2) & wordmask];
- w ^= r->pool[(i + tap3) & wordmask];
- w ^= r->pool[(i + tap4) & wordmask];
- w ^= r->pool[(i + tap5) & wordmask];
- /* Mix the result back in with a twist */
- r->pool[i] = (w >> 3) ^ twist_table[w & 7];
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- input_rotate += i ? 7 : 14;
- }
- ACCESS_ONCE(r->input_rotate) = input_rotate;
- ACCESS_ONCE(r->add_ptr) = i;
- smp_wmb();
- if (out)
- for (j = 0; j < 16; j++)
- ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
- }
- static void __mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes, __u8 out[64])
- {
- trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
- _mix_pool_bytes(r, in, nbytes, out);
- }
- static void mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes, __u8 out[64])
- {
- unsigned long flags;
- trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
- spin_lock_irqsave(&r->lock, flags);
- _mix_pool_bytes(r, in, nbytes, out);
- spin_unlock_irqrestore(&r->lock, flags);
- }
- struct fast_pool {
- __u32 pool[4];
- unsigned long last;
- unsigned short count;
- unsigned char rotate;
- unsigned char last_timer_intr;
- };
- /*
- * This is a fast mixing routine used by the interrupt randomness
- * collector. It's hardcoded for an 128 bit pool and assumes that any
- * locks that might be needed are taken by the caller.
- */
- static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
- {
- const char *bytes = in;
- __u32 w;
- unsigned i = f->count;
- unsigned input_rotate = f->rotate;
- while (nbytes--) {
- w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
- f->pool[(i + 1) & 3];
- f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
- input_rotate += (i++ & 3) ? 7 : 14;
- }
- f->count = i;
- f->rotate = input_rotate;
- }
- /*
- * Credit (or debit) the entropy store with n bits of entropy
- */
- static void credit_entropy_bits(struct entropy_store *r, int nbits)
- {
- int entropy_count, orig;
- if (!nbits)
- return;
- DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
- retry:
- entropy_count = orig = ACCESS_ONCE(r->entropy_count);
- entropy_count += nbits;
- if (entropy_count < 0) {
- DEBUG_ENT("negative entropy/overflow\n");
- entropy_count = 0;
- } else if (entropy_count > r->poolinfo->POOLBITS)
- entropy_count = r->poolinfo->POOLBITS;
- if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
- goto retry;
- r->entropy_total += nbits;
- if (!r->initialized && r->entropy_total > 128) {
- r->initialized = 1;
- r->entropy_total = 0;
- if (r == &nonblocking_pool) {
- prandom_reseed_late();
- wake_up_all(&urandom_init_wait);
- pr_notice("random: %s pool is initialized\n", r->name);
- }
- }
- trace_credit_entropy_bits(r->name, nbits, entropy_count,
- r->entropy_total, _RET_IP_);
- /* should we wake readers? */
- if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
- wake_up_interruptible(&random_read_wait);
- kill_fasync(&fasync, SIGIO, POLL_IN);
- }
- }
- /*********************************************************************
- *
- * Entropy input management
- *
- *********************************************************************/
- /* There is one of these per entropy source */
- struct timer_rand_state {
- cycles_t last_time;
- long last_delta, last_delta2;
- unsigned dont_count_entropy:1;
- };
- /*
- * Add device- or boot-specific data to the input and nonblocking
- * pools to help initialize them to unique values.
- *
- * None of this adds any entropy, it is meant to avoid the
- * problem of the nonblocking pool having similar initial state
- * across largely identical devices.
- */
- void add_device_randomness(const void *buf, unsigned int size)
- {
- unsigned long time = get_cycles() ^ jiffies;
- mix_pool_bytes(&input_pool, buf, size, NULL);
- mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
- mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
- mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
- }
- EXPORT_SYMBOL(add_device_randomness);
- static struct timer_rand_state input_timer_state;
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool.
- *
- * The number "num" is also added to the pool - it should somehow describe
- * the type of event which just happened. This is currently 0-255 for
- * keyboard scan codes, and 256 upwards for interrupts.
- *
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
- {
- struct {
- long jiffies;
- unsigned cycles;
- unsigned num;
- } sample;
- long delta, delta2, delta3;
- preempt_disable();
- /* if over the trickle threshold, use only 1 in 4096 samples */
- if (input_pool.entropy_count > trickle_thresh &&
- ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
- goto out;
- sample.jiffies = jiffies;
- sample.cycles = get_cycles();
- sample.num = num;
- mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- if (!state->dont_count_entropy) {
- delta = sample.jiffies - state->last_time;
- state->last_time = sample.jiffies;
- delta2 = delta - state->last_delta;
- state->last_delta = delta;
- delta3 = delta2 - state->last_delta2;
- state->last_delta2 = delta2;
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta.
- * Round down by 1 bit on general principles,
- * and limit entropy entimate to 12 bits.
- */
- credit_entropy_bits(&input_pool,
- min_t(int, fls(delta>>1), 11));
- }
- out:
- preempt_enable();
- }
- void add_input_randomness(unsigned int type, unsigned int code,
- unsigned int value)
- {
- static unsigned char last_value;
- /* ignore autorepeat and the like */
- if (value == last_value)
- return;
- DEBUG_ENT("input event\n");
- last_value = value;
- add_timer_randomness(&input_timer_state,
- (type << 4) ^ code ^ (code >> 4) ^ value);
- }
- EXPORT_SYMBOL_GPL(add_input_randomness);
- static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
- void add_interrupt_randomness(int irq, int irq_flags)
- {
- struct entropy_store *r;
- struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
- struct pt_regs *regs = get_irq_regs();
- unsigned long now = jiffies;
- __u32 input[4], cycles = get_cycles();
- input[0] = cycles ^ jiffies;
- input[1] = irq;
- if (regs) {
- __u64 ip = instruction_pointer(regs);
- input[2] = ip;
- input[3] = ip >> 32;
- }
- fast_mix(fast_pool, input, sizeof(input));
- if ((fast_pool->count & 1023) &&
- !time_after(now, fast_pool->last + HZ))
- return;
- fast_pool->last = now;
- r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
- __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
- /*
- * If we don't have a valid cycle counter, and we see
- * back-to-back timer interrupts, then skip giving credit for
- * any entropy.
- */
- if (cycles == 0) {
- if (irq_flags & __IRQF_TIMER) {
- if (fast_pool->last_timer_intr)
- return;
- fast_pool->last_timer_intr = 1;
- } else
- fast_pool->last_timer_intr = 0;
- }
- credit_entropy_bits(r, 1);
- }
- #ifdef CONFIG_BLOCK
- void add_disk_randomness(struct gendisk *disk)
- {
- if (!disk || !disk->random)
- return;
- /* first major is 1, so we get >= 0x200 here */
- DEBUG_ENT("disk event %d:%d\n",
- MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
- }
- #endif
- /*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int rsvd);
- /*
- * This utility inline function is responsible for transferring entropy
- * from the primary pool to the secondary extraction pool. We make
- * sure we pull enough for a 'catastrophic reseed'.
- */
- static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
- {
- __u32 tmp[OUTPUT_POOL_WORDS];
- if (r->pull && r->entropy_count < nbytes * 8 &&
- r->entropy_count < r->poolinfo->POOLBITS) {
- /* If we're limited, always leave two wakeup worth's BITS */
- int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
- int bytes = nbytes;
- /* pull at least as many as BYTES as wakeup BITS */
- bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
- /* but never more than the buffer size */
- bytes = min_t(int, bytes, sizeof(tmp));
- DEBUG_ENT("going to reseed %s with %d bits "
- "(%d of %d requested)\n",
- r->name, bytes * 8, nbytes * 8, r->entropy_count);
- bytes = extract_entropy(r->pull, tmp, bytes,
- random_read_wakeup_thresh / 8, rsvd);
- mix_pool_bytes(r, tmp, bytes, NULL);
- credit_entropy_bits(r, bytes*8);
- }
- }
- /*
- * These functions extracts randomness from the "entropy pool", and
- * returns it in a buffer.
- *
- * The min parameter specifies the minimum amount we can pull before
- * failing to avoid races that defeat catastrophic reseeding while the
- * reserved parameter indicates how much entropy we must leave in the
- * pool after each pull to avoid starving other readers.
- *
- * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
- */
- static size_t account(struct entropy_store *r, size_t nbytes, int min,
- int reserved)
- {
- unsigned long flags;
- /* Hold lock while accounting */
- spin_lock_irqsave(&r->lock, flags);
- BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
- DEBUG_ENT("trying to extract %d bits from %s\n",
- nbytes * 8, r->name);
- /* Can we pull enough? */
- if (r->entropy_count / 8 < min + reserved) {
- nbytes = 0;
- } else {
- int entropy_count, orig;
- retry:
- entropy_count = orig = ACCESS_ONCE(r->entropy_count);
- /* If limited, never pull more than available */
- if (r->limit && nbytes + reserved >= entropy_count / 8)
- nbytes = entropy_count/8 - reserved;
- if (entropy_count / 8 >= nbytes + reserved) {
- entropy_count -= nbytes*8;
- if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
- goto retry;
- } else {
- entropy_count = reserved;
- if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
- goto retry;
- }
- if (entropy_count < random_write_wakeup_thresh) {
- wake_up_interruptible(&random_write_wait);
- kill_fasync(&fasync, SIGIO, POLL_OUT);
- }
- }
- DEBUG_ENT("debiting %d entropy credits from %s%s\n",
- nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
- spin_unlock_irqrestore(&r->lock, flags);
- return nbytes;
- }
- static void extract_buf(struct entropy_store *r, __u8 *out)
- {
- int i;
- union {
- __u32 w[5];
- unsigned long l[LONGS(EXTRACT_SIZE)];
- } hash;
- __u32 workspace[SHA_WORKSPACE_WORDS];
- __u8 extract[64];
- unsigned long flags;
- /* Generate a hash across the pool, 16 words (512 bits) at a time */
- sha_init(hash.w);
- spin_lock_irqsave(&r->lock, flags);
- for (i = 0; i < r->poolinfo->poolwords; i += 16)
- sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
- /*
- * We mix the hash back into the pool to prevent backtracking
- * attacks (where the attacker knows the state of the pool
- * plus the current outputs, and attempts to find previous
- * ouputs), unless the hash function can be inverted. By
- * mixing at least a SHA1 worth of hash data back, we make
- * brute-forcing the feedback as hard as brute-forcing the
- * hash.
- */
- __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
- spin_unlock_irqrestore(&r->lock, flags);
- /*
- * To avoid duplicates, we atomically extract a portion of the
- * pool while mixing, and hash one final time.
- */
- sha_transform(hash.w, extract, workspace);
- memzero_explicit(extract, sizeof(extract));
- memzero_explicit(workspace, sizeof(workspace));
- /*
- * In case the hash function has some recognizable output
- * pattern, we fold it in half. Thus, we always feed back
- * twice as much data as we output.
- */
- hash.w[0] ^= hash.w[3];
- hash.w[1] ^= hash.w[4];
- hash.w[2] ^= rol32(hash.w[2], 16);
- /*
- * If we have a architectural hardware random number
- * generator, mix that in, too.
- */
- for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
- unsigned long v;
- if (!arch_get_random_long(&v))
- break;
- hash.l[i] ^= v;
- }
- memcpy(out, &hash, EXTRACT_SIZE);
- memzero_explicit(&hash, sizeof(hash));
- }
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int reserved)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, min, reserved);
- while (nbytes) {
- extract_buf(r, tmp);
- if (fips_enabled) {
- unsigned long flags;
- spin_lock_irqsave(&r->lock, flags);
- if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
- panic("Hardware RNG duplicated output!\n");
- memcpy(r->last_data, tmp, EXTRACT_SIZE);
- spin_unlock_irqrestore(&r->lock, flags);
- }
- i = min_t(int, nbytes, EXTRACT_SIZE);
- memcpy(buf, tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memzero_explicit(tmp, sizeof(tmp));
- return ret;
- }
- static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
- size_t nbytes)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- int large_request = (nbytes > 256);
- trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, 0, 0);
- while (nbytes) {
- if (large_request && need_resched()) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- if (copy_to_user(buf, tmp, i)) {
- ret = -EFAULT;
- break;
- }
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memzero_explicit(tmp, sizeof(tmp));
- return ret;
- }
- /*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for key generation, seeding
- * TCP sequence numbers, etc. It does not use the hw random number
- * generator, if available; use get_random_bytes_arch() for that.
- */
- void get_random_bytes(void *buf, int nbytes)
- {
- extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes);
- /*
- * This function will use the architecture-specific hardware random
- * number generator if it is available. The arch-specific hw RNG will
- * almost certainly be faster than what we can do in software, but it
- * is impossible to verify that it is implemented securely (as
- * opposed, to, say, the AES encryption of a sequence number using a
- * key known by the NSA). So it's useful if we need the speed, but
- * only if we're willing to trust the hardware manufacturer not to
- * have put in a back door.
- */
- void get_random_bytes_arch(void *buf, int nbytes)
- {
- char *p = buf;
- trace_get_random_bytes(nbytes, _RET_IP_);
- while (nbytes) {
- unsigned long v;
- int chunk = min(nbytes, (int)sizeof(unsigned long));
- if (!arch_get_random_long(&v))
- break;
-
- memcpy(p, &v, chunk);
- p += chunk;
- nbytes -= chunk;
- }
- if (nbytes)
- extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes_arch);
- /*
- * init_std_data - initialize pool with system data
- *
- * @r: pool to initialize
- *
- * This function clears the pool's entropy count and mixes some system
- * data into the pool to prepare it for use. The pool is not cleared
- * as that can only decrease the entropy in the pool.
- */
- static void init_std_data(struct entropy_store *r)
- {
- int i;
- ktime_t now = ktime_get_real();
- unsigned long rv;
- r->entropy_count = 0;
- r->entropy_total = 0;
- mix_pool_bytes(r, &now, sizeof(now), NULL);
- for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
- if (!arch_get_random_long(&rv))
- break;
- mix_pool_bytes(r, &rv, sizeof(rv), NULL);
- }
- mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
- }
- /*
- * Note that setup_arch() may call add_device_randomness()
- * long before we get here. This allows seeding of the pools
- * with some platform dependent data very early in the boot
- * process. But it limits our options here. We must use
- * statically allocated structures that already have all
- * initializations complete at compile time. We should also
- * take care not to overwrite the precious per platform data
- * we were given.
- */
- static int rand_initialize(void)
- {
- init_std_data(&input_pool);
- init_std_data(&blocking_pool);
- init_std_data(&nonblocking_pool);
- return 0;
- }
- module_init(rand_initialize);
- #ifdef CONFIG_BLOCK
- void rand_initialize_disk(struct gendisk *disk)
- {
- struct timer_rand_state *state;
- /*
- * If kzalloc returns null, we just won't use that entropy
- * source.
- */
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state)
- disk->random = state;
- }
- #endif
- static ssize_t
- _random_read(int nonblock, char __user *buf, size_t nbytes)
- {
- ssize_t n, retval = 0, count = 0;
- if (nbytes == 0)
- return 0;
- while (nbytes > 0) {
- n = nbytes;
- if (n > SEC_XFER_SIZE)
- n = SEC_XFER_SIZE;
- DEBUG_ENT("reading %d bits\n", n*8);
- n = extract_entropy_user(&blocking_pool, buf, n);
- DEBUG_ENT("read got %d bits (%d still needed)\n",
- n*8, (nbytes-n)*8);
- if (n == 0) {
- if (nonblock) {
- retval = -EAGAIN;
- break;
- }
- DEBUG_ENT("sleeping?\n");
- wait_event_interruptible(random_read_wait,
- input_pool.entropy_count >=
- random_read_wakeup_thresh);
- DEBUG_ENT("awake\n");
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- break;
- }
- continue;
- }
- if (n < 0) {
- retval = n;
- break;
- }
- count += n;
- buf += n;
- nbytes -= n;
- break; /* This break makes the device work */
- /* like a named pipe */
- }
- return (count ? count : retval);
- }
- static ssize_t
- random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
- }
- static ssize_t
- urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- return extract_entropy_user(&nonblocking_pool, buf, nbytes);
- }
- static unsigned int
- random_poll(struct file *file, poll_table * wait)
- {
- unsigned int mask;
- poll_wait(file, &random_read_wait, wait);
- poll_wait(file, &random_write_wait, wait);
- mask = 0;
- if (input_pool.entropy_count >= random_read_wakeup_thresh)
- mask |= POLLIN | POLLRDNORM;
- if (input_pool.entropy_count < random_write_wakeup_thresh)
- mask |= POLLOUT | POLLWRNORM;
- return mask;
- }
- static int
- write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
- {
- size_t bytes;
- __u32 buf[16];
- const char __user *p = buffer;
- while (count > 0) {
- bytes = min(count, sizeof(buf));
- if (copy_from_user(&buf, p, bytes))
- return -EFAULT;
- count -= bytes;
- p += bytes;
- mix_pool_bytes(r, buf, bytes, NULL);
- cond_resched();
- }
- return 0;
- }
- static ssize_t random_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- size_t ret;
- ret = write_pool(&blocking_pool, buffer, count);
- if (ret)
- return ret;
- ret = write_pool(&nonblocking_pool, buffer, count);
- if (ret)
- return ret;
- return (ssize_t)count;
- }
- static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
- {
- int size, ent_count;
- int __user *p = (int __user *)arg;
- int retval;
- switch (cmd) {
- case RNDGETENTCNT:
- /* inherently racy, no point locking */
- if (put_user(input_pool.entropy_count, p))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p))
- return -EFAULT;
- credit_entropy_bits(&input_pool, ent_count);
- return 0;
- case RNDADDENTROPY:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(size, p++))
- return -EFAULT;
- retval = write_pool(&input_pool, (const char __user *)p,
- size);
- if (retval < 0)
- return retval;
- credit_entropy_bits(&input_pool, ent_count);
- return 0;
- case RNDZAPENTCNT:
- case RNDCLEARPOOL:
- /* Clear the entropy pool counters. */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- rand_initialize();
- return 0;
- default:
- return -EINVAL;
- }
- }
- static int random_fasync(int fd, struct file *filp, int on)
- {
- return fasync_helper(fd, filp, on, &fasync);
- }
- const struct file_operations random_fops = {
- .read = random_read,
- .write = random_write,
- .poll = random_poll,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- };
- const struct file_operations urandom_fops = {
- .read = urandom_read,
- .write = random_write,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- };
- SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
- unsigned int, flags)
- {
- if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
- return -EINVAL;
- if (count > INT_MAX)
- count = INT_MAX;
- if (flags & GRND_RANDOM)
- return _random_read(flags & GRND_NONBLOCK, buf, count);
- if (unlikely(nonblocking_pool.initialized == 0)) {
- if (flags & GRND_NONBLOCK)
- return -EAGAIN;
- wait_event_interruptible(urandom_init_wait,
- nonblocking_pool.initialized);
- if (signal_pending(current))
- return -ERESTARTSYS;
- }
- return urandom_read(NULL, buf, count, NULL);
- }
- /***************************************************************
- * Random UUID interface
- *
- * Used here for a Boot ID, but can be useful for other kernel
- * drivers.
- ***************************************************************/
- /*
- * Generate random UUID
- */
- void generate_random_uuid(unsigned char uuid_out[16])
- {
- get_random_bytes(uuid_out, 16);
- /* Set UUID version to 4 --- truly random generation */
- uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
- /* Set the UUID variant to DCE */
- uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
- }
- EXPORT_SYMBOL(generate_random_uuid);
- /********************************************************************
- *
- * Sysctl interface
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int min_read_thresh = 8, min_write_thresh;
- static int max_read_thresh = INPUT_POOL_WORDS * 32;
- static int max_write_thresh = INPUT_POOL_WORDS * 32;
- static char sysctl_bootid[16];
- /*
- * These functions is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, it will be returned
- * as an ASCII string in the standard UUID format. If accesses via the
- * sysctl system call, it is returned as 16 bytes of binary data.
- */
- static int proc_do_uuid(ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- generate_random_uuid(uuid);
- } else {
- static DEFINE_SPINLOCK(bootid_spinlock);
- spin_lock(&bootid_spinlock);
- if (!uuid[8])
- generate_random_uuid(uuid);
- spin_unlock(&bootid_spinlock);
- }
- sprintf(buf, "%pU", uuid);
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
- return proc_dostring(&fake_table, write, buffer, lenp, ppos);
- }
- static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
- ctl_table random_table[] = {
- {
- .procname = "poolsize",
- .data = &sysctl_poolsize,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "entropy_avail",
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_dointvec,
- .data = &input_pool.entropy_count,
- },
- {
- .procname = "read_wakeup_threshold",
- .data = &random_read_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = &min_read_thresh,
- .extra2 = &max_read_thresh,
- },
- {
- .procname = "write_wakeup_threshold",
- .data = &random_write_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = &min_write_thresh,
- .extra2 = &max_write_thresh,
- },
- {
- .procname = "boot_id",
- .data = &sysctl_bootid,
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- {
- .procname = "uuid",
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- { }
- };
- #endif /* CONFIG_SYSCTL */
- static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
- int random_int_secret_init(void)
- {
- get_random_bytes(random_int_secret, sizeof(random_int_secret));
- return 0;
- }
- /*
- * Get a random word for internal kernel use only. Similar to urandom but
- * with the goal of minimal entropy pool depletion. As a result, the random
- * value is not cryptographically secure but for several uses the cost of
- * depleting entropy is too high
- */
- DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
- unsigned int get_random_int(void)
- {
- __u32 *hash;
- unsigned int ret;
- if (arch_get_random_int(&ret))
- return ret;
- hash = get_cpu_var(get_random_int_hash);
- hash[0] += current->pid + jiffies + get_cycles();
- md5_transform(hash, random_int_secret);
- ret = hash[0];
- put_cpu_var(get_random_int_hash);
- return ret;
- }
- /*
- * Same as get_random_int(), but returns unsigned long.
- */
- unsigned long get_random_long(void)
- {
- __u32 *hash;
- unsigned long ret;
- if (arch_get_random_long(&ret))
- return ret;
- hash = get_cpu_var(get_random_int_hash);
- hash[0] += current->pid + jiffies + get_cycles();
- md5_transform(hash, random_int_secret);
- ret = *(unsigned long *)hash;
- put_cpu_var(get_random_int_hash);
- return ret;
- }
- EXPORT_SYMBOL(get_random_long);
- /*
- * randomize_range() returns a start address such that
- *
- * [...... <range> .....]
- * start end
- *
- * a <range> with size "len" starting at the return value is inside in the
- * area defined by [start, end], but is otherwise randomized.
- */
- unsigned long
- randomize_range(unsigned long start, unsigned long end, unsigned long len)
- {
- unsigned long range = end - len - start;
- if (end <= start + len)
- return 0;
- return PAGE_ALIGN(get_random_int() % range + start);
- }
|