tlb.h 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. #ifndef _ASM_IA64_TLB_H
  2. #define _ASM_IA64_TLB_H
  3. /*
  4. * Based on <asm-generic/tlb.h>.
  5. *
  6. * Copyright (C) 2002-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. */
  9. /*
  10. * Removing a translation from a page table (including TLB-shootdown) is a four-step
  11. * procedure:
  12. *
  13. * (1) Flush (virtual) caches --- ensures virtual memory is coherent with kernel memory
  14. * (this is a no-op on ia64).
  15. * (2) Clear the relevant portions of the page-table
  16. * (3) Flush the TLBs --- ensures that stale content is gone from CPU TLBs
  17. * (4) Release the pages that were freed up in step (2).
  18. *
  19. * Note that the ordering of these steps is crucial to avoid races on MP machines.
  20. *
  21. * The Linux kernel defines several platform-specific hooks for TLB-shootdown. When
  22. * unmapping a portion of the virtual address space, these hooks are called according to
  23. * the following template:
  24. *
  25. * tlb <- tlb_gather_mmu(mm, full_mm_flush); // start unmap for address space MM
  26. * {
  27. * for each vma that needs a shootdown do {
  28. * tlb_start_vma(tlb, vma);
  29. * for each page-table-entry PTE that needs to be removed do {
  30. * tlb_remove_tlb_entry(tlb, pte, address);
  31. * if (pte refers to a normal page) {
  32. * tlb_remove_page(tlb, page);
  33. * }
  34. * }
  35. * tlb_end_vma(tlb, vma);
  36. * }
  37. * }
  38. * tlb_finish_mmu(tlb, start, end); // finish unmap for address space MM
  39. */
  40. #include <linux/mm.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/swap.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/processor.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/machvec.h>
  47. #ifdef CONFIG_SMP
  48. # define tlb_fast_mode(tlb) ((tlb)->nr == ~0U)
  49. #else
  50. # define tlb_fast_mode(tlb) (1)
  51. #endif
  52. /*
  53. * If we can't allocate a page to make a big batch of page pointers
  54. * to work on, then just handle a few from the on-stack structure.
  55. */
  56. #define IA64_GATHER_BUNDLE 8
  57. struct mmu_gather {
  58. struct mm_struct *mm;
  59. unsigned int nr; /* == ~0U => fast mode */
  60. unsigned int max;
  61. unsigned char fullmm; /* non-zero means full mm flush */
  62. unsigned char need_flush; /* really unmapped some PTEs? */
  63. unsigned long start_addr;
  64. unsigned long end_addr;
  65. struct page **pages;
  66. struct page *local[IA64_GATHER_BUNDLE];
  67. };
  68. struct ia64_tr_entry {
  69. u64 ifa;
  70. u64 itir;
  71. u64 pte;
  72. u64 rr;
  73. }; /*Record for tr entry!*/
  74. extern int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size);
  75. extern void ia64_ptr_entry(u64 target_mask, int slot);
  76. extern struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
  77. /*
  78. region register macros
  79. */
  80. #define RR_TO_VE(val) (((val) >> 0) & 0x0000000000000001)
  81. #define RR_VE(val) (((val) & 0x0000000000000001) << 0)
  82. #define RR_VE_MASK 0x0000000000000001L
  83. #define RR_VE_SHIFT 0
  84. #define RR_TO_PS(val) (((val) >> 2) & 0x000000000000003f)
  85. #define RR_PS(val) (((val) & 0x000000000000003f) << 2)
  86. #define RR_PS_MASK 0x00000000000000fcL
  87. #define RR_PS_SHIFT 2
  88. #define RR_RID_MASK 0x00000000ffffff00L
  89. #define RR_TO_RID(val) ((val >> 8) & 0xffffff)
  90. /*
  91. * Flush the TLB for address range START to END and, if not in fast mode, release the
  92. * freed pages that where gathered up to this point.
  93. */
  94. static inline void
  95. ia64_tlb_flush_mmu (struct mmu_gather *tlb, unsigned long start, unsigned long end)
  96. {
  97. unsigned int nr;
  98. if (!tlb->need_flush)
  99. return;
  100. tlb->need_flush = 0;
  101. if (tlb->fullmm) {
  102. /*
  103. * Tearing down the entire address space. This happens both as a result
  104. * of exit() and execve(). The latter case necessitates the call to
  105. * flush_tlb_mm() here.
  106. */
  107. flush_tlb_mm(tlb->mm);
  108. } else if (unlikely (end - start >= 1024*1024*1024*1024UL
  109. || REGION_NUMBER(start) != REGION_NUMBER(end - 1)))
  110. {
  111. /*
  112. * If we flush more than a tera-byte or across regions, we're probably
  113. * better off just flushing the entire TLB(s). This should be very rare
  114. * and is not worth optimizing for.
  115. */
  116. flush_tlb_all();
  117. } else {
  118. /*
  119. * XXX fix me: flush_tlb_range() should take an mm pointer instead of a
  120. * vma pointer.
  121. */
  122. struct vm_area_struct vma;
  123. vma.vm_mm = tlb->mm;
  124. /* flush the address range from the tlb: */
  125. flush_tlb_range(&vma, start, end);
  126. /* now flush the virt. page-table area mapping the address range: */
  127. flush_tlb_range(&vma, ia64_thash(start), ia64_thash(end));
  128. }
  129. /* lastly, release the freed pages */
  130. nr = tlb->nr;
  131. if (!tlb_fast_mode(tlb)) {
  132. unsigned long i;
  133. tlb->nr = 0;
  134. tlb->start_addr = ~0UL;
  135. for (i = 0; i < nr; ++i)
  136. free_page_and_swap_cache(tlb->pages[i]);
  137. }
  138. }
  139. static inline void __tlb_alloc_page(struct mmu_gather *tlb)
  140. {
  141. unsigned long addr = __get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  142. if (addr) {
  143. tlb->pages = (void *)addr;
  144. tlb->max = PAGE_SIZE / sizeof(void *);
  145. }
  146. }
  147. static inline void
  148. tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned int full_mm_flush)
  149. {
  150. tlb->mm = mm;
  151. tlb->max = ARRAY_SIZE(tlb->local);
  152. tlb->pages = tlb->local;
  153. /*
  154. * Use fast mode if only 1 CPU is online.
  155. *
  156. * It would be tempting to turn on fast-mode for full_mm_flush as well. But this
  157. * doesn't work because of speculative accesses and software prefetching: the page
  158. * table of "mm" may (and usually is) the currently active page table and even
  159. * though the kernel won't do any user-space accesses during the TLB shoot down, a
  160. * compiler might use speculation or lfetch.fault on what happens to be a valid
  161. * user-space address. This in turn could trigger a TLB miss fault (or a VHPT
  162. * walk) and re-insert a TLB entry we just removed. Slow mode avoids such
  163. * problems. (We could make fast-mode work by switching the current task to a
  164. * different "mm" during the shootdown.) --davidm 08/02/2002
  165. */
  166. tlb->nr = (num_online_cpus() == 1) ? ~0U : 0;
  167. tlb->fullmm = full_mm_flush;
  168. tlb->start_addr = ~0UL;
  169. }
  170. /*
  171. * Called at the end of the shootdown operation to free up any resources that were
  172. * collected.
  173. */
  174. static inline void
  175. tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  176. {
  177. /*
  178. * Note: tlb->nr may be 0 at this point, so we can't rely on tlb->start_addr and
  179. * tlb->end_addr.
  180. */
  181. ia64_tlb_flush_mmu(tlb, start, end);
  182. /* keep the page table cache within bounds */
  183. check_pgt_cache();
  184. if (tlb->pages != tlb->local)
  185. free_pages((unsigned long)tlb->pages, 0);
  186. }
  187. /*
  188. * Logically, this routine frees PAGE. On MP machines, the actual freeing of the page
  189. * must be delayed until after the TLB has been flushed (see comments at the beginning of
  190. * this file).
  191. */
  192. static inline int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  193. {
  194. tlb->need_flush = 1;
  195. if (tlb_fast_mode(tlb)) {
  196. free_page_and_swap_cache(page);
  197. return 1; /* avoid calling tlb_flush_mmu */
  198. }
  199. if (!tlb->nr && tlb->pages == tlb->local)
  200. __tlb_alloc_page(tlb);
  201. tlb->pages[tlb->nr++] = page;
  202. VM_BUG_ON(tlb->nr > tlb->max);
  203. return tlb->max - tlb->nr;
  204. }
  205. static inline void tlb_flush_mmu(struct mmu_gather *tlb)
  206. {
  207. ia64_tlb_flush_mmu(tlb, tlb->start_addr, tlb->end_addr);
  208. }
  209. static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  210. {
  211. if (!__tlb_remove_page(tlb, page))
  212. tlb_flush_mmu(tlb);
  213. }
  214. /*
  215. * Remove TLB entry for PTE mapped at virtual address ADDRESS. This is called for any
  216. * PTE, not just those pointing to (normal) physical memory.
  217. */
  218. static inline void
  219. __tlb_remove_tlb_entry (struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
  220. {
  221. if (tlb->start_addr == ~0UL)
  222. tlb->start_addr = address;
  223. tlb->end_addr = address + PAGE_SIZE;
  224. }
  225. #define tlb_migrate_finish(mm) platform_tlb_migrate_finish(mm)
  226. #define tlb_start_vma(tlb, vma) do { } while (0)
  227. #define tlb_end_vma(tlb, vma) do { } while (0)
  228. #define tlb_remove_tlb_entry(tlb, ptep, addr) \
  229. do { \
  230. tlb->need_flush = 1; \
  231. __tlb_remove_tlb_entry(tlb, ptep, addr); \
  232. } while (0)
  233. #define pte_free_tlb(tlb, ptep, address) \
  234. do { \
  235. tlb->need_flush = 1; \
  236. __pte_free_tlb(tlb, ptep, address); \
  237. } while (0)
  238. #define pmd_free_tlb(tlb, ptep, address) \
  239. do { \
  240. tlb->need_flush = 1; \
  241. __pmd_free_tlb(tlb, ptep, address); \
  242. } while (0)
  243. #define pud_free_tlb(tlb, pudp, address) \
  244. do { \
  245. tlb->need_flush = 1; \
  246. __pud_free_tlb(tlb, pudp, address); \
  247. } while (0)
  248. #endif /* _ASM_IA64_TLB_H */