12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- import tensorflow as tf
- import numpy as np
- import os
- #这个脚本回到drive的利用率特别高,超出100%
- """
- def load_mnist(path):
- #加载本地下载好的mnist数据集
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
- return (x_train, y_train), (x_test, y_test)
-
-
- (x_train, y_train), (x_test, y_test) = load_mnist("mnist.npz")
- """
- mnist = tf.keras.datasets.mnist#从xx网站下载mnist到.kera,如果已经有了直接使用
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train, x_test = x_train / 255.0, x_test / 255.0 # 将样本从整数转换为浮点数
-
- # 利用tf.keras.Sequential容器封装网络层,前一层网络的输出默认作为下一层的输入
- model = tf.keras.models.Sequential([
- tf.keras.layers.Flatten(input_shape=(28, 28)),
- tf.keras.layers.Dense(128, activation='relu'), # 创建一层网络,设置输出节点数为128,激活函数类型为Relu
- tf.keras.layers.Dropout(0.2), # 在训练中每次更新时, 将输入单元的按比率随机设置为 0, 这有助于防止过拟合
- tf.keras.layers.Dense(10, activation='softmax')]) # Dense层就是所谓的全连接神经网络层
-
- model.summary()#显示模型的结构
-
- # 为训练选择优化器和损失函数:
- model.compile(optimizer='adam',
- loss='sparse_categorical_crossentropy',
- metrics=['accuracy'])
- if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
- log_dir = os.path.join('/root/.agit/logs') # this is the storage path in the Agit environment
- else:
- log_dir = os.path.join("logs") # this is the path when the program runs in other environments
- #log_dir = os.path.join("logs")
- # print(log_dir)
- if not os.path.exists(log_dir):
- os.mkdir(log_dir)
- # 定义TensorBoard对象.histogram_freq 如果设置为0,则不会计算直方图。
- tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
-
- # TensorBoard对象作为回调传给model.fit方法
- model.fit(x_train, y_train, epochs=8, validation_data=(x_test, y_test), callbacks=[tensorboard_callback])
-
- model.save_weights(log_dir + '/weight/my_weights', save_format='tf') # 保存模型*****直接引用对应的路径参数
|