12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- import os
- import gym
- from agit import Agent#之前的是eternatus
- from gym.spaces import Discrete, Box
- from ray import tune
- class SimpleCorridor(gym.Env):
- def __init__(self, config):
- self.end_pos = config['corridor_length']
- self.cur_pos = 0
- self.action_space = Discrete(2)
- self.observation_space = Box(0.0, self.end_pos, shape=(1,))
- def reset(self):
- self.cur_pos = 0
- return [self.cur_pos]
- def step(self, action):
- if action == 0 and self.cur_pos > 0:
- self.cur_pos -= 1
- elif action == 1:
- self.cur_pos += 1
- done = self.cur_pos >= self.end_pos
- return [self.cur_pos], 1 if done else 0, done, {}
- def main():
- from datetime import datetime
- start_time = datetime.utcnow()
- print('Python start time: {} UTC'.format(start_time))
- import tensorflow as tf
- print('TensorFlow CUDA is available: {}'.format(tf.config.list_physical_devices('GPU')))
- import torch
- print('pyTorch CUDA is available: {}'.format(torch.cuda.is_available()))
- if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
- provider = 'Agit'
- log_dir = '/root/.agit'
- results_dir = '/root/.agit'
- else:
- provider = 'local'
- log_dir = '../temp'
- results_dir = '../temp'
- # Initialize Ray Cluster
- #ray_init()
- tune.run(
- 'PPO',
- queue_trials=True, # Don't use this parameter unless you know what you do.
- stop={'training_iteration': 10},
- config={
- 'env': SimpleCorridor,
- 'env_config': {'corridor_length': 5}
- }
- )
- with open(os.path.join(results_dir, 'model.pkl'), 'wb') as file:
- file.write(b'model data')
- complete_time = datetime.utcnow()
- print('Python complete time: {} UTC'.format(complete_time))
- print('Python resource time: {} UTC'.format(complete_time - start_time))
- if __name__ == '__main__':
- main()
|