123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- #简单神经网络测试实例
- import numpy as np
- def tanh(x): #双曲函数
- return np.tanh(x)
- def tanh_deriv(x):#更新权重时,需要用到双曲函数的倒数
- return 1.0 - np.tanh(x)*np.tanh(x)
- def logistic(x):#构建逻辑函数
- return 1/(1 + np.exp(-x))
- def logistic_derivatic(x): #逻辑函数的倒数
- return logistic(x)*(1 - logistic(x))
- class NeuralNetwork:
- def __init__(self,layer,activation='tanh'):
- '''
- :param layer:A list containing the number of unit in each layer.
- Should be at least two values.每层包含的神经元数目
- :param activation: the activation function to be used.Can be
- "logistic" or "tanh"
- '''
- if activation == 'logistic':
- self.activation = logistic
- self.activation_deriv = logistic_derivatic
- elif activation == 'tanh':
- self.activation = tanh
- self.activation_deriv = tanh_deriv
- self.weights = []
- for i in range(1,len(layer) - 1):#权重的设置
- self.weights.append((2*np.random.random((layer[i - 1] + 1,layer[i] + 1))-1)*0.25)
- self.weights.append((2*np.random.random((layer[i] + 1,layer[i+1]))-1)*0.25)
- '''训练神经网络,通过传入的数据,不断更新权重weights'''
- def fit(self,X,y,learning_rate=0.2,epochs=10000):
- '''
- :param X: 数据集
- :param y: 数据输出结果,分类标记
- :param learning_rate: 学习率
- :param epochs: 随机抽取的数据的训练次数
- :return:
- '''
- X = np.atleast_2d(X) #转化X为np数据类型,试数据类型至少是两维的
- temp = np.ones([X.shape[0],X.shape[1]+1])
- temp[:,0:-1] = X
- X = temp
- y = np.array(y)
- for k in range(epochs):
- i = np.random.randint(X.shape[0]) #随机抽取的行
- a = [X[i]]
- for I in range(len(self.weights)):#完成正向所有的更新
- a.append(self.activation(np.dot(a[I],self.weights[I])))#dot():对应位相乘后相加
- error = y[i] - a[-1]
- deltas = [error * self.activation_deriv(a[-1])]#*self.activation_deriv(a[I])#输出层误差
- # 反向更新
- for I in range(len(a) -2,0,-1):
- deltas.append(deltas[-1].dot(self.weights[I].T)*self.activation_deriv(a[I]))
- deltas.reverse()
- for i in range(len(self.weights)):
- layer = np.atleast_2d(a[i])
- delta = np.atleast_2d(deltas[i])
- self.weights[i] += learning_rate*layer.T.dot(delta)
- def predict(self,x):
- x = np.array(x)
- temp = np.ones(x.shape[0] + 1)
- temp[0:-1] = x
- a = temp
- for I in range(0,len(self.weights)):
- a = self.activation(np.dot(a,self.weights[I]))
- return a #只需要保存最后的值,就是预测出来的值
- nn = NeuralNetwork([2,2,1], 'tanh')
- X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
- y = np.array([0, 1, 1, 0])
- nn.fit(X, y)
- for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
- print(i, nn.predict(i))
- #from sklearn.datasets import load_digits #导入数据集
- #from sklearn.metrics import confusion_matrix,classification_report #对结果的预测的包
- #from sklearn.preprocessing import LabelBinarizer #把数据转化为二维的数字类型
- #from sklearn.cross_validation import train_test_split #可以把数据拆分成训练集与数据集
- #digits = load_digits() #把数据改成0到1之间
- #X = digits.data
- #y = digits.target
- #X -= X.min()
- #X /= X.max()
- #nn = NeuralNetwork([64,100,10],'logistic')
- #X_train,X_test,y_train,y_test = train_test_split(X,y)
- #labels_train = LabelBinarizer().fit_transform(y_train)
- #labels_test = LabelBinarizer().fit_transform(y_test)
- #print("start fitting")
- #nn.fit(X_train,labels_train,epochs=3000)
- #predictions = []
- #for i in range(X_test.shape[0]):
- # o = nn.predict(X_test[i])
- # predictions.append(np.argmax(o))
- #print(confusion_matrix(y_test,predictions))
- #print(classification_report(y_test,predictions))
|