1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import os
- import gym
- import ray
- from gym.spaces import Discrete, Box
- from ray import tune
- class SimpleCorridor(gym.Env):
- def __init__(self, config):
- self.end_pos = config['corridor_length']
- self.cur_pos = 0
- self.action_space = Discrete(2)
- self.observation_space = Box(0.0, self.end_pos, shape=(1,))
- def reset(self):
- self.cur_pos = 0
- return [self.cur_pos]
- def step(self, action):
- if action == 0 and self.cur_pos > 0:
- self.cur_pos -= 1
- elif action == 1:
- self.cur_pos += 1
- done = self.cur_pos >= self.end_pos
- return [self.cur_pos], 1 if done else 0, done, {}
- if __name__ == '__main__':
- from datetime import datetime
- start_time = datetime.utcnow()
- print('Python start time: {} UTC'.format(start_time))
- if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
- from agit import ray_init
- ray_init()
- from agit import open
- dataset_path = 'agit://'
- else:
- ray.init()
- dataset_path = './'
- print('Ray Cluster Resources: {}'.format(ray.cluster_resources()))
- import tensorflow as tf
- print('TensorFlow CUDA is available: {}'.format(tf.config.list_physical_devices('GPU')))
- import torch
- print('pyTorch CUDA is available: {}'.format(torch.cuda.is_available()))
- with open(dataset_path + 'expert_data.csv', 'rb') as file:
- raw_data = file.read()
- print(raw_data)
- tune.run(
- 'PPO',
- queue_trials=True, # Don't use this parameter unless you know what you do.
- stop={'training_iteration': 10},
- config={
- 'env': SimpleCorridor,
- 'env_config': {'corridor_length': 5},
- 'num_gpus': 1
- }
- )
- complete_time = datetime.utcnow()
- print('Python complete time: {} UTC'.format(complete_time))
- print('Python resource time: {} UTC'.format(complete_time - start_time))
|