12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #调用 TensorFlow
- from __future__ import absolute_import, division, print_function, unicode_literals
- import tensorflow as tf
- from tensorflow.keras.layers import Dense, Flatten, Conv2D
- from tensorflow.keras import Model
- #载入并准备好 MNIST 数据集:
- mnist = tf.keras.datasets.mnist
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train, x_test = x_train / 255.0, x_test / 255.0
- # Add a channels dimension
- x_train = x_train[..., tf.newaxis]
- x_test = x_test[..., tf.newaxis]
- #使用 tf.data 来将数据集切分为 batch 以及混淆数据集:
- train_ds = tf.data.Dataset.from_tensor_slices(
- (x_train, y_train)).shuffle(10000).batch(32)
- test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
- #使用 Keras 模型子类化(model subclassing) API 构建 tf.keras 模型:
- class MyModel(Model):
- def __init__(self):
- super(MyModel, self).__init__()
- self.conv1 = Conv2D(32, 3, activation='relu')
- self.flatten = Flatten()
- self.d1 = Dense(128, activation='relu')
- self.d2 = Dense(10, activation='softmax')
- def call(self, x):
- x = self.conv1(x)
- x = self.flatten(x)
- x = self.d1(x)
- return self.d2(x)
- model = MyModel()
- #为训练选择优化器与损失函数:
- loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
- optimizer = tf.keras.optimizers.Adam()
- #选择衡量指标来度量模型的损失值(loss)和准确率(accuracy)。这些指标在 epoch 上累积值,然后打印出整体结果
- train_loss = tf.keras.metrics.Mean(name='train_loss')
- train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
- name='train_accuracy')
- test_loss = tf.keras.metrics.Mean(name='test_loss')
- test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
- name='test_accuracy')
- #使用 tf.GradientTape 来训练模型
- @tf.function
- def train_step(images, labels):
- with tf.GradientTape() as tape:
- predictions = model(images)
- loss = loss_object(labels, predictions)
- gradients = tape.gradient(loss, model.trainable_variables)
- optimizer.apply_gradients(zip(gradients, model.trainable_variables))
- train_loss(loss)
- train_accuracy(labels, predictions)
- #测试模型:
- @tf.function
- def test_step(images, labels):
- predictions = model(images)
- t_loss = loss_object(labels, predictions)
- test_loss(t_loss)
- test_accuracy(labels, predictions)
- EPOCHS = 5
- for epoch in range(EPOCHS):
- for images, labels in train_ds:
- train_step(images, labels)
- for test_images, test_labels in test_ds:
- test_step(test_images, test_labels)
- template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
- print(template.format(epoch + 1,
- train_loss.result(),
- train_accuracy.result() * 100,
- test_loss.result(),
- test_accuracy.result() * 100))
|