w2midi.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * Copyright 2022 George Bartolomey Licensed under
  3. * the Apache License, Version 2.0 (the «License»);
  4. */
  5. #include <jack/jack.h>
  6. #include <jack/midiport.h>
  7. #include <stdio.h>
  8. #include <signal.h>
  9. #include <stdlib.h>
  10. #include <unistd.h>
  11. #include <getopt.h>
  12. #include <string.h>
  13. #include <fftw3.h>
  14. #include <math.h>
  15. #define DEFAULT_BUFFER_SIZE 4096
  16. #define DEFAULT_AMP_THRESHOLD 20
  17. #define DEFAULT_ACC_THRESHOLD 0.02
  18. #define DEFAULT_EVENT_RANGE_START 0
  19. #define DEFAULT_EVENT_RANGE_END 255
  20. #define DEFAULT_CLIENT_NAME "w2midi"
  21. #define CLIENT_NAME_LENGTH 32
  22. #define M_PI 3.14159265359
  23. #define HANN_a0 0.53836
  24. #define HANN_a1 0.46164
  25. #define NOTES_BITMAP_SIZE 256
  26. /*Спец. состояние библиотеки FFTW*/
  27. fftwf_plan main_fftwf_plan;
  28. fftwf_complex *fft_out;
  29. jack_client_t *client;
  30. jack_port_t *input_port;
  31. jack_port_t *output_port;
  32. jack_nframes_t sample_rate;
  33. /*Значение оконной функции*/
  34. float *window;
  35. /*Буфер, содержащий предыдущий сигнал и текущий; используется ПФ*/
  36. float *buffer;
  37. int solo_mode;
  38. int pitch_mode;
  39. unsigned int buffer_size;
  40. /*Таблица полутон-диск. частота из ПФ*/
  41. unsigned short prev_pitch;
  42. unsigned short *pitch_table;
  43. unsigned char *semitone_bins;
  44. /*Громкости полутонов*/ unsigned char *note_pressures;
  45. unsigned char *prev_note_pressures;
  46. /*Настройки*/
  47. float amp_threshold;
  48. float acc_threshold;
  49. unsigned int event_range_start;
  50. unsigned int event_range_end;
  51. char client_name[CLIENT_NAME_LENGTH];
  52. char *help_text =
  53. #include "help.txt"
  54. ;
  55. void init();
  56. void parse_args(int argc, char **argv);
  57. /*Рабочий цикл*/
  58. int process(jack_nframes_t nframes, void *arg);
  59. /*Вычислить окно Хемминга*/
  60. void generate_window(float *out, int n);
  61. /*Вычислить таблицу частота-полутон*/
  62. void generate_semitone_bins();
  63. /*Преобразовать спектр частот в спектр нот*/
  64. void calculate_note_pressures(float *spectral_density);
  65. /*Убрать обертоны*/
  66. void remove_obertones();
  67. void remove_all_other();
  68. void send_events(void *output_buffer);
  69. void send_pitch(void *output_buffer, float *spectral_density);
  70. void array_mul(float *a, float *b, int n);
  71. /*|z|^2 Преобразовать комплексные амлитуды в спектральную плотность*/
  72. void cmplx_amp_to_spectral_density(fftwf_complex *in, int n);
  73. int main(int argc, char **argv) {
  74. solo_mode = 0;
  75. pitch_mode = 0;
  76. buffer_size = DEFAULT_BUFFER_SIZE;
  77. amp_threshold = DEFAULT_AMP_THRESHOLD;
  78. acc_threshold = DEFAULT_ACC_THRESHOLD;
  79. event_range_start = DEFAULT_EVENT_RANGE_START;
  80. event_range_end = DEFAULT_EVENT_RANGE_END;
  81. strcpy(client_name, DEFAULT_CLIENT_NAME);
  82. parse_args(argc, argv);
  83. init();
  84. if (jack_activate(client)) {
  85. fprintf(stderr, "Failed to activate JACK client!\n");
  86. exit(EXIT_FAILURE);
  87. }
  88. sleep(-1);
  89. jack_client_close(client);
  90. return 0;
  91. }
  92. void parse_args(int argc, char **argv) {
  93. int opt;
  94. while ((opt = getopt(argc, argv, "b:d:a:n:s:e:n:hop")) != -1) {
  95. switch (opt) {
  96. case 'b':
  97. buffer_size = atoi(optarg);
  98. break;
  99. case 'd':
  100. amp_threshold = atof(optarg);
  101. break;
  102. case 'a':
  103. acc_threshold = atof(optarg);
  104. break;
  105. case 'n':
  106. strncpy(client_name, optarg, CLIENT_NAME_LENGTH);
  107. break;
  108. case 's':
  109. event_range_start = atoi(optarg);
  110. break;
  111. case 'e':
  112. event_range_end = atoi(optarg);
  113. break;
  114. case 'o':
  115. solo_mode = 1;
  116. break;
  117. case 'p':
  118. printf("pitch\n");
  119. pitch_mode = 1;
  120. break;
  121. case 'h':
  122. printf("%s", help_text);
  123. exit(0);
  124. }
  125. }
  126. if ((buffer_size & (buffer_size - 1)) != 0 && buffer_size > 8) {
  127. fprintf(stderr, "Buffer size must be power of two "
  128. "and greater than 8\n");
  129. exit(1);
  130. }
  131. if (event_range_start < 0 || event_range_end > 255
  132. || event_range_start > event_range_end) {
  133. fprintf(stderr, "Notes range must be from 0 to 255");
  134. exit(1);
  135. }
  136. }
  137. void init() {
  138. client = jack_client_open(client_name, JackNullOption, NULL);
  139. if (!client) {
  140. fprintf(stderr, "Failed to connect to JACK server!\n");
  141. exit(EXIT_FAILURE);
  142. }
  143. jack_set_process_callback(client, process, 0);
  144. input_port = jack_port_register(client, "in", JACK_DEFAULT_AUDIO_TYPE,
  145. JackPortIsInput, buffer_size / 2);
  146. output_port = jack_port_register(client, "out", JACK_DEFAULT_MIDI_TYPE,
  147. JackPortIsOutput, 0);
  148. if (!input_port || !output_port) {
  149. fprintf(stderr, "Failed to register JACK ports!\n");
  150. exit(EXIT_FAILURE);
  151. }
  152. jack_set_buffer_size(client, buffer_size / 2);
  153. sample_rate = jack_get_sample_rate(client);
  154. buffer = (float*)fftwf_malloc(sizeof(float) * buffer_size);
  155. window = (float*)malloc(sizeof(float) * buffer_size);
  156. semitone_bins = (unsigned char*)malloc(buffer_size / 2);
  157. note_pressures = (unsigned char*)malloc(NOTES_BITMAP_SIZE);
  158. prev_note_pressures = (unsigned char*)malloc(NOTES_BITMAP_SIZE);
  159. pitch_table = (unsigned short*)malloc(buffer_size / 2 * sizeof(unsigned short));
  160. if (!buffer || !window || !semitone_bins
  161. || !note_pressures || !prev_note_pressures || !pitch_table) {
  162. fprintf(stderr, "Failed to allocate memory!\n");
  163. exit(EXIT_FAILURE);
  164. }
  165. fft_out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * buffer_size);
  166. main_fftwf_plan = fftwf_plan_dft_r2c_1d(buffer_size, buffer,
  167. fft_out, FFTW_ESTIMATE);
  168. generate_window(window, buffer_size);
  169. memset(prev_note_pressures, 0, NOTES_BITMAP_SIZE);
  170. memset(buffer, 0, buffer_size * sizeof(float));
  171. prev_pitch = 0;
  172. generate_semitone_bins();
  173. }
  174. int process(jack_nframes_t nframes, void *arg) {
  175. jack_default_audio_sample_t *input_buffer;
  176. void* output_buffer;
  177. float *spectral_density;
  178. if (nframes <= 0) {
  179. return 0;
  180. }
  181. input_buffer = jack_port_get_buffer(input_port, nframes);
  182. output_buffer = jack_port_get_buffer(output_port, nframes);
  183. jack_midi_clear_buffer(output_buffer);
  184. memset(note_pressures, 0, NOTES_BITMAP_SIZE);
  185. memcpy(&buffer[buffer_size / 2], input_buffer,
  186. buffer_size / 2 * sizeof(float));
  187. array_mul(buffer, window, buffer_size);
  188. fftwf_execute(main_fftwf_plan);
  189. memcpy(buffer, input_buffer, buffer_size / 2 * sizeof(float));
  190. cmplx_amp_to_spectral_density(fft_out, buffer_size / 2);
  191. spectral_density = (float*)fft_out;
  192. calculate_note_pressures(spectral_density);
  193. if (pitch_mode)
  194. send_pitch(output_buffer, spectral_density);
  195. if (solo_mode)
  196. remove_all_other();
  197. else
  198. remove_obertones();
  199. send_events(output_buffer);
  200. memcpy(prev_note_pressures, note_pressures, NOTES_BITMAP_SIZE);
  201. return 0;
  202. }
  203. /* Hann function window */
  204. void generate_window(float *out, int n) {
  205. int i;
  206. float c;
  207. c = 2 * M_PI / (float)(n - 1);
  208. for (i = 0; i < n; i++) {
  209. out[i] = HANN_a0 - HANN_a1 * cos(c * (float)i);
  210. }
  211. }
  212. void array_mul(float *a, float *b, int n) {
  213. int i;
  214. for (i = 0; i < n; i++) {
  215. a[i] *= b[i];
  216. }
  217. }
  218. /*|z|^2*/
  219. void cmplx_amp_to_spectral_density(fftwf_complex *in, int n) {
  220. int i;
  221. float *out;
  222. out = (float*)in;
  223. for (i = 0; i < n; i++) {
  224. out[i] = in[i][0]*in[i][0] + in[i][1]*in[i][1];
  225. }
  226. }
  227. void generate_semitone_bins() {
  228. int i;
  229. float freq;
  230. float semitone;
  231. float difference;
  232. semitone_bins[0] = 0;
  233. for (i = 0; i < buffer_size / 2; i++) {
  234. freq = (float)i * sample_rate / (float)buffer_size;
  235. semitone = 12 * log2(freq / 440) + 69;
  236. difference = abs(round(semitone) - semitone);
  237. if (semitone > 0 && semitone < 256 && difference < acc_threshold) {
  238. semitone_bins[i] = round(semitone);
  239. if (pitch_mode)
  240. pitch_table[i] = ((round(semitone) - semitone) * 0x2000 / 2) + 0x2000;
  241. }
  242. else {
  243. semitone_bins[i] = 0;
  244. if (pitch_mode)
  245. pitch_table[i] = 0;
  246. }
  247. }
  248. }
  249. void calculate_note_pressures(float *spectral_density) {
  250. int i;
  251. float db;
  252. for (i = event_range_start; i < buffer_size / 2 && i < event_range_end; i++) {
  253. db = 10 * log10(spectral_density[i]);
  254. if (db > amp_threshold) {
  255. note_pressures[semitone_bins[i]] = (db < 256 ? db : 255);
  256. }
  257. }
  258. }
  259. void remove_obertones() {
  260. int i;
  261. for (i = 0; i < NOTES_BITMAP_SIZE - 3; i++) {
  262. if (note_pressures[i] < note_pressures[i - 1] ||
  263. note_pressures[i] < note_pressures[i - 2] ||
  264. note_pressures[i] < note_pressures[i + 1] ||
  265. note_pressures[i] < note_pressures[i + 2]) {
  266. note_pressures[i] = 0;
  267. }
  268. }
  269. }
  270. void remove_all_other() {
  271. int i;
  272. int max_i;
  273. unsigned char max;
  274. max_i = 0;
  275. max = 0;
  276. for (i = 0; i < NOTES_BITMAP_SIZE - 3; i++) {
  277. if (note_pressures[i] > max) {
  278. max_i = i;
  279. max = note_pressures[i];
  280. }
  281. }
  282. memset(note_pressures, 0, NOTES_BITMAP_SIZE);
  283. note_pressures[max_i] = max;
  284. }
  285. void send_pitch(void *output_buffer, float *spectral_density) {
  286. int i;
  287. int max_i;
  288. float max;
  289. unsigned short pitch;
  290. unsigned char *midi;
  291. max_i = -1;
  292. max = -INFINITY;
  293. for (i = 1; i < buffer_size / 2; i++) {
  294. if (max < spectral_density[i]) {
  295. max = spectral_density[i];
  296. max_i = i;
  297. }
  298. }
  299. pitch = pitch_table[max_i];
  300. midi = jack_midi_event_reserve(output_buffer, 0, 3);
  301. midi[0] = 0xE0;
  302. midi[1] = pitch & 0xFF;
  303. midi[2] = pitch >> 8 & 0xFF;
  304. printf("%i\n", pitch);
  305. prev_pitch = pitch;
  306. }
  307. void send_events(void *output_buffer) {
  308. int i;
  309. unsigned char *midi;
  310. unsigned int pressure;
  311. i = event_range_start;
  312. for (i = event_range_start; i < event_range_end; i++) {
  313. if (prev_note_pressures[i] == 0 && note_pressures[i] > 0) {
  314. midi = jack_midi_event_reserve(output_buffer, i, 3);
  315. midi[0] = 0x90;
  316. midi[1] = i;
  317. pressure = note_pressures[i] * 32 / amp_threshold;
  318. midi[2] = pressure < 100 ? pressure : 100;
  319. }
  320. else if (prev_note_pressures[i] > 0 && note_pressures[i] == 0) {
  321. midi = jack_midi_event_reserve(output_buffer, i, 3);
  322. midi[0] = 0x80;
  323. midi[1] = i;
  324. midi[2] = 64;
  325. }
  326. }
  327. }