123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- ;;; The SRFI-32 sort package -- three-way quick sort -*- Scheme -*-
- ;;; Copyright (c) 2002 by Olin Shivers.
- ;;; This code is open-source; see the end of the file for porting and
- ;;; more copyright information.
- ;;; Olin Shivers 2002/7.
- ;;; (quick-sort3! c v [start end]) -> unspecific
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; Sort vector V[start,end) using three-way comparison function C:
- ;;; (c x y) < 0 => x<y
- ;;; (c x y) = 0 => x=y
- ;;; (c x y) > 0 => x>y
- ;;; That is, C acts as a sort of "subtraction" procedure; using - for the
- ;;; comparison function will cause numbers to be sorted into increasing order.
- ;;;
- ;;; This algorithm is more efficient than standard, two-way quicksort if there
- ;;; are many duplicate items in the data set and the comparison function is
- ;;; relatively expensive (e.g., comparing large strings). It is due to Jon
- ;;; Bentley & Doug McIlroy; I learned it from Bentley.
- ;;;
- ;;; The algorithm is a standard quicksort, but the partition loop is fancier,
- ;;; arranging the vector into a left part that is <, a middle region that is
- ;;; =, and a right part that is > the pivot. Here's how it is done:
- ;;; The partition loop divides the range being partitioned into five
- ;;; subranges:
- ;;; =======<<<<<<<<<?????????>>>>>>>=======
- ;;; where = marks a value that is equal the pivot, < marks a value that
- ;;; is less than the pivot, ? marks a value that hasn't been scanned, and
- ;;; > marks a value that is greater than the pivot. Let's consider the
- ;;; left-to-right scan. If it checks a ? value that is <, it keeps scanning.
- ;;; If the ? value is >, we stop the scan -- we are ready to start the
- ;;; right-to-left scan and then do a swap. But if the rightward scan checks
- ;;; a ? value that is =, we swap it *down* to the end of the initial chunk
- ;;; of ====='s -- we exchange it with the leftmost < value -- and then
- ;;; continue our rightward scan. The leftwards scan works in a similar
- ;;; fashion, scanning past > elements, stopping on a < element, and swapping
- ;;; up = elements. When we are done, we have a picture like this
- ;;; ========<<<<<<<<<<<<>>>>>>>>>>=========
- ;;; Then swap the = elements up into the middle of the vector to get
- ;;; this:
- ;;; <<<<<<<<<<<<=================>>>>>>>>>>
- ;;; Then recurse on the <'s and >'s. Work out all the tricky little
- ;;; boundary cases, and you're done.
- ;;;
- ;;; Other tricks that make this implementation industrial strength:
- ;;; - This quicksort makes some effort to pick the pivot well -- it uses the
- ;;; median of three elements as the partition pivot, so pathological n^2
- ;;; run time is much rarer (but not eliminated completely). If you really
- ;;; wanted to get fancy, you could use a random number generator to choose
- ;;; pivots. The key to this trick is that you only need to pick one random
- ;;; number for each *level* of recursion -- i.e. you only need (lg n) random
- ;;; numbers.
- ;;;
- ;;; - After the partition, we *recurse* on the smaller of the two pending
- ;;; regions, then *tail-recurse* (iterate) on the larger one. This guarantees
- ;;; we use no more than lg(n) stack frames, worst case.
- ;;;
- ;;; - There are two ways to finish off the sort.
- ;;; A. Recurse down to regions of size 10, then sort each such region using
- ;;; insertion sort.
- ;;; B. Recurse down to regions of size 10, then sort *the entire vector*
- ;;; using insertion sort.
- ;;; We do A. Each choice has a cost. Choice A has more overhead to invoke
- ;;; all the separate insertion sorts -- choice B only calls insertion sort
- ;;; once. But choice B will call the comparison function *more times* --
- ;;; it will unnecessarily compare elt 9 of one segment to elt 0 of the
- ;;; following segment. The overhead of choice A is linear in the length
- ;;; of the vector, but *otherwise independent of the algorithm's parameters*.
- ;;; I.e., it's a *fixed*, *small* constant factor. The cost of the extra
- ;;; comparisons made by choice B, however, is dependent on an externality:
- ;;; the comparison function passed in by the client. This can be made
- ;;; arbitrarily bad -- that is, the constant factor *isn't* fixed by the
- ;;; sort algorithm; instead, it's determined by the comparison function.
- ;;; If your comparison function is very, very slow, you want to eliminate
- ;;; every single one that you can. Choice A limits the potential badness,
- ;;; so that is what we do.
- (define (vector-quick-sort3! c v . maybe-start+end)
- (call-with-values
- (lambda () (vector-start+end v maybe-start+end))
- (lambda (start end)
- (%quick-sort3! c v start end))))
- (define (vector-quick-sort3 c v . maybe-start+end)
- (call-with-values
- (lambda () (vector-start+end v maybe-start+end))
- (lambda (start end)
- (let ((ans (make-vector (- end start))))
- (vector-portion-copy! ans v start end)
- (%quick-sort3! c ans 0 (- end start))
- ans))))
- ;;; %QUICK-SORT3! is not exported.
- ;;; Preconditions:
- ;;; V vector
- ;;; START END fixnums
- ;;; 0 <= START, END <= (vector-length V)
- ;;; If these preconditions are ensured by the cover functions, you
- ;;; can safely change this code to use unsafe fixnum arithmetic and vector
- ;;; indexing ops, for *huge* speedup.
- ;;;
- ;;; We bail out to insertion sort for small ranges; feel free to tune the
- ;;; crossover -- it's just a random guess. If you don't have the insertion
- ;;; sort routine, just kill that branch of the IF and change the recursion
- ;;; test to (< 1 (- r l)) -- the code is set up to work that way.
- (define (%quick-sort3! c v start end)
- (define (swap l r n) ; Little utility -- swap the N
- (if (> n 0)
- (let ((x (vector-ref v l)) ; outer pairs of the range [l,r).
- (r-1 (- r 1)))
- (vector-set! v l (vector-ref v r-1))
- (vector-set! v r-1 x)
- (swap (+ l 1) r-1 (- n 1)))))
- (define (sort3 v1 v2 v3)
- (call-with-values
- (lambda () (if (< (c v1 v2) 0) (values v1 v2) (values v2 v1)))
- (lambda (little big)
- (if (< (c big v3) 0)
- (values little big v3)
- (if (< (c little v3) 0)
- (values little v3 big)
- (values v3 little big))))))
- (define (elt< v1 v2)
- (negative? (c v1 v2)))
- (let recur ((l start) (r end)) ; Sort the range [l,r).
- (if (< 10 (- r l)) ; 10: the gospel according to Sedgewick.
- ;; Choose the median of V[l], V[r-1], and V[middle] for the pivot.
- ;; We do this by sorting these three elts; call the results LO, PIVOT
- ;; & HI. Put LO, PIVOT & HI where they should go in the vector. We
- ;; will kick off the partition step with one elt (PIVOT) in the left=
- ;; range, one elt (LO) in the < range, one elt (HI) in in the > range
- ;; & no elts in the right= range.
- (let* ((r-1 (- r 1)) ; Three handy
- (mid (quotient (+ l r) 2)) ; common
- (l+1 (+ l 1)) ; subexpressions
- (pivot (call-with-values
- (lambda ()
- (sort3 (vector-ref v l)
- (vector-ref v mid)
- (vector-ref v r-1)))
- (lambda (lo piv hi)
- (let ((tmp (vector-ref v l+1))) ; Put LO, PIV & HI
- (vector-set! v l piv) ; back into V
- (vector-set! v r-1 hi) ; where they belong,
- (vector-set! v l+1 lo)
- (vector-set! v mid tmp)
- piv))))) ; and return PIV as pivot.
-
- ;; Everything in these loops is driven by the invariants expressed
- ;; in the little pictures, the corresponding l,i,j,k,m,r indices,
- ;; & the associated ranges.
-
- ;; =======<<<<<<<<<?????????>>>>>>>======= (picture)
- ;; l i j k m r (indices)
- ;; [l,i) [i,j) [j,k] (k,m] (m,r) (ranges )
- (letrec ((lscan (lambda (i j k m) ; left-to-right scan
- (let lp ((i i) (j j))
- (if (> j k)
- (done i j m)
- (let* ((x (vector-ref v j))
- (sign (c x pivot)))
- (cond ((< sign 0) (lp i (+ j 1)))
- ((= sign 0)
- (if (< i j)
- (begin (vector-set! v j (vector-ref v i))
- (vector-set! v i x)))
- (lp (+ i 1) (+ j 1)))
-
- ((> sign 0) (rscan i j k m))))))))
- ;; =======<<<<<<<<<>????????>>>>>>>=======
- ;; l i j k m r
- ;; [l,i) [i,j) j (j,k] (k,m] (m,r)
- (rscan (lambda (i j k m) ; right-to-left scan
- (let lp ((k k) (m m))
- (if (<= k j)
- (done i j m)
- (let* ((x (vector-ref v k))
- (sign (c x pivot)))
- (cond ((> sign 0) (lp (- k 1) m))
- ((= sign 0)
- (if (< k m)
- (begin (vector-set! v k (vector-ref v m))
- (vector-set! v m x)))
- (lp (- k 1) (- m 1)))
- ((< sign 0) ; Swap j & k & lscan.
- (vector-set! v k (vector-ref v j))
- (vector-set! v j x)
- (lscan i (+ j 1) (- k 1) m))))))))
- ;; =======<<<<<<<<<<<<<>>>>>>>>>>>=======
- ;; l i j m r
- ;; [l,i) [i,j) [j,m] (m,r)
- (done (lambda (i j m)
- (let ((num< (- j i))
- (num> (+ 1 (- m j)))
- (num=l (- i l))
- (num=r (- (- r m) 1)))
- (swap l j (min num< num=l)) ; Swap ='s into
- (swap j r (min num> num=r)) ; the middle.
- ;; Recur on the <'s and >'s. Recurring on the
- ;; smaller range and iterating on the bigger
- ;; range ensures O(lg n) stack frames, worst case.
- (cond ((<= num< num>)
- (recur l (+ l num<))
- (recur (- r num>) r))
- (else
- (recur (- r num>) r)
- (recur l (+ l num<))))))))
- ;; To repeat: We kick off the partition step with one elt (PIVOT)
- ;; in the left= range, one elt (LO) in the < range, one elt (HI)
- ;; in the > range & no elts in the right= range.
- (lscan l+1 (+ l 2) (- r 2) r-1)))
- ;; Small segment => punt to insert sort.
- ;; Use the dangerous subprimitive.
- (%vector-insert-sort! elt< v l r))))
- ;;; Copyright
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; This code is
- ;;; Copyright (c) 1998 by Olin Shivers.
- ;;; The terms are: You may do as you please with this code, as long as
- ;;; you do not delete this notice or hold me responsible for any outcome
- ;;; related to its use.
- ;;;
- ;;; Blah blah blah.
- ;;; Code tuning & porting
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; - The quicksort recursion bottoms out in a call to an insertion sort
- ;;; routine, %INSERT-SORT!. But you could even punt this and go with pure
- ;;; recursion in a pinch.
- ;;;
- ;;; This code is *tightly* bummed as far as I can go in portable Scheme.
- ;;;
- ;;; The internal primitive %QUICK-SORT! that does the real work can be
- ;;; converted to use unsafe vector-indexing and fixnum-specific arithmetic ops
- ;;; *if* you alter the two small cover functions to enforce the invariants.
- ;;; This should provide *big* speedups. In fact, all the code bumming I've
- ;;; done pretty much disappears in the noise unless you have a good compiler
- ;;; and also can dump the vector-index checks and generic arithmetic -- so
- ;;; I've really just set things up for you to exploit.
- ;;;
- ;;; The optional-arg parsing, defaulting, and error checking is done with a
- ;;; portable R4RS macro. But if your Scheme has a faster mechanism (e.g.,
- ;;; Chez), you should definitely port over to it. Note that argument defaulting
- ;;; and error-checking are interleaved -- you don't have to error-check
- ;;; defaulted START/END args to see if they are fixnums that are legal vector
- ;;; indices for the corresponding vector, etc.
|