1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- ; Part of Scheme 48 1.9. See file COPYING for notices and license.
- ; Authors: Richard Kelsey, Jonathan Rees
- ; Bitwise operators written in vanilla Scheme.
- ; Written for clarity and simplicity, not for speed.
- ; No need to use these in Scheme 48 since Scheme 48's virtual machine
- ; provides fast machine-level implementations.
- (define (bitwise-not i)
- (- -1 i))
- (define (bitwise-and x y)
- (cond ((= x 0) 0)
- ((= x -1) y)
- (else
- (+ (* (bitwise-and (arithmetic-shift x -1)
- (arithmetic-shift y -1))
- 2)
- (* (modulo x 2) (modulo y 2))))))
- (define (bitwise-ior x y)
- (bitwise-not (bitwise-and (bitwise-not x)
- (bitwise-not y))))
- (define (bitwise-xor x y)
- (bitwise-and (bitwise-not (bitwise-and x y))
- (bitwise-ior x y)))
- (define (bitwise-eqv x y)
- (bitwise-not (bitwise-xor x y)))
- (define (arithmetic-shift n m)
- (floor (* n (expt 2 m))))
- (define (count-bits x) ; Count 1's in the positive 2's comp rep
- (let ((x (if (< x 0) (bitwise-not x) x)))
- (do ((x x (arithmetic-shift x 1))
- (result 0 (+ result (modulo x 2))))
- ((= x 0) result))))
- ;(define (integer-length integer) ...) ;?
|