gsl_statistics__covariance_source.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. /* statistics/covar_source.c
  2. *
  3. * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. static double
  20. FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
  21. const BASE data2[], const size_t stride2,
  22. const size_t n,
  23. const double mean1, const double mean2);
  24. static double
  25. FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
  26. const BASE data2[], const size_t stride2,
  27. const size_t n,
  28. const double mean1, const double mean2)
  29. {
  30. /* takes a dataset and finds the covariance */
  31. long double covariance = 0 ;
  32. size_t i;
  33. /* find the sum of the squares */
  34. for (i = 0; i < n; i++)
  35. {
  36. const long double delta1 = (data1[i * stride1] - mean1);
  37. const long double delta2 = (data2[i * stride2] - mean2);
  38. covariance += (delta1 * delta2 - covariance) / (i + 1);
  39. }
  40. return covariance ;
  41. }
  42. double
  43. FUNCTION(gsl_stats,covariance_m) (const BASE data1[], const size_t stride1,
  44. const BASE data2[], const size_t stride2,
  45. const size_t n,
  46. const double mean1, const double mean2)
  47. {
  48. const double covariance = FUNCTION(compute,covariance) (data1, stride1,
  49. data2, stride2,
  50. n,
  51. mean1, mean2);
  52. return covariance * ((double)n / (double)(n - 1));
  53. }
  54. double
  55. FUNCTION(gsl_stats,covariance) (const BASE data1[], const size_t stride1,
  56. const BASE data2[], const size_t stride2,
  57. const size_t n)
  58. {
  59. const double mean1 = FUNCTION(gsl_stats,mean) (data1, stride1, n);
  60. const double mean2 = FUNCTION(gsl_stats,mean) (data2, stride2, n);
  61. return FUNCTION(gsl_stats,covariance_m)(data1, stride1,
  62. data2, stride2,
  63. n,
  64. mean1, mean2);
  65. }
  66. /*
  67. gsl_stats_correlation()
  68. Calculate Pearson correlation = cov(X, Y) / (sigma_X * sigma_Y)
  69. This routine efficiently computes the correlation in one pass of the
  70. data and makes use of the algorithm described in:
  71. B. P. Welford, "Note on a Method for Calculating Corrected Sums of
  72. Squares and Products", Technometrics, Vol 4, No 3, 1962.
  73. This paper derives a numerically stable recurrence to compute a sum
  74. of products
  75. S = sum_{i=1..N} [ (x_i - mu_x) * (y_i - mu_y) ]
  76. with the relation
  77. S_n = S_{n-1} + ((n-1)/n) * (x_n - mu_x_{n-1}) * (y_n - mu_y_{n-1})
  78. */
  79. double
  80. FUNCTION(gsl_stats,correlation) (const BASE data1[], const size_t stride1,
  81. const BASE data2[], const size_t stride2,
  82. const size_t n)
  83. {
  84. size_t i;
  85. long double sum_xsq = 0.0;
  86. long double sum_ysq = 0.0;
  87. long double sum_cross = 0.0;
  88. long double ratio;
  89. long double delta_x, delta_y;
  90. long double mean_x, mean_y;
  91. long double r;
  92. /*
  93. * Compute:
  94. * sum_xsq = Sum [ (x_i - mu_x)^2 ],
  95. * sum_ysq = Sum [ (y_i - mu_y)^2 ] and
  96. * sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ]
  97. * using the above relation from Welford's paper
  98. */
  99. mean_x = data1[0 * stride1];
  100. mean_y = data2[0 * stride2];
  101. for (i = 1; i < n; ++i)
  102. {
  103. ratio = i / (i + 1.0);
  104. delta_x = data1[i * stride1] - mean_x;
  105. delta_y = data2[i * stride2] - mean_y;
  106. sum_xsq += delta_x * delta_x * ratio;
  107. sum_ysq += delta_y * delta_y * ratio;
  108. sum_cross += delta_x * delta_y * ratio;
  109. mean_x += delta_x / (i + 1.0);
  110. mean_y += delta_y / (i + 1.0);
  111. }
  112. r = sum_cross / (sqrt(sum_xsq) * sqrt(sum_ysq));
  113. return r;
  114. }