gsl_specfunc__hyperg.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /* specfunc/hyperg.c
  2. *
  3. * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. /* Author: G. Jungman */
  20. /* Miscellaneous implementations of use
  21. * for evaluation of hypergeometric functions.
  22. */
  23. #include "gsl__config.h"
  24. #include "gsl_math.h"
  25. #include "gsl_errno.h"
  26. #include "gsl_sf_exp.h"
  27. #include "gsl_sf_gamma.h"
  28. #include "gsl_specfunc__error.h"
  29. #include "gsl_specfunc__hyperg.h"
  30. #define SUM_LARGE (1.0e-5*GSL_DBL_MAX)
  31. int
  32. gsl_sf_hyperg_1F1_series_e(const double a, const double b, const double x,
  33. gsl_sf_result * result
  34. )
  35. {
  36. double an = a;
  37. double bn = b;
  38. double n = 1.0;
  39. double del = 1.0;
  40. double abs_del = 1.0;
  41. double max_abs_del = 1.0;
  42. double sum_val = 1.0;
  43. double sum_err = 0.0;
  44. while(abs_del/fabs(sum_val) > 0.25*GSL_DBL_EPSILON) {
  45. double u, abs_u;
  46. if(bn == 0.0) {
  47. DOMAIN_ERROR(result);
  48. }
  49. if(an == 0.0) {
  50. result->val = sum_val;
  51. result->err = sum_err;
  52. result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);
  53. return GSL_SUCCESS;
  54. }
  55. if (n > 10000.0) {
  56. result->val = sum_val;
  57. result->err = sum_err;
  58. GSL_ERROR ("hypergeometric series failed to converge", GSL_EFAILED);
  59. }
  60. u = x * (an/(bn*n));
  61. abs_u = fabs(u);
  62. if(abs_u > 1.0 && max_abs_del > GSL_DBL_MAX/abs_u) {
  63. result->val = sum_val;
  64. result->err = fabs(sum_val);
  65. GSL_ERROR ("overflow", GSL_EOVRFLW);
  66. }
  67. del *= u;
  68. sum_val += del;
  69. if(fabs(sum_val) > SUM_LARGE) {
  70. result->val = sum_val;
  71. result->err = fabs(sum_val);
  72. GSL_ERROR ("overflow", GSL_EOVRFLW);
  73. }
  74. abs_del = fabs(del);
  75. max_abs_del = GSL_MAX_DBL(abs_del, max_abs_del);
  76. sum_err += 2.0*GSL_DBL_EPSILON*abs_del;
  77. an += 1.0;
  78. bn += 1.0;
  79. n += 1.0;
  80. }
  81. result->val = sum_val;
  82. result->err = sum_err;
  83. result->err += abs_del;
  84. result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);
  85. return GSL_SUCCESS;
  86. }
  87. int
  88. gsl_sf_hyperg_1F1_large_b_e(const double a, const double b, const double x, gsl_sf_result * result)
  89. {
  90. if(fabs(x/b) < 1.0) {
  91. const double u = x/b;
  92. const double v = 1.0/(1.0-u);
  93. const double pre = pow(v,a);
  94. const double uv = u*v;
  95. const double uv2 = uv*uv;
  96. const double t1 = a*(a+1.0)/(2.0*b)*uv2;
  97. const double t2a = a*(a+1.0)/(24.0*b*b)*uv2;
  98. const double t2b = 12.0 + 16.0*(a+2.0)*uv + 3.0*(a+2.0)*(a+3.0)*uv2;
  99. const double t2 = t2a*t2b;
  100. result->val = pre * (1.0 - t1 + t2);
  101. result->err = pre * GSL_DBL_EPSILON * (1.0 + fabs(t1) + fabs(t2));
  102. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  103. return GSL_SUCCESS;
  104. }
  105. else {
  106. DOMAIN_ERROR(result);
  107. }
  108. }
  109. int
  110. gsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x,
  111. gsl_sf_result * result,
  112. double * ln_multiplier
  113. )
  114. {
  115. double N = floor(b); /* b = N + eps */
  116. double eps = b - N;
  117. if(fabs(eps) < GSL_SQRT_DBL_EPSILON) {
  118. double lnpre_val;
  119. double lnpre_err;
  120. gsl_sf_result M;
  121. if(b > 1.0) {
  122. double tmp = (1.0-b)*log(x);
  123. gsl_sf_result lg_bm1;
  124. gsl_sf_result lg_a;
  125. gsl_sf_lngamma_e(b-1.0, &lg_bm1);
  126. gsl_sf_lngamma_e(a, &lg_a);
  127. lnpre_val = tmp + x + lg_bm1.val - lg_a.val;
  128. lnpre_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(x) + fabs(tmp));
  129. gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, -x, &M);
  130. }
  131. else {
  132. gsl_sf_result lg_1mb;
  133. gsl_sf_result lg_1pamb;
  134. gsl_sf_lngamma_e(1.0-b, &lg_1mb);
  135. gsl_sf_lngamma_e(1.0+a-b, &lg_1pamb);
  136. lnpre_val = lg_1mb.val - lg_1pamb.val;
  137. lnpre_err = lg_1mb.err + lg_1pamb.err;
  138. gsl_sf_hyperg_1F1_large_b_e(a, b, x, &M);
  139. }
  140. if(lnpre_val > GSL_LOG_DBL_MAX-10.0) {
  141. result->val = M.val;
  142. result->err = M.err;
  143. *ln_multiplier = lnpre_val;
  144. GSL_ERROR ("overflow", GSL_EOVRFLW);
  145. }
  146. else {
  147. gsl_sf_result epre;
  148. int stat_e = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &epre);
  149. result->val = epre.val * M.val;
  150. result->err = epre.val * M.err + epre.err * fabs(M.val);
  151. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  152. *ln_multiplier = 0.0;
  153. return stat_e;
  154. }
  155. }
  156. else {
  157. double omb_lnx = (1.0-b)*log(x);
  158. gsl_sf_result lg_1mb; double sgn_1mb;
  159. gsl_sf_result lg_1pamb; double sgn_1pamb;
  160. gsl_sf_result lg_bm1; double sgn_bm1;
  161. gsl_sf_result lg_a; double sgn_a;
  162. gsl_sf_result M1, M2;
  163. double lnpre1_val, lnpre2_val;
  164. double lnpre1_err, lnpre2_err;
  165. double sgpre1, sgpre2;
  166. gsl_sf_hyperg_1F1_large_b_e( a, b, x, &M1);
  167. gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, x, &M2);
  168. gsl_sf_lngamma_sgn_e(1.0-b, &lg_1mb, &sgn_1mb);
  169. gsl_sf_lngamma_sgn_e(1.0+a-b, &lg_1pamb, &sgn_1pamb);
  170. gsl_sf_lngamma_sgn_e(b-1.0, &lg_bm1, &sgn_bm1);
  171. gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a);
  172. lnpre1_val = lg_1mb.val - lg_1pamb.val;
  173. lnpre1_err = lg_1mb.err + lg_1pamb.err;
  174. lnpre2_val = lg_bm1.val - lg_a.val - omb_lnx - x;
  175. lnpre2_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(omb_lnx)+fabs(x));
  176. sgpre1 = sgn_1mb * sgn_1pamb;
  177. sgpre2 = sgn_bm1 * sgn_a;
  178. if(lnpre1_val > GSL_LOG_DBL_MAX-10.0 || lnpre2_val > GSL_LOG_DBL_MAX-10.0) {
  179. double max_lnpre_val = GSL_MAX(lnpre1_val,lnpre2_val);
  180. double max_lnpre_err = GSL_MAX(lnpre1_err,lnpre2_err);
  181. double lp1 = lnpre1_val - max_lnpre_val;
  182. double lp2 = lnpre2_val - max_lnpre_val;
  183. double t1 = sgpre1*exp(lp1);
  184. double t2 = sgpre2*exp(lp2);
  185. result->val = t1*M1.val + t2*M2.val;
  186. result->err = fabs(t1)*M1.err + fabs(t2)*M2.err;
  187. result->err += GSL_DBL_EPSILON * exp(max_lnpre_err) * (fabs(t1*M1.val) + fabs(t2*M2.val));
  188. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  189. *ln_multiplier = max_lnpre_val;
  190. GSL_ERROR ("overflow", GSL_EOVRFLW);
  191. }
  192. else {
  193. double t1 = sgpre1*exp(lnpre1_val);
  194. double t2 = sgpre2*exp(lnpre2_val);
  195. result->val = t1*M1.val + t2*M2.val;
  196. result->err = fabs(t1) * M1.err + fabs(t2)*M2.err;
  197. result->err += GSL_DBL_EPSILON * (exp(lnpre1_err)*fabs(t1*M1.val) + exp(lnpre2_err)*fabs(t2*M2.val));
  198. result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  199. *ln_multiplier = 0.0;
  200. return GSL_SUCCESS;
  201. }
  202. }
  203. }
  204. /* [Carlson, p.109] says the error in truncating this asymptotic series
  205. * is less than the absolute value of the first neglected term.
  206. *
  207. * A termination argument is provided, so that the series will
  208. * be summed at most up to n=n_trunc. If n_trunc is set negative,
  209. * then the series is summed until it appears to start diverging.
  210. */
  211. int
  212. gsl_sf_hyperg_2F0_series_e(const double a, const double b, const double x,
  213. int n_trunc,
  214. gsl_sf_result * result
  215. )
  216. {
  217. const int maxiter = 2000;
  218. double an = a;
  219. double bn = b;
  220. double n = 1.0;
  221. double sum = 1.0;
  222. double del = 1.0;
  223. double abs_del = 1.0;
  224. double max_abs_del = 1.0;
  225. double last_abs_del = 1.0;
  226. while(abs_del/fabs(sum) > GSL_DBL_EPSILON && n < maxiter) {
  227. double u = an * (bn/n * x);
  228. double abs_u = fabs(u);
  229. if(abs_u > 1.0 && (max_abs_del > GSL_DBL_MAX/abs_u)) {
  230. result->val = sum;
  231. result->err = fabs(sum);
  232. GSL_ERROR ("overflow", GSL_EOVRFLW);
  233. }
  234. del *= u;
  235. sum += del;
  236. abs_del = fabs(del);
  237. if(abs_del > last_abs_del) break; /* series is probably starting to grow */
  238. last_abs_del = abs_del;
  239. max_abs_del = GSL_MAX(abs_del, max_abs_del);
  240. an += 1.0;
  241. bn += 1.0;
  242. n += 1.0;
  243. if(an == 0.0 || bn == 0.0) break; /* series terminated */
  244. if(n_trunc >= 0 && n >= n_trunc) break; /* reached requested timeout */
  245. }
  246. result->val = sum;
  247. result->err = GSL_DBL_EPSILON * n + abs_del;
  248. if(n >= maxiter)
  249. GSL_ERROR ("error", GSL_EMAXITER);
  250. else
  251. return GSL_SUCCESS;
  252. }