gsl_linalg__svdstep.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. /* linalg/svdstep.c
  2. *
  3. * Copyright (C) 2007 Brian Gough
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. static void
  20. chop_small_elements (gsl_vector * d, gsl_vector * f)
  21. {
  22. const size_t N = d->size;
  23. double d_i = gsl_vector_get (d, 0);
  24. size_t i;
  25. for (i = 0; i < N - 1; i++)
  26. {
  27. double f_i = gsl_vector_get (f, i);
  28. double d_ip1 = gsl_vector_get (d, i + 1);
  29. if (fabs (f_i) < GSL_DBL_EPSILON * (fabs (d_i) + fabs (d_ip1)))
  30. {
  31. gsl_vector_set (f, i, 0.0);
  32. }
  33. d_i = d_ip1;
  34. }
  35. }
  36. static double
  37. trailing_eigenvalue (const gsl_vector * d, const gsl_vector * f)
  38. {
  39. const size_t n = d->size;
  40. double da = gsl_vector_get (d, n - 2);
  41. double db = gsl_vector_get (d, n - 1);
  42. double fa = (n > 2) ? gsl_vector_get (f, n - 3) : 0.0;
  43. double fb = gsl_vector_get (f, n - 2);
  44. double ta = da * da + fa * fa;
  45. double tb = db * db + fb * fb;
  46. double tab = da * fb;
  47. double dt = (ta - tb) / 2.0;
  48. double mu;
  49. if (dt >= 0)
  50. {
  51. mu = tb - (tab * tab) / (dt + hypot (dt, tab));
  52. }
  53. else
  54. {
  55. mu = tb + (tab * tab) / ((-dt) + hypot (dt, tab));
  56. }
  57. return mu;
  58. }
  59. static void
  60. create_schur (double d0, double f0, double d1, double * c, double * s)
  61. {
  62. double apq = 2.0 * d0 * f0;
  63. if (d0 == 0 || f0 == 0)
  64. {
  65. *c = 1.0;
  66. *s = 0.0;
  67. return;
  68. }
  69. /* Check if we need to rescale to avoid underflow/overflow */
  70. if (fabs(d0) < GSL_SQRT_DBL_MIN || fabs(d0) > GSL_SQRT_DBL_MAX
  71. || fabs(f0) < GSL_SQRT_DBL_MIN || fabs(f0) > GSL_SQRT_DBL_MAX
  72. || fabs(d1) < GSL_SQRT_DBL_MIN || fabs(d1) > GSL_SQRT_DBL_MAX)
  73. {
  74. double scale;
  75. int d0_exp, f0_exp;
  76. frexp(d0, &d0_exp);
  77. frexp(f0, &f0_exp);
  78. /* Bring |d0*f0| into the range GSL_DBL_MIN to GSL_DBL_MAX */
  79. scale = ldexp(1.0, -(d0_exp + f0_exp)/4);
  80. d0 *= scale;
  81. f0 *= scale;
  82. d1 *= scale;
  83. apq = 2.0 * d0 * f0;
  84. }
  85. if (apq != 0.0)
  86. {
  87. double t;
  88. double tau = (f0*f0 + (d1 + d0)*(d1 - d0)) / apq;
  89. if (tau >= 0.0)
  90. {
  91. t = 1.0/(tau + hypot(1.0, tau));
  92. }
  93. else
  94. {
  95. t = -1.0/(-tau + hypot(1.0, tau));
  96. }
  97. *c = 1.0 / hypot(1.0, t);
  98. *s = t * (*c);
  99. }
  100. else
  101. {
  102. *c = 1.0;
  103. *s = 0.0;
  104. }
  105. }
  106. static void
  107. svd2 (gsl_vector * d, gsl_vector * f, gsl_matrix * U, gsl_matrix * V)
  108. {
  109. size_t i;
  110. double c, s, a11, a12, a21, a22;
  111. const size_t M = U->size1;
  112. const size_t N = V->size1;
  113. double d0 = gsl_vector_get (d, 0);
  114. double f0 = gsl_vector_get (f, 0);
  115. double d1 = gsl_vector_get (d, 1);
  116. if (d0 == 0.0)
  117. {
  118. /* Eliminate off-diagonal element in [0,f0;0,d1] to make [d,0;0,0] */
  119. create_givens (f0, d1, &c, &s);
  120. /* compute B <= G^T B X, where X = [0,1;1,0] */
  121. gsl_vector_set (d, 0, c * f0 - s * d1);
  122. gsl_vector_set (f, 0, s * f0 + c * d1);
  123. gsl_vector_set (d, 1, 0.0);
  124. /* Compute U <= U G */
  125. for (i = 0; i < M; i++)
  126. {
  127. double Uip = gsl_matrix_get (U, i, 0);
  128. double Uiq = gsl_matrix_get (U, i, 1);
  129. gsl_matrix_set (U, i, 0, c * Uip - s * Uiq);
  130. gsl_matrix_set (U, i, 1, s * Uip + c * Uiq);
  131. }
  132. /* Compute V <= V X */
  133. gsl_matrix_swap_columns (V, 0, 1);
  134. return;
  135. }
  136. else if (d1 == 0.0)
  137. {
  138. /* Eliminate off-diagonal element in [d0,f0;0,0] */
  139. create_givens (d0, f0, &c, &s);
  140. /* compute B <= B G */
  141. gsl_vector_set (d, 0, d0 * c - f0 * s);
  142. gsl_vector_set (f, 0, 0.0);
  143. /* Compute V <= V G */
  144. for (i = 0; i < N; i++)
  145. {
  146. double Vip = gsl_matrix_get (V, i, 0);
  147. double Viq = gsl_matrix_get (V, i, 1);
  148. gsl_matrix_set (V, i, 0, c * Vip - s * Viq);
  149. gsl_matrix_set (V, i, 1, s * Vip + c * Viq);
  150. }
  151. return;
  152. }
  153. else
  154. {
  155. /* Make columns orthogonal, A = [d0, f0; 0, d1] * G */
  156. create_schur (d0, f0, d1, &c, &s);
  157. /* compute B <= B G */
  158. a11 = c * d0 - s * f0;
  159. a21 = - s * d1;
  160. a12 = s * d0 + c * f0;
  161. a22 = c * d1;
  162. /* Compute V <= V G */
  163. for (i = 0; i < N; i++)
  164. {
  165. double Vip = gsl_matrix_get (V, i, 0);
  166. double Viq = gsl_matrix_get (V, i, 1);
  167. gsl_matrix_set (V, i, 0, c * Vip - s * Viq);
  168. gsl_matrix_set (V, i, 1, s * Vip + c * Viq);
  169. }
  170. /* Eliminate off-diagonal elements, bring column with largest
  171. norm to first column */
  172. if (hypot(a11, a21) < hypot(a12,a22))
  173. {
  174. double t1, t2;
  175. /* B <= B X */
  176. t1 = a11; a11 = a12; a12 = t1;
  177. t2 = a21; a21 = a22; a22 = t2;
  178. /* V <= V X */
  179. gsl_matrix_swap_columns(V, 0, 1);
  180. }
  181. create_givens (a11, a21, &c, &s);
  182. /* compute B <= G^T B */
  183. gsl_vector_set (d, 0, c * a11 - s * a21);
  184. gsl_vector_set (f, 0, c * a12 - s * a22);
  185. gsl_vector_set (d, 1, s * a12 + c * a22);
  186. /* Compute U <= U G */
  187. for (i = 0; i < M; i++)
  188. {
  189. double Uip = gsl_matrix_get (U, i, 0);
  190. double Uiq = gsl_matrix_get (U, i, 1);
  191. gsl_matrix_set (U, i, 0, c * Uip - s * Uiq);
  192. gsl_matrix_set (U, i, 1, s * Uip + c * Uiq);
  193. }
  194. return;
  195. }
  196. }
  197. static void
  198. chase_out_intermediate_zero (gsl_vector * d, gsl_vector * f, gsl_matrix * U, size_t k0)
  199. {
  200. #if !USE_BLAS
  201. const size_t M = U->size1;
  202. #endif
  203. const size_t n = d->size;
  204. double c, s;
  205. double x, y;
  206. size_t k;
  207. x = gsl_vector_get (f, k0);
  208. y = gsl_vector_get (d, k0+1);
  209. for (k = k0; k < n - 1; k++)
  210. {
  211. create_givens (y, -x, &c, &s);
  212. /* Compute U <= U G */
  213. #ifdef USE_BLAS
  214. {
  215. gsl_vector_view Uk0 = gsl_matrix_column(U,k0);
  216. gsl_vector_view Ukp1 = gsl_matrix_column(U,k+1);
  217. gsl_blas_drot(&Uk0.vector, &Ukp1.vector, c, -s);
  218. }
  219. #else
  220. {
  221. size_t i;
  222. for (i = 0; i < M; i++)
  223. {
  224. double Uip = gsl_matrix_get (U, i, k0);
  225. double Uiq = gsl_matrix_get (U, i, k + 1);
  226. gsl_matrix_set (U, i, k0, c * Uip - s * Uiq);
  227. gsl_matrix_set (U, i, k + 1, s * Uip + c * Uiq);
  228. }
  229. }
  230. #endif
  231. /* compute B <= G^T B */
  232. gsl_vector_set (d, k + 1, s * x + c * y);
  233. if (k == k0)
  234. gsl_vector_set (f, k, c * x - s * y );
  235. if (k < n - 2)
  236. {
  237. double z = gsl_vector_get (f, k + 1);
  238. gsl_vector_set (f, k + 1, c * z);
  239. x = -s * z ;
  240. y = gsl_vector_get (d, k + 2);
  241. }
  242. }
  243. }
  244. static void
  245. chase_out_trailing_zero (gsl_vector * d, gsl_vector * f, gsl_matrix * V)
  246. {
  247. #if !USE_BLAS
  248. const size_t N = V->size1;
  249. #endif
  250. const size_t n = d->size;
  251. double c, s;
  252. double x, y;
  253. size_t k;
  254. x = gsl_vector_get (d, n - 2);
  255. y = gsl_vector_get (f, n - 2);
  256. for (k = n - 1; k > 0 && k--;)
  257. {
  258. create_givens (x, y, &c, &s);
  259. /* Compute V <= V G where G = [c, s ; -s, c] */
  260. #ifdef USE_BLAS
  261. {
  262. gsl_vector_view Vp = gsl_matrix_column(V,k);
  263. gsl_vector_view Vq = gsl_matrix_column(V,n-1);
  264. gsl_blas_drot(&Vp.vector, &Vq.vector, c, -s);
  265. }
  266. #else
  267. {
  268. size_t i;
  269. for (i = 0; i < N; i++)
  270. {
  271. double Vip = gsl_matrix_get (V, i, k);
  272. double Viq = gsl_matrix_get (V, i, n - 1);
  273. gsl_matrix_set (V, i, k, c * Vip - s * Viq);
  274. gsl_matrix_set (V, i, n - 1, s * Vip + c * Viq);
  275. }
  276. }
  277. #endif
  278. /* compute B <= B G */
  279. gsl_vector_set (d, k, c * x - s * y);
  280. if (k == n - 2)
  281. gsl_vector_set (f, k, s * x + c * y );
  282. if (k > 0)
  283. {
  284. double z = gsl_vector_get (f, k - 1);
  285. gsl_vector_set (f, k - 1, c * z);
  286. x = gsl_vector_get (d, k - 1);
  287. y = s * z ;
  288. }
  289. }
  290. }
  291. static void
  292. qrstep (gsl_vector * d, gsl_vector * f, gsl_matrix * U, gsl_matrix * V)
  293. {
  294. #if !USE_BLAS
  295. const size_t M = U->size1;
  296. const size_t N = V->size1;
  297. #endif
  298. const size_t n = d->size;
  299. double y, z;
  300. double ak, bk, zk, ap, bp, aq, bq;
  301. size_t i, k;
  302. if (n == 1)
  303. return; /* shouldn't happen */
  304. /* Compute 2x2 svd directly */
  305. if (n == 2)
  306. {
  307. svd2 (d, f, U, V);
  308. return;
  309. }
  310. /* Chase out any zeroes on the diagonal */
  311. for (i = 0; i < n - 1; i++)
  312. {
  313. double d_i = gsl_vector_get (d, i);
  314. if (d_i == 0.0)
  315. {
  316. chase_out_intermediate_zero (d, f, U, i);
  317. return;
  318. }
  319. }
  320. /* Chase out any zero at the end of the diagonal */
  321. {
  322. double d_nm1 = gsl_vector_get (d, n - 1);
  323. if (d_nm1 == 0.0)
  324. {
  325. chase_out_trailing_zero (d, f, V);
  326. return;
  327. }
  328. }
  329. /* Apply QR reduction steps to the diagonal and offdiagonal */
  330. {
  331. double d0 = gsl_vector_get (d, 0);
  332. double f0 = gsl_vector_get (f, 0);
  333. double d1 = gsl_vector_get (d, 1);
  334. double f1 = gsl_vector_get (f, 1);
  335. {
  336. double mu = trailing_eigenvalue (d, f);
  337. y = d0 * d0 - mu;
  338. z = d0 * f0;
  339. }
  340. /* Set up the recurrence for Givens rotations on a bidiagonal matrix */
  341. ak = 0;
  342. bk = 0;
  343. ap = d0;
  344. bp = f0;
  345. aq = d1;
  346. bq = f1;
  347. }
  348. for (k = 0; k < n - 1; k++)
  349. {
  350. double c, s;
  351. create_givens (y, z, &c, &s);
  352. /* Compute V <= V G */
  353. #ifdef USE_BLAS
  354. {
  355. gsl_vector_view Vk = gsl_matrix_column(V,k);
  356. gsl_vector_view Vkp1 = gsl_matrix_column(V,k+1);
  357. gsl_blas_drot(&Vk.vector, &Vkp1.vector, c, -s);
  358. }
  359. #else
  360. for (i = 0; i < N; i++)
  361. {
  362. double Vip = gsl_matrix_get (V, i, k);
  363. double Viq = gsl_matrix_get (V, i, k + 1);
  364. gsl_matrix_set (V, i, k, c * Vip - s * Viq);
  365. gsl_matrix_set (V, i, k + 1, s * Vip + c * Viq);
  366. }
  367. #endif
  368. /* compute B <= B G */
  369. {
  370. double bk1 = c * bk - s * z;
  371. double ap1 = c * ap - s * bp;
  372. double bp1 = s * ap + c * bp;
  373. double zp1 = -s * aq;
  374. double aq1 = c * aq;
  375. if (k > 0)
  376. {
  377. gsl_vector_set (f, k - 1, bk1);
  378. }
  379. ak = ap1;
  380. bk = bp1;
  381. zk = zp1;
  382. ap = aq1;
  383. if (k < n - 2)
  384. {
  385. bp = gsl_vector_get (f, k + 1);
  386. }
  387. else
  388. {
  389. bp = 0.0;
  390. }
  391. y = ak;
  392. z = zk;
  393. }
  394. create_givens (y, z, &c, &s);
  395. /* Compute U <= U G */
  396. #ifdef USE_BLAS
  397. {
  398. gsl_vector_view Uk = gsl_matrix_column(U,k);
  399. gsl_vector_view Ukp1 = gsl_matrix_column(U,k+1);
  400. gsl_blas_drot(&Uk.vector, &Ukp1.vector, c, -s);
  401. }
  402. #else
  403. for (i = 0; i < M; i++)
  404. {
  405. double Uip = gsl_matrix_get (U, i, k);
  406. double Uiq = gsl_matrix_get (U, i, k + 1);
  407. gsl_matrix_set (U, i, k, c * Uip - s * Uiq);
  408. gsl_matrix_set (U, i, k + 1, s * Uip + c * Uiq);
  409. }
  410. #endif
  411. /* compute B <= G^T B */
  412. {
  413. double ak1 = c * ak - s * zk;
  414. double bk1 = c * bk - s * ap;
  415. double zk1 = -s * bp;
  416. double ap1 = s * bk + c * ap;
  417. double bp1 = c * bp;
  418. gsl_vector_set (d, k, ak1);
  419. ak = ak1;
  420. bk = bk1;
  421. zk = zk1;
  422. ap = ap1;
  423. bp = bp1;
  424. if (k < n - 2)
  425. {
  426. aq = gsl_vector_get (d, k + 2);
  427. }
  428. else
  429. {
  430. aq = 0.0;
  431. }
  432. y = bk;
  433. z = zk;
  434. }
  435. }
  436. gsl_vector_set (f, n - 2, bk);
  437. gsl_vector_set (d, n - 1, ap);
  438. }