gsl_fft__c_pass_3.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. /* fft/c_pass_3.c
  2. *
  3. * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. static int
  20. FUNCTION(fft_complex,pass_3) (const BASE in[],
  21. const size_t istride,
  22. BASE out[],
  23. const size_t ostride,
  24. const gsl_fft_direction sign,
  25. const size_t product,
  26. const size_t n,
  27. const TYPE(gsl_complex) * twiddle1,
  28. const TYPE(gsl_complex) * twiddle2)
  29. {
  30. size_t i = 0, j = 0;
  31. size_t k, k1;
  32. const size_t factor = 3;
  33. const size_t m = n / factor;
  34. const size_t q = n / product;
  35. const size_t product_1 = product / factor;
  36. const size_t jump = (factor - 1) * product_1;
  37. const ATOMIC tau = sqrt (3.0) / 2.0;
  38. for (k = 0; k < q; k++)
  39. {
  40. ATOMIC w1_real, w1_imag, w2_real, w2_imag;
  41. if (k == 0)
  42. {
  43. w1_real = 1.0;
  44. w1_imag = 0.0;
  45. w2_real = 1.0;
  46. w2_imag = 0.0;
  47. }
  48. else
  49. {
  50. if (sign == gsl_fft_forward)
  51. {
  52. /* forward tranform */
  53. w1_real = GSL_REAL(twiddle1[k - 1]);
  54. w1_imag = GSL_IMAG(twiddle1[k - 1]);
  55. w2_real = GSL_REAL(twiddle2[k - 1]);
  56. w2_imag = GSL_IMAG(twiddle2[k - 1]);
  57. }
  58. else
  59. {
  60. /* backward tranform: w -> conjugate(w) */
  61. w1_real = GSL_REAL(twiddle1[k - 1]);
  62. w1_imag = -GSL_IMAG(twiddle1[k - 1]);
  63. w2_real = GSL_REAL(twiddle2[k - 1]);
  64. w2_imag = -GSL_IMAG(twiddle2[k - 1]);
  65. }
  66. }
  67. for (k1 = 0; k1 < product_1; k1++)
  68. {
  69. const ATOMIC z0_real = REAL(in,istride,i);
  70. const ATOMIC z0_imag = IMAG(in,istride,i);
  71. const ATOMIC z1_real = REAL(in,istride,i+m);
  72. const ATOMIC z1_imag = IMAG(in,istride,i+m);
  73. const ATOMIC z2_real = REAL(in,istride,i+2*m);
  74. const ATOMIC z2_imag = IMAG(in,istride,i+2*m);
  75. /* compute x = W(3) z */
  76. /* t1 = z1 + z2 */
  77. const ATOMIC t1_real = z1_real + z2_real;
  78. const ATOMIC t1_imag = z1_imag + z2_imag;
  79. /* t2 = z0 - t1/2 */
  80. const ATOMIC t2_real = z0_real - t1_real / 2.0;
  81. const ATOMIC t2_imag = z0_imag - t1_imag / 2.0;
  82. /* t3 = (+/-) sin(pi/3)*(z1 - z2) */
  83. const ATOMIC t3_real = ((int) sign) * tau * (z1_real - z2_real);
  84. const ATOMIC t3_imag = ((int) sign) * tau * (z1_imag - z2_imag);
  85. /* x0 = z0 + t1 */
  86. const ATOMIC x0_real = z0_real + t1_real;
  87. const ATOMIC x0_imag = z0_imag + t1_imag;
  88. /* x1 = t2 + i t3 */
  89. const ATOMIC x1_real = t2_real - t3_imag;
  90. const ATOMIC x1_imag = t2_imag + t3_real;
  91. /* x2 = t2 - i t3 */
  92. const ATOMIC x2_real = t2_real + t3_imag;
  93. const ATOMIC x2_imag = t2_imag - t3_real;
  94. /* apply twiddle factors */
  95. /* to0 = 1 * x0 */
  96. REAL(out,ostride,j) = x0_real;
  97. IMAG(out,ostride,j) = x0_imag;
  98. /* to1 = w1 * x1 */
  99. REAL(out,ostride,j+product_1) = w1_real * x1_real - w1_imag * x1_imag;
  100. IMAG(out,ostride,j+product_1) = w1_real * x1_imag + w1_imag * x1_real;
  101. /* to2 = w2 * x2 */
  102. REAL(out,ostride,j+2*product_1) = w2_real * x2_real - w2_imag * x2_imag;
  103. IMAG(out,ostride,j+2*product_1) = w2_real * x2_imag + w2_imag * x2_real;
  104. i++; j++;
  105. }
  106. j += jump;
  107. }
  108. return 0;
  109. }