123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840 |
- /* glpssx01.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpssx.h"
- #define xfault xerror
- /*----------------------------------------------------------------------
- // ssx_create - create simplex solver workspace.
- //
- // This routine creates the workspace used by simplex solver routines,
- // and returns a pointer to it.
- //
- // Parameters m, n, and nnz specify, respectively, the number of rows,
- // columns, and non-zero constraint coefficients.
- //
- // This routine only allocates the memory for the workspace components,
- // so the workspace needs to be saturated by data. */
- SSX *ssx_create(int m, int n, int nnz)
- { SSX *ssx;
- int i, j, k;
- if (m < 1)
- xfault("ssx_create: m = %d; invalid number of rows\n", m);
- if (n < 1)
- xfault("ssx_create: n = %d; invalid number of columns\n", n);
- if (nnz < 0)
- xfault("ssx_create: nnz = %d; invalid number of non-zero const"
- "raint coefficients\n", nnz);
- ssx = xmalloc(sizeof(SSX));
- ssx->m = m;
- ssx->n = n;
- ssx->type = xcalloc(1+m+n, sizeof(int));
- ssx->lb = xcalloc(1+m+n, sizeof(mpq_t));
- for (k = 1; k <= m+n; k++) mpq_init(ssx->lb[k]);
- ssx->ub = xcalloc(1+m+n, sizeof(mpq_t));
- for (k = 1; k <= m+n; k++) mpq_init(ssx->ub[k]);
- ssx->coef = xcalloc(1+m+n, sizeof(mpq_t));
- for (k = 0; k <= m+n; k++) mpq_init(ssx->coef[k]);
- ssx->A_ptr = xcalloc(1+n+1, sizeof(int));
- ssx->A_ptr[n+1] = nnz+1;
- ssx->A_ind = xcalloc(1+nnz, sizeof(int));
- ssx->A_val = xcalloc(1+nnz, sizeof(mpq_t));
- for (k = 1; k <= nnz; k++) mpq_init(ssx->A_val[k]);
- ssx->stat = xcalloc(1+m+n, sizeof(int));
- ssx->Q_row = xcalloc(1+m+n, sizeof(int));
- ssx->Q_col = xcalloc(1+m+n, sizeof(int));
- ssx->binv = bfx_create_binv();
- ssx->bbar = xcalloc(1+m, sizeof(mpq_t));
- for (i = 0; i <= m; i++) mpq_init(ssx->bbar[i]);
- ssx->pi = xcalloc(1+m, sizeof(mpq_t));
- for (i = 1; i <= m; i++) mpq_init(ssx->pi[i]);
- ssx->cbar = xcalloc(1+n, sizeof(mpq_t));
- for (j = 1; j <= n; j++) mpq_init(ssx->cbar[j]);
- ssx->rho = xcalloc(1+m, sizeof(mpq_t));
- for (i = 1; i <= m; i++) mpq_init(ssx->rho[i]);
- ssx->ap = xcalloc(1+n, sizeof(mpq_t));
- for (j = 1; j <= n; j++) mpq_init(ssx->ap[j]);
- ssx->aq = xcalloc(1+m, sizeof(mpq_t));
- for (i = 1; i <= m; i++) mpq_init(ssx->aq[i]);
- mpq_init(ssx->delta);
- return ssx;
- }
- /*----------------------------------------------------------------------
- // ssx_factorize - factorize the current basis matrix.
- //
- // This routine computes factorization of the current basis matrix B
- // and returns the singularity flag. If the matrix B is non-singular,
- // the flag is zero, otherwise non-zero. */
- static int basis_col(void *info, int j, int ind[], mpq_t val[])
- { /* this auxiliary routine provides row indices and numeric values
- of non-zero elements in j-th column of the matrix B */
- SSX *ssx = info;
- int m = ssx->m;
- int n = ssx->n;
- int *A_ptr = ssx->A_ptr;
- int *A_ind = ssx->A_ind;
- mpq_t *A_val = ssx->A_val;
- int *Q_col = ssx->Q_col;
- int k, len, ptr;
- xassert(1 <= j && j <= m);
- k = Q_col[j]; /* x[k] = xB[j] */
- xassert(1 <= k && k <= m+n);
- /* j-th column of the matrix B is k-th column of the augmented
- constraint matrix (I | -A) */
- if (k <= m)
- { /* it is a column of the unity matrix I */
- len = 1, ind[1] = k, mpq_set_si(val[1], 1, 1);
- }
- else
- { /* it is a column of the original constraint matrix -A */
- len = 0;
- for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
- { len++;
- ind[len] = A_ind[ptr];
- mpq_neg(val[len], A_val[ptr]);
- }
- }
- return len;
- }
- int ssx_factorize(SSX *ssx)
- { int ret;
- ret = bfx_factorize(ssx->binv, ssx->m, basis_col, ssx);
- return ret;
- }
- /*----------------------------------------------------------------------
- // ssx_get_xNj - determine value of non-basic variable.
- //
- // This routine determines the value of non-basic variable xN[j] in the
- // current basic solution defined as follows:
- //
- // 0, if xN[j] is free variable
- // lN[j], if xN[j] is on its lower bound
- // uN[j], if xN[j] is on its upper bound
- // lN[j] = uN[j], if xN[j] is fixed variable
- //
- // where lN[j] and uN[j] are lower and upper bounds of xN[j]. */
- void ssx_get_xNj(SSX *ssx, int j, mpq_t x)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *lb = ssx->lb;
- mpq_t *ub = ssx->ub;
- int *stat = ssx->stat;
- int *Q_col = ssx->Q_col;
- int k;
- xassert(1 <= j && j <= n);
- k = Q_col[m+j]; /* x[k] = xN[j] */
- xassert(1 <= k && k <= m+n);
- switch (stat[k])
- { case SSX_NL:
- /* xN[j] is on its lower bound */
- mpq_set(x, lb[k]); break;
- case SSX_NU:
- /* xN[j] is on its upper bound */
- mpq_set(x, ub[k]); break;
- case SSX_NF:
- /* xN[j] is free variable */
- mpq_set_si(x, 0, 1); break;
- case SSX_NS:
- /* xN[j] is fixed variable */
- mpq_set(x, lb[k]); break;
- default:
- xassert(stat != stat);
- }
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_bbar - compute values of basic variables.
- //
- // This routine computes values of basic variables xB in the current
- // basic solution as follows:
- //
- // beta = - inv(B) * N * xN,
- //
- // where B is the basis matrix, N is the matrix of non-basic columns,
- // xN is a vector of current values of non-basic variables. */
- void ssx_eval_bbar(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *coef = ssx->coef;
- int *A_ptr = ssx->A_ptr;
- int *A_ind = ssx->A_ind;
- mpq_t *A_val = ssx->A_val;
- int *Q_col = ssx->Q_col;
- mpq_t *bbar = ssx->bbar;
- int i, j, k, ptr;
- mpq_t x, temp;
- mpq_init(x);
- mpq_init(temp);
- /* bbar := 0 */
- for (i = 1; i <= m; i++)
- mpq_set_si(bbar[i], 0, 1);
- /* bbar := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n] */
- for (j = 1; j <= n; j++)
- { ssx_get_xNj(ssx, j, x);
- if (mpq_sgn(x) == 0) continue;
- k = Q_col[m+j]; /* x[k] = xN[j] */
- if (k <= m)
- { /* N[j] is a column of the unity matrix I */
- mpq_sub(bbar[k], bbar[k], x);
- }
- else
- { /* N[j] is a column of the original constraint matrix -A */
- for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
- { mpq_mul(temp, A_val[ptr], x);
- mpq_add(bbar[A_ind[ptr]], bbar[A_ind[ptr]], temp);
- }
- }
- }
- /* bbar := inv(B) * bbar */
- bfx_ftran(ssx->binv, bbar, 0);
- #if 1
- /* compute value of the objective function */
- /* bbar[0] := c[0] */
- mpq_set(bbar[0], coef[0]);
- /* bbar[0] := bbar[0] + sum{i in B} cB[i] * xB[i] */
- for (i = 1; i <= m; i++)
- { k = Q_col[i]; /* x[k] = xB[i] */
- if (mpq_sgn(coef[k]) == 0) continue;
- mpq_mul(temp, coef[k], bbar[i]);
- mpq_add(bbar[0], bbar[0], temp);
- }
- /* bbar[0] := bbar[0] + sum{j in N} cN[j] * xN[j] */
- for (j = 1; j <= n; j++)
- { k = Q_col[m+j]; /* x[k] = xN[j] */
- if (mpq_sgn(coef[k]) == 0) continue;
- ssx_get_xNj(ssx, j, x);
- mpq_mul(temp, coef[k], x);
- mpq_add(bbar[0], bbar[0], temp);
- }
- #endif
- mpq_clear(x);
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_pi - compute values of simplex multipliers.
- //
- // This routine computes values of simplex multipliers (shadow prices)
- // pi in the current basic solution as follows:
- //
- // pi = inv(B') * cB,
- //
- // where B' is a matrix transposed to the basis matrix B, cB is a vector
- // of objective coefficients at basic variables xB. */
- void ssx_eval_pi(SSX *ssx)
- { int m = ssx->m;
- mpq_t *coef = ssx->coef;
- int *Q_col = ssx->Q_col;
- mpq_t *pi = ssx->pi;
- int i;
- /* pi := cB */
- for (i = 1; i <= m; i++) mpq_set(pi[i], coef[Q_col[i]]);
- /* pi := inv(B') * cB */
- bfx_btran(ssx->binv, pi);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_dj - compute reduced cost of non-basic variable.
- //
- // This routine computes reduced cost d[j] of non-basic variable xN[j]
- // in the current basic solution as follows:
- //
- // d[j] = cN[j] - N[j] * pi,
- //
- // where cN[j] is an objective coefficient at xN[j], N[j] is a column
- // of the augmented constraint matrix (I | -A) corresponding to xN[j],
- // pi is the vector of simplex multipliers (shadow prices). */
- void ssx_eval_dj(SSX *ssx, int j, mpq_t dj)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *coef = ssx->coef;
- int *A_ptr = ssx->A_ptr;
- int *A_ind = ssx->A_ind;
- mpq_t *A_val = ssx->A_val;
- int *Q_col = ssx->Q_col;
- mpq_t *pi = ssx->pi;
- int k, ptr, end;
- mpq_t temp;
- mpq_init(temp);
- xassert(1 <= j && j <= n);
- k = Q_col[m+j]; /* x[k] = xN[j] */
- xassert(1 <= k && k <= m+n);
- /* j-th column of the matrix N is k-th column of the augmented
- constraint matrix (I | -A) */
- if (k <= m)
- { /* it is a column of the unity matrix I */
- mpq_sub(dj, coef[k], pi[k]);
- }
- else
- { /* it is a column of the original constraint matrix -A */
- mpq_set(dj, coef[k]);
- for (ptr = A_ptr[k-m], end = A_ptr[k-m+1]; ptr < end; ptr++)
- { mpq_mul(temp, A_val[ptr], pi[A_ind[ptr]]);
- mpq_add(dj, dj, temp);
- }
- }
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_cbar - compute reduced costs of all non-basic variables.
- //
- // This routine computes the vector of reduced costs pi in the current
- // basic solution for all non-basic variables, including fixed ones. */
- void ssx_eval_cbar(SSX *ssx)
- { int n = ssx->n;
- mpq_t *cbar = ssx->cbar;
- int j;
- for (j = 1; j <= n; j++)
- ssx_eval_dj(ssx, j, cbar[j]);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_rho - compute p-th row of the inverse.
- //
- // This routine computes p-th row of the matrix inv(B), where B is the
- // current basis matrix.
- //
- // p-th row of the inverse is computed using the following formula:
- //
- // rho = inv(B') * e[p],
- //
- // where B' is a matrix transposed to B, e[p] is a unity vector, which
- // contains one in p-th position. */
- void ssx_eval_rho(SSX *ssx)
- { int m = ssx->m;
- int p = ssx->p;
- mpq_t *rho = ssx->rho;
- int i;
- xassert(1 <= p && p <= m);
- /* rho := 0 */
- for (i = 1; i <= m; i++) mpq_set_si(rho[i], 0, 1);
- /* rho := e[p] */
- mpq_set_si(rho[p], 1, 1);
- /* rho := inv(B') * rho */
- bfx_btran(ssx->binv, rho);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_row - compute pivot row of the simplex table.
- //
- // This routine computes p-th (pivot) row of the current simplex table
- // A~ = - inv(B) * N using the following formula:
- //
- // A~[p] = - N' * inv(B') * e[p] = - N' * rho[p],
- //
- // where N' is a matrix transposed to the matrix N, rho[p] is p-th row
- // of the inverse inv(B). */
- void ssx_eval_row(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int *A_ptr = ssx->A_ptr;
- int *A_ind = ssx->A_ind;
- mpq_t *A_val = ssx->A_val;
- int *Q_col = ssx->Q_col;
- mpq_t *rho = ssx->rho;
- mpq_t *ap = ssx->ap;
- int j, k, ptr;
- mpq_t temp;
- mpq_init(temp);
- for (j = 1; j <= n; j++)
- { /* ap[j] := - N'[j] * rho (inner product) */
- k = Q_col[m+j]; /* x[k] = xN[j] */
- if (k <= m)
- mpq_neg(ap[j], rho[k]);
- else
- { mpq_set_si(ap[j], 0, 1);
- for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
- { mpq_mul(temp, A_val[ptr], rho[A_ind[ptr]]);
- mpq_add(ap[j], ap[j], temp);
- }
- }
- }
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_eval_col - compute pivot column of the simplex table.
- //
- // This routine computes q-th (pivot) column of the current simplex
- // table A~ = - inv(B) * N using the following formula:
- //
- // A~[q] = - inv(B) * N[q],
- //
- // where N[q] is q-th column of the matrix N corresponding to chosen
- // non-basic variable xN[q]. */
- void ssx_eval_col(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int *A_ptr = ssx->A_ptr;
- int *A_ind = ssx->A_ind;
- mpq_t *A_val = ssx->A_val;
- int *Q_col = ssx->Q_col;
- int q = ssx->q;
- mpq_t *aq = ssx->aq;
- int i, k, ptr;
- xassert(1 <= q && q <= n);
- /* aq := 0 */
- for (i = 1; i <= m; i++) mpq_set_si(aq[i], 0, 1);
- /* aq := N[q] */
- k = Q_col[m+q]; /* x[k] = xN[q] */
- if (k <= m)
- { /* N[q] is a column of the unity matrix I */
- mpq_set_si(aq[k], 1, 1);
- }
- else
- { /* N[q] is a column of the original constraint matrix -A */
- for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
- mpq_neg(aq[A_ind[ptr]], A_val[ptr]);
- }
- /* aq := inv(B) * aq */
- bfx_ftran(ssx->binv, aq, 1);
- /* aq := - aq */
- for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_chuzc - choose pivot column.
- //
- // This routine chooses non-basic variable xN[q] whose reduced cost
- // indicates possible improving of the objective function to enter it
- // in the basis.
- //
- // Currently the standard (textbook) pricing is used, i.e. that
- // non-basic variable is preferred which has greatest reduced cost (in
- // magnitude).
- //
- // If xN[q] has been chosen, the routine stores its number q and also
- // sets the flag q_dir that indicates direction in which xN[q] has to
- // change (+1 means increasing, -1 means decreasing).
- //
- // If the choice cannot be made, because the current basic solution is
- // dual feasible, the routine sets the number q to 0. */
- void ssx_chuzc(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int dir = (ssx->dir == SSX_MIN ? +1 : -1);
- int *Q_col = ssx->Q_col;
- int *stat = ssx->stat;
- mpq_t *cbar = ssx->cbar;
- int j, k, s, q, q_dir;
- double best, temp;
- /* nothing is chosen so far */
- q = 0, q_dir = 0, best = 0.0;
- /* look through the list of non-basic variables */
- for (j = 1; j <= n; j++)
- { k = Q_col[m+j]; /* x[k] = xN[j] */
- s = dir * mpq_sgn(cbar[j]);
- if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 ||
- (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0)
- { /* reduced cost of xN[j] indicates possible improving of
- the objective function */
- temp = fabs(mpq_get_d(cbar[j]));
- xassert(temp != 0.0);
- if (q == 0 || best < temp)
- q = j, q_dir = - s, best = temp;
- }
- }
- ssx->q = q, ssx->q_dir = q_dir;
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_chuzr - choose pivot row.
- //
- // This routine looks through elements of q-th column of the simplex
- // table and chooses basic variable xB[p] which should leave the basis.
- //
- // The choice is based on the standard (textbook) ratio test.
- //
- // If xB[p] has been chosen, the routine stores its number p and also
- // sets its non-basic status p_stat which should be assigned to xB[p]
- // when it has left the basis and become xN[q].
- //
- // Special case p < 0 means that xN[q] is double-bounded variable and
- // it reaches its opposite bound before any basic variable does that,
- // so the current basis remains unchanged.
- //
- // If the choice cannot be made, because xN[q] can infinitely change in
- // the feasible direction, the routine sets the number p to 0. */
- void ssx_chuzr(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int *type = ssx->type;
- mpq_t *lb = ssx->lb;
- mpq_t *ub = ssx->ub;
- int *Q_col = ssx->Q_col;
- mpq_t *bbar = ssx->bbar;
- int q = ssx->q;
- mpq_t *aq = ssx->aq;
- int q_dir = ssx->q_dir;
- int i, k, s, t, p, p_stat;
- mpq_t teta, temp;
- mpq_init(teta);
- mpq_init(temp);
- xassert(1 <= q && q <= n);
- xassert(q_dir == +1 || q_dir == -1);
- /* nothing is chosen so far */
- p = 0, p_stat = 0;
- /* look through the list of basic variables */
- for (i = 1; i <= m; i++)
- { s = q_dir * mpq_sgn(aq[i]);
- if (s < 0)
- { /* xB[i] decreases */
- k = Q_col[i]; /* x[k] = xB[i] */
- t = type[k];
- if (t == SSX_LO || t == SSX_DB || t == SSX_FX)
- { /* xB[i] has finite lower bound */
- mpq_sub(temp, bbar[i], lb[k]);
- mpq_div(temp, temp, aq[i]);
- mpq_abs(temp, temp);
- if (p == 0 || mpq_cmp(teta, temp) > 0)
- { p = i;
- p_stat = (t == SSX_FX ? SSX_NS : SSX_NL);
- mpq_set(teta, temp);
- }
- }
- }
- else if (s > 0)
- { /* xB[i] increases */
- k = Q_col[i]; /* x[k] = xB[i] */
- t = type[k];
- if (t == SSX_UP || t == SSX_DB || t == SSX_FX)
- { /* xB[i] has finite upper bound */
- mpq_sub(temp, bbar[i], ub[k]);
- mpq_div(temp, temp, aq[i]);
- mpq_abs(temp, temp);
- if (p == 0 || mpq_cmp(teta, temp) > 0)
- { p = i;
- p_stat = (t == SSX_FX ? SSX_NS : SSX_NU);
- mpq_set(teta, temp);
- }
- }
- }
- /* if something has been chosen and the ratio test indicates
- exact degeneracy, the search can be finished */
- if (p != 0 && mpq_sgn(teta) == 0) break;
- }
- /* if xN[q] is double-bounded, check if it can reach its opposite
- bound before any basic variable */
- k = Q_col[m+q]; /* x[k] = xN[q] */
- if (type[k] == SSX_DB)
- { mpq_sub(temp, ub[k], lb[k]);
- if (p == 0 || mpq_cmp(teta, temp) > 0)
- { p = -1;
- p_stat = -1;
- mpq_set(teta, temp);
- }
- }
- ssx->p = p;
- ssx->p_stat = p_stat;
- /* if xB[p] has been chosen, determine its actual change in the
- adjacent basis (it has the same sign as q_dir) */
- if (p != 0)
- { xassert(mpq_sgn(teta) >= 0);
- if (q_dir > 0)
- mpq_set(ssx->delta, teta);
- else
- mpq_neg(ssx->delta, teta);
- }
- mpq_clear(teta);
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_update_bbar - update values of basic variables.
- //
- // This routine recomputes the current values of basic variables for
- // the adjacent basis.
- //
- // The simplex table for the current basis is the following:
- //
- // xB[i] = sum{j in 1..n} alfa[i,j] * xN[q], i = 1,...,m
- //
- // therefore
- //
- // delta xB[i] = alfa[i,q] * delta xN[q], i = 1,...,m
- //
- // where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the
- // adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of
- // xB[i]. This gives formulae for recomputing values of xB[i]:
- //
- // xB.new[p] = xN[q] + delta xN[q]
- //
- // (because xN[q] becomes xB[p] in the adjacent basis), and
- //
- // xB.new[i] = xB[i] + alfa[i,q] * delta xN[q], i != p
- //
- // for other basic variables. */
- void ssx_update_bbar(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *bbar = ssx->bbar;
- mpq_t *cbar = ssx->cbar;
- int p = ssx->p;
- int q = ssx->q;
- mpq_t *aq = ssx->aq;
- int i;
- mpq_t temp;
- mpq_init(temp);
- xassert(1 <= q && q <= n);
- if (p < 0)
- { /* xN[q] is double-bounded and goes to its opposite bound */
- /* nop */;
- }
- else
- { /* xN[q] becomes xB[p] in the adjacent basis */
- /* xB.new[p] = xN[q] + delta xN[q] */
- xassert(1 <= p && p <= m);
- ssx_get_xNj(ssx, q, temp);
- mpq_add(bbar[p], temp, ssx->delta);
- }
- /* update values of other basic variables depending on xN[q] */
- for (i = 1; i <= m; i++)
- { if (i == p) continue;
- /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */
- if (mpq_sgn(aq[i]) == 0) continue;
- mpq_mul(temp, aq[i], ssx->delta);
- mpq_add(bbar[i], bbar[i], temp);
- }
- #if 1
- /* update value of the objective function */
- /* z.new = z + d[q] * delta xN[q] */
- mpq_mul(temp, cbar[q], ssx->delta);
- mpq_add(bbar[0], bbar[0], temp);
- #endif
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- -- ssx_update_pi - update simplex multipliers.
- --
- -- This routine recomputes the vector of simplex multipliers for the
- -- adjacent basis. */
- void ssx_update_pi(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *pi = ssx->pi;
- mpq_t *cbar = ssx->cbar;
- int p = ssx->p;
- int q = ssx->q;
- mpq_t *aq = ssx->aq;
- mpq_t *rho = ssx->rho;
- int i;
- mpq_t new_dq, temp;
- mpq_init(new_dq);
- mpq_init(temp);
- xassert(1 <= p && p <= m);
- xassert(1 <= q && q <= n);
- /* compute d[q] in the adjacent basis */
- mpq_div(new_dq, cbar[q], aq[p]);
- /* update the vector of simplex multipliers */
- for (i = 1; i <= m; i++)
- { if (mpq_sgn(rho[i]) == 0) continue;
- mpq_mul(temp, new_dq, rho[i]);
- mpq_sub(pi[i], pi[i], temp);
- }
- mpq_clear(new_dq);
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_update_cbar - update reduced costs of non-basic variables.
- //
- // This routine recomputes the vector of reduced costs of non-basic
- // variables for the adjacent basis. */
- void ssx_update_cbar(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- mpq_t *cbar = ssx->cbar;
- int p = ssx->p;
- int q = ssx->q;
- mpq_t *ap = ssx->ap;
- int j;
- mpq_t temp;
- mpq_init(temp);
- xassert(1 <= p && p <= m);
- xassert(1 <= q && q <= n);
- /* compute d[q] in the adjacent basis */
- /* d.new[q] = d[q] / alfa[p,q] */
- mpq_div(cbar[q], cbar[q], ap[q]);
- /* update reduced costs of other non-basic variables */
- for (j = 1; j <= n; j++)
- { if (j == q) continue;
- /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */
- if (mpq_sgn(ap[j]) == 0) continue;
- mpq_mul(temp, ap[j], cbar[q]);
- mpq_sub(cbar[j], cbar[j], temp);
- }
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_change_basis - change current basis to adjacent one.
- //
- // This routine changes the current basis to the adjacent one swapping
- // basic variable xB[p] and non-basic variable xN[q]. */
- void ssx_change_basis(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int *type = ssx->type;
- int *stat = ssx->stat;
- int *Q_row = ssx->Q_row;
- int *Q_col = ssx->Q_col;
- int p = ssx->p;
- int q = ssx->q;
- int p_stat = ssx->p_stat;
- int k, kp, kq;
- if (p < 0)
- { /* special case: xN[q] goes to its opposite bound */
- xassert(1 <= q && q <= n);
- k = Q_col[m+q]; /* x[k] = xN[q] */
- xassert(type[k] == SSX_DB);
- switch (stat[k])
- { case SSX_NL:
- stat[k] = SSX_NU;
- break;
- case SSX_NU:
- stat[k] = SSX_NL;
- break;
- default:
- xassert(stat != stat);
- }
- }
- else
- { /* xB[p] leaves the basis, xN[q] enters the basis */
- xassert(1 <= p && p <= m);
- xassert(1 <= q && q <= n);
- kp = Q_col[p]; /* x[kp] = xB[p] */
- kq = Q_col[m+q]; /* x[kq] = xN[q] */
- /* check non-basic status of xB[p] which becomes xN[q] */
- switch (type[kp])
- { case SSX_FR:
- xassert(p_stat == SSX_NF);
- break;
- case SSX_LO:
- xassert(p_stat == SSX_NL);
- break;
- case SSX_UP:
- xassert(p_stat == SSX_NU);
- break;
- case SSX_DB:
- xassert(p_stat == SSX_NL || p_stat == SSX_NU);
- break;
- case SSX_FX:
- xassert(p_stat == SSX_NS);
- break;
- default:
- xassert(type != type);
- }
- /* swap xB[p] and xN[q] */
- stat[kp] = (char)p_stat, stat[kq] = SSX_BS;
- Q_row[kp] = m+q, Q_row[kq] = p;
- Q_col[p] = kq, Q_col[m+q] = kp;
- /* update factorization of the basis matrix */
- if (bfx_update(ssx->binv, p))
- { if (ssx_factorize(ssx))
- xassert(("Internal error: basis matrix is singular", 0));
- }
- }
- return;
- }
- /*----------------------------------------------------------------------
- // ssx_delete - delete simplex solver workspace.
- //
- // This routine deletes the simplex solver workspace freeing all the
- // memory allocated to this object. */
- void ssx_delete(SSX *ssx)
- { int m = ssx->m;
- int n = ssx->n;
- int nnz = ssx->A_ptr[n+1]-1;
- int i, j, k;
- xfree(ssx->type);
- for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]);
- xfree(ssx->lb);
- for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]);
- xfree(ssx->ub);
- for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]);
- xfree(ssx->coef);
- xfree(ssx->A_ptr);
- xfree(ssx->A_ind);
- for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]);
- xfree(ssx->A_val);
- xfree(ssx->stat);
- xfree(ssx->Q_row);
- xfree(ssx->Q_col);
- bfx_delete_binv(ssx->binv);
- for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]);
- xfree(ssx->bbar);
- for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]);
- xfree(ssx->pi);
- for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]);
- xfree(ssx->cbar);
- for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]);
- xfree(ssx->rho);
- for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]);
- xfree(ssx->ap);
- for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]);
- xfree(ssx->aq);
- mpq_clear(ssx->delta);
- xfree(ssx);
- return;
- }
- /* eof */
|