123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419 |
- /* glpssx.h (simplex method, bignum arithmetic) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #ifndef GLPSSX_H
- #define GLPSSX_H
- #include "glpbfx.h"
- #include "glpenv.h"
- typedef struct SSX SSX;
- struct SSX
- { /* simplex solver workspace */
- /*----------------------------------------------------------------------
- // LP PROBLEM DATA
- //
- // It is assumed that LP problem has the following statement:
- //
- // minimize (or maximize)
- //
- // z = c[1]*x[1] + ... + c[m+n]*x[m+n] + c[0] (1)
- //
- // subject to equality constraints
- //
- // x[1] - a[1,1]*x[m+1] - ... - a[1,n]*x[m+n] = 0
- //
- // . . . . . . . (2)
- //
- // x[m] - a[m,1]*x[m+1] + ... - a[m,n]*x[m+n] = 0
- //
- // and bounds of variables
- //
- // l[1] <= x[1] <= u[1]
- //
- // . . . . . . . (3)
- //
- // l[m+n] <= x[m+n] <= u[m+n]
- //
- // where:
- // x[1], ..., x[m] - auxiliary variables;
- // x[m+1], ..., x[m+n] - structural variables;
- // z - objective function;
- // c[1], ..., c[m+n] - coefficients of the objective function;
- // c[0] - constant term of the objective function;
- // a[1,1], ..., a[m,n] - constraint coefficients;
- // l[1], ..., l[m+n] - lower bounds of variables;
- // u[1], ..., u[m+n] - upper bounds of variables.
- //
- // Bounds of variables can be finite as well as inifinite. Besides,
- // lower and upper bounds can be equal to each other. So the following
- // five types of variables are possible:
- //
- // Bounds of variable Type of variable
- // -------------------------------------------------
- // -inf < x[k] < +inf Free (unbounded) variable
- // l[k] <= x[k] < +inf Variable with lower bound
- // -inf < x[k] <= u[k] Variable with upper bound
- // l[k] <= x[k] <= u[k] Double-bounded variable
- // l[k] = x[k] = u[k] Fixed variable
- //
- // Using vector-matrix notations the LP problem (1)-(3) can be written
- // as follows:
- //
- // minimize (or maximize)
- //
- // z = c * x + c[0] (4)
- //
- // subject to equality constraints
- //
- // xR - A * xS = 0 (5)
- //
- // and bounds of variables
- //
- // l <= x <= u (6)
- //
- // where:
- // xR - vector of auxiliary variables;
- // xS - vector of structural variables;
- // x = (xR, xS) - vector of all variables;
- // z - objective function;
- // c - vector of objective coefficients;
- // c[0] - constant term of the objective function;
- // A - matrix of constraint coefficients (has m rows
- // and n columns);
- // l - vector of lower bounds of variables;
- // u - vector of upper bounds of variables.
- //
- // The simplex method makes no difference between auxiliary and
- // structural variables, so it is convenient to think the system of
- // equality constraints (5) written in a homogeneous form:
- //
- // (I | -A) * x = 0, (7)
- //
- // where (I | -A) is an augmented (m+n)xm constraint matrix, I is mxm
- // unity matrix whose columns correspond to auxiliary variables, and A
- // is the original mxn constraint matrix whose columns correspond to
- // structural variables. Note that only the matrix A is stored.
- ----------------------------------------------------------------------*/
- int m;
- /* number of rows (auxiliary variables), m > 0 */
- int n;
- /* number of columns (structural variables), n > 0 */
- int *type; /* int type[1+m+n]; */
- /* type[0] is not used;
- type[k], 1 <= k <= m+n, is the type of variable x[k]: */
- #define SSX_FR 0 /* free (unbounded) variable */
- #define SSX_LO 1 /* variable with lower bound */
- #define SSX_UP 2 /* variable with upper bound */
- #define SSX_DB 3 /* double-bounded variable */
- #define SSX_FX 4 /* fixed variable */
- mpq_t *lb; /* mpq_t lb[1+m+n]; alias: l */
- /* lb[0] is not used;
- lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
- if x[k] has no lower bound, lb[k] is zero */
- mpq_t *ub; /* mpq_t ub[1+m+n]; alias: u */
- /* ub[0] is not used;
- ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
- if x[k] has no upper bound, ub[k] is zero;
- if x[k] is of fixed type, ub[k] is equal to lb[k] */
- int dir;
- /* optimization direction (sense of the objective function): */
- #define SSX_MIN 0 /* minimization */
- #define SSX_MAX 1 /* maximization */
- mpq_t *coef; /* mpq_t coef[1+m+n]; alias: c */
- /* coef[0] is a constant term of the objective function;
- coef[k], 1 <= k <= m+n, is a coefficient of the objective
- function at variable x[k];
- note that auxiliary variables also may have non-zero objective
- coefficients */
- int *A_ptr; /* int A_ptr[1+n+1]; */
- int *A_ind; /* int A_ind[A_ptr[n+1]]; */
- mpq_t *A_val; /* mpq_t A_val[A_ptr[n+1]]; */
- /* constraint matrix A (see (5)) in storage-by-columns format */
- /*----------------------------------------------------------------------
- // LP BASIS AND CURRENT BASIC SOLUTION
- //
- // The LP basis is defined by the following partition of the augmented
- // constraint matrix (7):
- //
- // (B | N) = (I | -A) * Q, (8)
- //
- // where B is a mxm non-singular basis matrix whose columns correspond
- // to basic variables xB, N is a mxn matrix whose columns correspond to
- // non-basic variables xN, and Q is a permutation (m+n)x(m+n) matrix.
- //
- // From (7) and (8) it follows that
- //
- // (I | -A) * x = (I | -A) * Q * Q' * x = (B | N) * (xB, xN),
- //
- // therefore
- //
- // (xB, xN) = Q' * x, (9)
- //
- // where x is the vector of all variables in the original order, xB is
- // a vector of basic variables, xN is a vector of non-basic variables,
- // Q' = inv(Q) is a matrix transposed to Q.
- //
- // Current values of non-basic variables xN[j], j = 1, ..., n, are not
- // stored; they are defined implicitly by their statuses as follows:
- //
- // 0, if xN[j] is free variable
- // lN[j], if xN[j] is on its lower bound (10)
- // uN[j], if xN[j] is on its upper bound
- // lN[j] = uN[j], if xN[j] is fixed variable
- //
- // where lN[j] and uN[j] are lower and upper bounds of xN[j].
- //
- // Current values of basic variables xB[i], i = 1, ..., m, are computed
- // as follows:
- //
- // beta = - inv(B) * N * xN, (11)
- //
- // where current values of xN are defined by (10).
- //
- // Current values of simplex multipliers pi[i], i = 1, ..., m (which
- // are values of Lagrange multipliers for equality constraints (7) also
- // called shadow prices) are computed as follows:
- //
- // pi = inv(B') * cB, (12)
- //
- // where B' is a matrix transposed to B, cB is a vector of objective
- // coefficients at basic variables xB.
- //
- // Current values of reduced costs d[j], j = 1, ..., n, (which are
- // values of Langrange multipliers for active inequality constraints
- // corresponding to non-basic variables) are computed as follows:
- //
- // d = cN - N' * pi, (13)
- //
- // where N' is a matrix transposed to N, cN is a vector of objective
- // coefficients at non-basic variables xN.
- ----------------------------------------------------------------------*/
- int *stat; /* int stat[1+m+n]; */
- /* stat[0] is not used;
- stat[k], 1 <= k <= m+n, is the status of variable x[k]: */
- #define SSX_BS 0 /* basic variable */
- #define SSX_NL 1 /* non-basic variable on lower bound */
- #define SSX_NU 2 /* non-basic variable on upper bound */
- #define SSX_NF 3 /* non-basic free variable */
- #define SSX_NS 4 /* non-basic fixed variable */
- int *Q_row; /* int Q_row[1+m+n]; */
- /* matrix Q in row-like format;
- Q_row[0] is not used;
- Q_row[i] = j means that q[i,j] = 1 */
- int *Q_col; /* int Q_col[1+m+n]; */
- /* matrix Q in column-like format;
- Q_col[0] is not used;
- Q_col[j] = i means that q[i,j] = 1 */
- /* if k-th column of the matrix (I | A) is k'-th column of the
- matrix (B | N), then Q_row[k] = k' and Q_col[k'] = k;
- if x[k] is xB[i], then Q_row[k] = i and Q_col[i] = k;
- if x[k] is xN[j], then Q_row[k] = m+j and Q_col[m+j] = k */
- BFX *binv;
- /* invertable form of the basis matrix B */
- mpq_t *bbar; /* mpq_t bbar[1+m]; alias: beta */
- /* bbar[0] is a value of the objective function;
- bbar[i], 1 <= i <= m, is a value of basic variable xB[i] */
- mpq_t *pi; /* mpq_t pi[1+m]; */
- /* pi[0] is not used;
- pi[i], 1 <= i <= m, is a simplex multiplier corresponding to
- i-th row (equality constraint) */
- mpq_t *cbar; /* mpq_t cbar[1+n]; alias: d */
- /* cbar[0] is not used;
- cbar[j], 1 <= j <= n, is a reduced cost of non-basic variable
- xN[j] */
- /*----------------------------------------------------------------------
- // SIMPLEX TABLE
- //
- // Due to (8) and (9) the system of equality constraints (7) for the
- // current basis can be written as follows:
- //
- // xB = A~ * xN, (14)
- //
- // where
- //
- // A~ = - inv(B) * N (15)
- //
- // is a mxn matrix called the simplex table.
- //
- // The revised simplex method uses only two components of A~, namely,
- // pivot column corresponding to non-basic variable xN[q] chosen to
- // enter the basis, and pivot row corresponding to basic variable xB[p]
- // chosen to leave the basis.
- //
- // Pivot column alfa_q is q-th column of A~, so
- //
- // alfa_q = A~ * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], (16)
- //
- // where N[q] is q-th column of the matrix N.
- //
- // Pivot row alfa_p is p-th row of A~ or, equivalently, p-th column of
- // A~', a matrix transposed to A~, so
- //
- // alfa_p = A~' * e[p] = - N' * inv(B') * e[p] = - N' * rho_p, (17)
- //
- // where (*)' means transposition, and
- //
- // rho_p = inv(B') * e[p], (18)
- //
- // is p-th column of inv(B') or, that is the same, p-th row of inv(B).
- ----------------------------------------------------------------------*/
- int p;
- /* number of basic variable xB[p], 1 <= p <= m, chosen to leave
- the basis */
- mpq_t *rho; /* mpq_t rho[1+m]; */
- /* p-th row of the inverse inv(B); see (18) */
- mpq_t *ap; /* mpq_t ap[1+n]; */
- /* p-th row of the simplex table; see (17) */
- int q;
- /* number of non-basic variable xN[q], 1 <= q <= n, chosen to
- enter the basis */
- mpq_t *aq; /* mpq_t aq[1+m]; */
- /* q-th column of the simplex table; see (16) */
- /*--------------------------------------------------------------------*/
- int q_dir;
- /* direction in which non-basic variable xN[q] should change on
- moving to the adjacent vertex of the polyhedron:
- +1 means that xN[q] increases
- -1 means that xN[q] decreases */
- int p_stat;
- /* non-basic status which should be assigned to basic variable
- xB[p] when it has left the basis and become xN[q] */
- mpq_t delta;
- /* actual change of xN[q] in the adjacent basis (it has the same
- sign as q_dir) */
- /*--------------------------------------------------------------------*/
- int it_lim;
- /* simplex iterations limit; if this value is positive, it is
- decreased by one each time when one simplex iteration has been
- performed, and reaching zero value signals the solver to stop
- the search; negative value means no iterations limit */
- int it_cnt;
- /* simplex iterations count; this count is increased by one each
- time when one simplex iteration has been performed */
- double tm_lim;
- /* searching time limit, in seconds; if this value is positive,
- it is decreased each time when one simplex iteration has been
- performed by the amount of time spent for the iteration, and
- reaching zero value signals the solver to stop the search;
- negative value means no time limit */
- double out_frq;
- /* output frequency, in seconds; this parameter specifies how
- frequently the solver sends information about the progress of
- the search to the standard output */
- glp_long tm_beg;
- /* starting time of the search, in seconds; the total time of the
- search is the difference between xtime() and tm_beg */
- glp_long tm_lag;
- /* the most recent time, in seconds, at which the progress of the
- the search was displayed */
- };
- #define ssx_create _glp_ssx_create
- #define ssx_factorize _glp_ssx_factorize
- #define ssx_get_xNj _glp_ssx_get_xNj
- #define ssx_eval_bbar _glp_ssx_eval_bbar
- #define ssx_eval_pi _glp_ssx_eval_pi
- #define ssx_eval_dj _glp_ssx_eval_dj
- #define ssx_eval_cbar _glp_ssx_eval_cbar
- #define ssx_eval_rho _glp_ssx_eval_rho
- #define ssx_eval_row _glp_ssx_eval_row
- #define ssx_eval_col _glp_ssx_eval_col
- #define ssx_chuzc _glp_ssx_chuzc
- #define ssx_chuzr _glp_ssx_chuzr
- #define ssx_update_bbar _glp_ssx_update_bbar
- #define ssx_update_pi _glp_ssx_update_pi
- #define ssx_update_cbar _glp_ssx_update_cbar
- #define ssx_change_basis _glp_ssx_change_basis
- #define ssx_delete _glp_ssx_delete
- #define ssx_phase_I _glp_ssx_phase_I
- #define ssx_phase_II _glp_ssx_phase_II
- #define ssx_driver _glp_ssx_driver
- SSX *ssx_create(int m, int n, int nnz);
- /* create simplex solver workspace */
- int ssx_factorize(SSX *ssx);
- /* factorize the current basis matrix */
- void ssx_get_xNj(SSX *ssx, int j, mpq_t x);
- /* determine value of non-basic variable */
- void ssx_eval_bbar(SSX *ssx);
- /* compute values of basic variables */
- void ssx_eval_pi(SSX *ssx);
- /* compute values of simplex multipliers */
- void ssx_eval_dj(SSX *ssx, int j, mpq_t dj);
- /* compute reduced cost of non-basic variable */
- void ssx_eval_cbar(SSX *ssx);
- /* compute reduced costs of all non-basic variables */
- void ssx_eval_rho(SSX *ssx);
- /* compute p-th row of the inverse */
- void ssx_eval_row(SSX *ssx);
- /* compute pivot row of the simplex table */
- void ssx_eval_col(SSX *ssx);
- /* compute pivot column of the simplex table */
- void ssx_chuzc(SSX *ssx);
- /* choose pivot column */
- void ssx_chuzr(SSX *ssx);
- /* choose pivot row */
- void ssx_update_bbar(SSX *ssx);
- /* update values of basic variables */
- void ssx_update_pi(SSX *ssx);
- /* update simplex multipliers */
- void ssx_update_cbar(SSX *ssx);
- /* update reduced costs of non-basic variables */
- void ssx_change_basis(SSX *ssx);
- /* change current basis to adjacent one */
- void ssx_delete(SSX *ssx);
- /* delete simplex solver workspace */
- int ssx_phase_I(SSX *ssx);
- /* find primal feasible solution */
- int ssx_phase_II(SSX *ssx);
- /* find optimal solution */
- int ssx_driver(SSX *ssx);
- /* base driver to exact simplex method */
- #endif
- /* eof */
|