123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955 |
- /* glpspx01.c (primal simplex method) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpspx.h"
- struct csa
- { /* common storage area */
- /*--------------------------------------------------------------*/
- /* LP data */
- int m;
- /* number of rows (auxiliary variables), m > 0 */
- int n;
- /* number of columns (structural variables), n > 0 */
- char *type; /* char type[1+m+n]; */
- /* type[0] is not used;
- type[k], 1 <= k <= m+n, is the type of variable x[k]:
- GLP_FR - free variable
- GLP_LO - variable with lower bound
- GLP_UP - variable with upper bound
- GLP_DB - double-bounded variable
- GLP_FX - fixed variable */
- double *lb; /* double lb[1+m+n]; */
- /* lb[0] is not used;
- lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
- if x[k] has no lower bound, lb[k] is zero */
- double *ub; /* double ub[1+m+n]; */
- /* ub[0] is not used;
- ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
- if x[k] has no upper bound, ub[k] is zero;
- if x[k] is of fixed type, ub[k] is the same as lb[k] */
- double *coef; /* double coef[1+m+n]; */
- /* coef[0] is not used;
- coef[k], 1 <= k <= m+n, is an objective coefficient at
- variable x[k] (note that on phase I auxiliary variables also
- may have non-zero objective coefficients) */
- /*--------------------------------------------------------------*/
- /* original objective function */
- double *obj; /* double obj[1+n]; */
- /* obj[0] is a constant term of the original objective function;
- obj[j], 1 <= j <= n, is an original objective coefficient at
- structural variable x[m+j] */
- double zeta;
- /* factor used to scale original objective coefficients; its
- sign defines original optimization direction: zeta > 0 means
- minimization, zeta < 0 means maximization */
- /*--------------------------------------------------------------*/
- /* constraint matrix A; it has m rows and n columns and is stored
- by columns */
- int *A_ptr; /* int A_ptr[1+n+1]; */
- /* A_ptr[0] is not used;
- A_ptr[j], 1 <= j <= n, is starting position of j-th column in
- arrays A_ind and A_val; note that A_ptr[1] is always 1;
- A_ptr[n+1] indicates the position after the last element in
- arrays A_ind and A_val */
- int *A_ind; /* int A_ind[A_ptr[n+1]]; */
- /* row indices */
- double *A_val; /* double A_val[A_ptr[n+1]]; */
- /* non-zero element values */
- /*--------------------------------------------------------------*/
- /* basis header */
- int *head; /* int head[1+m+n]; */
- /* head[0] is not used;
- head[i], 1 <= i <= m, is the ordinal number of basic variable
- xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
- matrix B is k-th column of matrix (I|-A);
- head[m+j], 1 <= j <= n, is the ordinal number of non-basic
- variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
- column of matrix N is k-th column of matrix (I|-A) */
- char *stat; /* char stat[1+n]; */
- /* stat[0] is not used;
- stat[j], 1 <= j <= n, is the status of non-basic variable
- xN[j], which defines its active bound:
- GLP_NL - lower bound is active
- GLP_NU - upper bound is active
- GLP_NF - free variable
- GLP_NS - fixed variable */
- /*--------------------------------------------------------------*/
- /* matrix B is the basis matrix; it is composed from columns of
- the augmented constraint matrix (I|-A) corresponding to basic
- variables and stored in a factorized (invertable) form */
- int valid;
- /* factorization is valid only if this flag is set */
- BFD *bfd; /* BFD bfd[1:m,1:m]; */
- /* factorized (invertable) form of the basis matrix */
- /*--------------------------------------------------------------*/
- /* matrix N is a matrix composed from columns of the augmented
- constraint matrix (I|-A) corresponding to non-basic variables
- except fixed ones; it is stored by rows and changes every time
- the basis changes */
- int *N_ptr; /* int N_ptr[1+m+1]; */
- /* N_ptr[0] is not used;
- N_ptr[i], 1 <= i <= m, is starting position of i-th row in
- arrays N_ind and N_val; note that N_ptr[1] is always 1;
- N_ptr[m+1] indicates the position after the last element in
- arrays N_ind and N_val */
- int *N_len; /* int N_len[1+m]; */
- /* N_len[0] is not used;
- N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
- int *N_ind; /* int N_ind[N_ptr[m+1]]; */
- /* column indices */
- double *N_val; /* double N_val[N_ptr[m+1]]; */
- /* non-zero element values */
- /*--------------------------------------------------------------*/
- /* working parameters */
- int phase;
- /* search phase:
- 0 - not determined yet
- 1 - search for primal feasible solution
- 2 - search for optimal solution */
- glp_long tm_beg;
- /* time value at the beginning of the search */
- int it_beg;
- /* simplex iteration count at the beginning of the search */
- int it_cnt;
- /* simplex iteration count; it increases by one every time the
- basis changes (including the case when a non-basic variable
- jumps to its opposite bound) */
- int it_dpy;
- /* simplex iteration count at the most recent display output */
- /*--------------------------------------------------------------*/
- /* basic solution components */
- double *bbar; /* double bbar[1+m]; */
- /* bbar[0] is not used;
- bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
- (if xB[i] is free, its primal value is not updated) */
- double *cbar; /* double cbar[1+n]; */
- /* cbar[0] is not used;
- cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
- xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
- /*--------------------------------------------------------------*/
- /* the following pricing technique options may be used:
- GLP_PT_STD - standard ("textbook") pricing;
- GLP_PT_PSE - projected steepest edge;
- GLP_PT_DVX - Devex pricing (not implemented yet);
- in case of GLP_PT_STD the reference space is not used, and all
- steepest edge coefficients are set to 1 */
- int refct;
- /* this count is set to an initial value when the reference space
- is defined and decreases by one every time the basis changes;
- once this count reaches zero, the reference space is redefined
- again */
- char *refsp; /* char refsp[1+m+n]; */
- /* refsp[0] is not used;
- refsp[k], 1 <= k <= m+n, is the flag which means that variable
- x[k] belongs to the current reference space */
- double *gamma; /* double gamma[1+n]; */
- /* gamma[0] is not used;
- gamma[j], 1 <= j <= n, is the steepest edge coefficient for
- non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not
- used and just set to 1 */
- /*--------------------------------------------------------------*/
- /* non-basic variable xN[q] chosen to enter the basis */
- int q;
- /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
- if the set of eligible non-basic variables is empty and thus
- no variable has been chosen, q is set to 0 */
- /*--------------------------------------------------------------*/
- /* pivot column of the simplex table corresponding to non-basic
- variable xN[q] chosen is the following vector:
- T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
- where B is the current basis matrix, N[q] is a column of the
- matrix (I|-A) corresponding to xN[q] */
- int tcol_nnz;
- /* number of non-zero components, 0 <= nnz <= m */
- int *tcol_ind; /* int tcol_ind[1+m]; */
- /* tcol_ind[0] is not used;
- tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
- i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
- double *tcol_vec; /* double tcol_vec[1+m]; */
- /* tcol_vec[0] is not used;
- tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
- of the column */
- double tcol_max;
- /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */
- int tcol_num;
- /* number of significant non-zero components, which means that:
- |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num],
- |tcol_vec[i]| < eps for i in tcol_ind[num+1,...,nnz],
- where eps is a pivot tolerance */
- /*--------------------------------------------------------------*/
- /* basic variable xB[p] chosen to leave the basis */
- int p;
- /* index of the basic variable xB[p] chosen, 1 <= p <= m;
- p = 0 means that no basic variable reaches its bound;
- p < 0 means that non-basic variable xN[q] reaches its opposite
- bound before any basic variable */
- int p_stat;
- /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p]
- once it has left the basis */
- double teta;
- /* change of non-basic variable xN[q] (see above), on which xB[p]
- (or, if p < 0, xN[q] itself) reaches its bound */
- /*--------------------------------------------------------------*/
- /* pivot row of the simplex table corresponding to basic variable
- xB[p] chosen is the following vector:
- T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
- where B' is a matrix transposed to the current basis matrix,
- N' is a matrix, whose rows are columns of the matrix (I|-A)
- corresponding to non-basic non-fixed variables */
- int trow_nnz;
- /* number of non-zero components, 0 <= nnz <= n */
- int *trow_ind; /* int trow_ind[1+n]; */
- /* trow_ind[0] is not used;
- trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
- i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
- double *trow_vec; /* int trow_vec[1+n]; */
- /* trow_vec[0] is not used;
- trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
- of the row */
- /*--------------------------------------------------------------*/
- /* working arrays */
- double *work1; /* double work1[1+m]; */
- double *work2; /* double work2[1+m]; */
- double *work3; /* double work3[1+m]; */
- double *work4; /* double work4[1+m]; */
- };
- static const double kappa = 0.10;
- /***********************************************************************
- * alloc_csa - allocate common storage area
- *
- * This routine allocates all arrays in the common storage area (CSA)
- * and returns a pointer to the CSA. */
- static struct csa *alloc_csa(glp_prob *lp)
- { struct csa *csa;
- int m = lp->m;
- int n = lp->n;
- int nnz = lp->nnz;
- csa = xmalloc(sizeof(struct csa));
- xassert(m > 0 && n > 0);
- csa->m = m;
- csa->n = n;
- csa->type = xcalloc(1+m+n, sizeof(char));
- csa->lb = xcalloc(1+m+n, sizeof(double));
- csa->ub = xcalloc(1+m+n, sizeof(double));
- csa->coef = xcalloc(1+m+n, sizeof(double));
- csa->obj = xcalloc(1+n, sizeof(double));
- csa->A_ptr = xcalloc(1+n+1, sizeof(int));
- csa->A_ind = xcalloc(1+nnz, sizeof(int));
- csa->A_val = xcalloc(1+nnz, sizeof(double));
- csa->head = xcalloc(1+m+n, sizeof(int));
- csa->stat = xcalloc(1+n, sizeof(char));
- csa->N_ptr = xcalloc(1+m+1, sizeof(int));
- csa->N_len = xcalloc(1+m, sizeof(int));
- csa->N_ind = NULL; /* will be allocated later */
- csa->N_val = NULL; /* will be allocated later */
- csa->bbar = xcalloc(1+m, sizeof(double));
- csa->cbar = xcalloc(1+n, sizeof(double));
- csa->refsp = xcalloc(1+m+n, sizeof(char));
- csa->gamma = xcalloc(1+n, sizeof(double));
- csa->tcol_ind = xcalloc(1+m, sizeof(int));
- csa->tcol_vec = xcalloc(1+m, sizeof(double));
- csa->trow_ind = xcalloc(1+n, sizeof(int));
- csa->trow_vec = xcalloc(1+n, sizeof(double));
- csa->work1 = xcalloc(1+m, sizeof(double));
- csa->work2 = xcalloc(1+m, sizeof(double));
- csa->work3 = xcalloc(1+m, sizeof(double));
- csa->work4 = xcalloc(1+m, sizeof(double));
- return csa;
- }
- /***********************************************************************
- * init_csa - initialize common storage area
- *
- * This routine initializes all data structures in the common storage
- * area (CSA). */
- static void alloc_N(struct csa *csa);
- static void build_N(struct csa *csa);
- static void init_csa(struct csa *csa, glp_prob *lp)
- { int m = csa->m;
- int n = csa->n;
- char *type = csa->type;
- double *lb = csa->lb;
- double *ub = csa->ub;
- double *coef = csa->coef;
- double *obj = csa->obj;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- char *stat = csa->stat;
- char *refsp = csa->refsp;
- double *gamma = csa->gamma;
- int i, j, k, loc;
- double cmax;
- /* auxiliary variables */
- for (i = 1; i <= m; i++)
- { GLPROW *row = lp->row[i];
- type[i] = (char)row->type;
- lb[i] = row->lb * row->rii;
- ub[i] = row->ub * row->rii;
- coef[i] = 0.0;
- }
- /* structural variables */
- for (j = 1; j <= n; j++)
- { GLPCOL *col = lp->col[j];
- type[m+j] = (char)col->type;
- lb[m+j] = col->lb / col->sjj;
- ub[m+j] = col->ub / col->sjj;
- coef[m+j] = col->coef * col->sjj;
- }
- /* original objective function */
- obj[0] = lp->c0;
- memcpy(&obj[1], &coef[m+1], n * sizeof(double));
- /* factor used to scale original objective coefficients */
- cmax = 0.0;
- for (j = 1; j <= n; j++)
- if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
- if (cmax == 0.0) cmax = 1.0;
- switch (lp->dir)
- { case GLP_MIN:
- csa->zeta = + 1.0 / cmax;
- break;
- case GLP_MAX:
- csa->zeta = - 1.0 / cmax;
- break;
- default:
- xassert(lp != lp);
- }
- #if 1
- if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
- #endif
- /* matrix A (by columns) */
- loc = 1;
- for (j = 1; j <= n; j++)
- { GLPAIJ *aij;
- A_ptr[j] = loc;
- for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
- { A_ind[loc] = aij->row->i;
- A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
- loc++;
- }
- }
- A_ptr[n+1] = loc;
- xassert(loc == lp->nnz+1);
- /* basis header */
- xassert(lp->valid);
- memcpy(&head[1], &lp->head[1], m * sizeof(int));
- k = 0;
- for (i = 1; i <= m; i++)
- { GLPROW *row = lp->row[i];
- if (row->stat != GLP_BS)
- { k++;
- xassert(k <= n);
- head[m+k] = i;
- stat[k] = (char)row->stat;
- }
- }
- for (j = 1; j <= n; j++)
- { GLPCOL *col = lp->col[j];
- if (col->stat != GLP_BS)
- { k++;
- xassert(k <= n);
- head[m+k] = m + j;
- stat[k] = (char)col->stat;
- }
- }
- xassert(k == n);
- /* factorization of matrix B */
- csa->valid = 1, lp->valid = 0;
- csa->bfd = lp->bfd, lp->bfd = NULL;
- /* matrix N (by rows) */
- alloc_N(csa);
- build_N(csa);
- /* working parameters */
- csa->phase = 0;
- csa->tm_beg = xtime();
- csa->it_beg = csa->it_cnt = lp->it_cnt;
- csa->it_dpy = -1;
- /* reference space and steepest edge coefficients */
- csa->refct = 0;
- memset(&refsp[1], 0, (m+n) * sizeof(char));
- for (j = 1; j <= n; j++) gamma[j] = 1.0;
- return;
- }
- /***********************************************************************
- * invert_B - compute factorization of the basis matrix
- *
- * This routine computes factorization of the current basis matrix B.
- *
- * If the operation is successful, the routine returns zero, otherwise
- * non-zero. */
- static int inv_col(void *info, int i, int ind[], double val[])
- { /* this auxiliary routine returns row indices and numeric values
- of non-zero elements of i-th column of the basis matrix */
- struct csa *csa = info;
- int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- int k, len, ptr, t;
- #ifdef GLP_DEBUG
- xassert(1 <= i && i <= m);
- #endif
- k = head[i]; /* B[i] is k-th column of (I|-A) */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { /* B[i] is k-th column of submatrix I */
- len = 1;
- ind[1] = k;
- val[1] = 1.0;
- }
- else
- { /* B[i] is (k-m)-th column of submatrix (-A) */
- ptr = A_ptr[k-m];
- len = A_ptr[k-m+1] - ptr;
- memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
- memcpy(&val[1], &A_val[ptr], len * sizeof(double));
- for (t = 1; t <= len; t++) val[t] = - val[t];
- }
- return len;
- }
- static int invert_B(struct csa *csa)
- { int ret;
- ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
- csa->valid = (ret == 0);
- return ret;
- }
- /***********************************************************************
- * update_B - update factorization of the basis matrix
- *
- * This routine replaces i-th column of the basis matrix B by k-th
- * column of the augmented constraint matrix (I|-A) and then updates
- * the factorization of B.
- *
- * If the factorization has been successfully updated, the routine
- * returns zero, otherwise non-zero. */
- static int update_B(struct csa *csa, int i, int k)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int ret;
- #ifdef GLP_DEBUG
- xassert(1 <= i && i <= m);
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { /* new i-th column of B is k-th column of I */
- int ind[1+1];
- double val[1+1];
- ind[1] = k;
- val[1] = 1.0;
- xassert(csa->valid);
- ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
- }
- else
- { /* new i-th column of B is (k-m)-th column of (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- double *val = csa->work1;
- int beg, end, ptr, len;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- len = 0;
- for (ptr = beg; ptr < end; ptr++)
- val[++len] = - A_val[ptr];
- xassert(csa->valid);
- ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
- }
- csa->valid = (ret == 0);
- return ret;
- }
- /***********************************************************************
- * error_ftran - compute residual vector r = h - B * x
- *
- * This routine computes the residual vector r = h - B * x, where B is
- * the current basis matrix, h is the vector of right-hand sides, x is
- * the solution vector. */
- static void error_ftran(struct csa *csa, double h[], double x[],
- double r[])
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- int i, k, beg, end, ptr;
- double temp;
- /* compute the residual vector:
- r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
- where B[1], ..., B[m] are columns of matrix B */
- memcpy(&r[1], &h[1], m * sizeof(double));
- for (i = 1; i <= m; i++)
- { temp = x[i];
- if (temp == 0.0) continue;
- k = head[i]; /* B[i] is k-th column of (I|-A) */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { /* B[i] is k-th column of submatrix I */
- r[k] -= temp;
- }
- else
- { /* B[i] is (k-m)-th column of submatrix (-A) */
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- r[A_ind[ptr]] += A_val[ptr] * temp;
- }
- }
- return;
- }
- /***********************************************************************
- * refine_ftran - refine solution of B * x = h
- *
- * This routine performs one iteration to refine the solution of
- * the system B * x = h, where B is the current basis matrix, h is the
- * vector of right-hand sides, x is the solution vector. */
- static void refine_ftran(struct csa *csa, double h[], double x[])
- { int m = csa->m;
- double *r = csa->work1;
- double *d = csa->work1;
- int i;
- /* compute the residual vector r = h - B * x */
- error_ftran(csa, h, x, r);
- /* compute the correction vector d = inv(B) * r */
- xassert(csa->valid);
- bfd_ftran(csa->bfd, d);
- /* refine the solution vector (new x) = (old x) + d */
- for (i = 1; i <= m; i++) x[i] += d[i];
- return;
- }
- /***********************************************************************
- * error_btran - compute residual vector r = h - B'* x
- *
- * This routine computes the residual vector r = h - B'* x, where B'
- * is a matrix transposed to the current basis matrix, h is the vector
- * of right-hand sides, x is the solution vector. */
- static void error_btran(struct csa *csa, double h[], double x[],
- double r[])
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- int i, k, beg, end, ptr;
- double temp;
- /* compute the residual vector r = b - B'* x */
- for (i = 1; i <= m; i++)
- { /* r[i] := b[i] - (i-th column of B)'* x */
- k = head[i]; /* B[i] is k-th column of (I|-A) */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- temp = h[i];
- if (k <= m)
- { /* B[i] is k-th column of submatrix I */
- temp -= x[k];
- }
- else
- { /* B[i] is (k-m)-th column of submatrix (-A) */
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- temp += A_val[ptr] * x[A_ind[ptr]];
- }
- r[i] = temp;
- }
- return;
- }
- /***********************************************************************
- * refine_btran - refine solution of B'* x = h
- *
- * This routine performs one iteration to refine the solution of the
- * system B'* x = h, where B' is a matrix transposed to the current
- * basis matrix, h is the vector of right-hand sides, x is the solution
- * vector. */
- static void refine_btran(struct csa *csa, double h[], double x[])
- { int m = csa->m;
- double *r = csa->work1;
- double *d = csa->work1;
- int i;
- /* compute the residual vector r = h - B'* x */
- error_btran(csa, h, x, r);
- /* compute the correction vector d = inv(B') * r */
- xassert(csa->valid);
- bfd_btran(csa->bfd, d);
- /* refine the solution vector (new x) = (old x) + d */
- for (i = 1; i <= m; i++) x[i] += d[i];
- return;
- }
- /***********************************************************************
- * alloc_N - allocate matrix N
- *
- * This routine determines maximal row lengths of matrix N, sets its
- * row pointers, and then allocates arrays N_ind and N_val.
- *
- * Note that some fixed structural variables may temporarily become
- * double-bounded, so corresponding columns of matrix A should not be
- * ignored on calculating maximal row lengths of matrix N. */
- static void alloc_N(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- int *N_ptr = csa->N_ptr;
- int *N_len = csa->N_len;
- int i, j, beg, end, ptr;
- /* determine number of non-zeros in each row of the augmented
- constraint matrix (I|-A) */
- for (i = 1; i <= m; i++)
- N_len[i] = 1;
- for (j = 1; j <= n; j++)
- { beg = A_ptr[j];
- end = A_ptr[j+1];
- for (ptr = beg; ptr < end; ptr++)
- N_len[A_ind[ptr]]++;
- }
- /* determine maximal row lengths of matrix N and set its row
- pointers */
- N_ptr[1] = 1;
- for (i = 1; i <= m; i++)
- { /* row of matrix N cannot have more than n non-zeros */
- if (N_len[i] > n) N_len[i] = n;
- N_ptr[i+1] = N_ptr[i] + N_len[i];
- }
- /* now maximal number of non-zeros in matrix N is known */
- csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int));
- csa->N_val = xcalloc(N_ptr[m+1], sizeof(double));
- return;
- }
- /***********************************************************************
- * add_N_col - add column of matrix (I|-A) to matrix N
- *
- * This routine adds j-th column to matrix N which is k-th column of
- * the augmented constraint matrix (I|-A). (It is assumed that old j-th
- * column was previously removed from matrix N.) */
- static void add_N_col(struct csa *csa, int j, int k)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *N_ptr = csa->N_ptr;
- int *N_len = csa->N_len;
- int *N_ind = csa->N_ind;
- double *N_val = csa->N_val;
- int pos;
- #ifdef GLP_DEBUG
- xassert(1 <= j && j <= n);
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { /* N[j] is k-th column of submatrix I */
- pos = N_ptr[k] + (N_len[k]++);
- #ifdef GLP_DEBUG
- xassert(pos < N_ptr[k+1]);
- #endif
- N_ind[pos] = j;
- N_val[pos] = 1.0;
- }
- else
- { /* N[j] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int i, beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- { i = A_ind[ptr]; /* row number */
- pos = N_ptr[i] + (N_len[i]++);
- #ifdef GLP_DEBUG
- xassert(pos < N_ptr[i+1]);
- #endif
- N_ind[pos] = j;
- N_val[pos] = - A_val[ptr];
- }
- }
- return;
- }
- /***********************************************************************
- * del_N_col - remove column of matrix (I|-A) from matrix N
- *
- * This routine removes j-th column from matrix N which is k-th column
- * of the augmented constraint matrix (I|-A). */
- static void del_N_col(struct csa *csa, int j, int k)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *N_ptr = csa->N_ptr;
- int *N_len = csa->N_len;
- int *N_ind = csa->N_ind;
- double *N_val = csa->N_val;
- int pos, head, tail;
- #ifdef GLP_DEBUG
- xassert(1 <= j && j <= n);
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { /* N[j] is k-th column of submatrix I */
- /* find element in k-th row of N */
- head = N_ptr[k];
- for (pos = head; N_ind[pos] != j; pos++) /* nop */;
- /* and remove it from the row list */
- tail = head + (--N_len[k]);
- #ifdef GLP_DEBUG
- xassert(pos <= tail);
- #endif
- N_ind[pos] = N_ind[tail];
- N_val[pos] = N_val[tail];
- }
- else
- { /* N[j] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- int i, beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- { i = A_ind[ptr]; /* row number */
- /* find element in i-th row of N */
- head = N_ptr[i];
- for (pos = head; N_ind[pos] != j; pos++) /* nop */;
- /* and remove it from the row list */
- tail = head + (--N_len[i]);
- #ifdef GLP_DEBUG
- xassert(pos <= tail);
- #endif
- N_ind[pos] = N_ind[tail];
- N_val[pos] = N_val[tail];
- }
- }
- return;
- }
- /***********************************************************************
- * build_N - build matrix N for current basis
- *
- * This routine builds matrix N for the current basis from columns
- * of the augmented constraint matrix (I|-A) corresponding to non-basic
- * non-fixed variables. */
- static void build_N(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- int *head = csa->head;
- char *stat = csa->stat;
- int *N_len = csa->N_len;
- int j, k;
- /* N := empty matrix */
- memset(&N_len[1], 0, m * sizeof(int));
- /* go through non-basic columns of matrix (I|-A) */
- for (j = 1; j <= n; j++)
- { if (stat[j] != GLP_NS)
- { /* xN[j] is non-fixed; add j-th column to matrix N which is
- k-th column of matrix (I|-A) */
- k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- add_N_col(csa, j, k);
- }
- }
- return;
- }
- /***********************************************************************
- * get_xN - determine current value of non-basic variable xN[j]
- *
- * This routine returns the current value of non-basic variable xN[j],
- * which is a value of its active bound. */
- static double get_xN(struct csa *csa, int j)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- double *lb = csa->lb;
- double *ub = csa->ub;
- int *head = csa->head;
- char *stat = csa->stat;
- int k;
- double xN;
- #ifdef GLP_DEBUG
- xassert(1 <= j && j <= n);
- #endif
- k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- switch (stat[j])
- { case GLP_NL:
- /* x[k] is on its lower bound */
- xN = lb[k]; break;
- case GLP_NU:
- /* x[k] is on its upper bound */
- xN = ub[k]; break;
- case GLP_NF:
- /* x[k] is free non-basic variable */
- xN = 0.0; break;
- case GLP_NS:
- /* x[k] is fixed non-basic variable */
- xN = lb[k]; break;
- default:
- xassert(stat != stat);
- }
- return xN;
- }
- /***********************************************************************
- * eval_beta - compute primal values of basic variables
- *
- * This routine computes current primal values of all basic variables:
- *
- * beta = - inv(B) * N * xN,
- *
- * where B is the current basis matrix, N is a matrix built of columns
- * of matrix (I|-A) corresponding to non-basic variables, and xN is the
- * vector of current values of non-basic variables. */
- static void eval_beta(struct csa *csa, double beta[])
- { int m = csa->m;
- int n = csa->n;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- double *h = csa->work2;
- int i, j, k, beg, end, ptr;
- double xN;
- /* compute the right-hand side vector:
- h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
- where N[1], ..., N[n] are columns of matrix N */
- for (i = 1; i <= m; i++)
- h[i] = 0.0;
- for (j = 1; j <= n; j++)
- { k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- /* determine current value of xN[j] */
- xN = get_xN(csa, j);
- if (xN == 0.0) continue;
- if (k <= m)
- { /* N[j] is k-th column of submatrix I */
- h[k] -= xN;
- }
- else
- { /* N[j] is (k-m)-th column of submatrix (-A) */
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- h[A_ind[ptr]] += xN * A_val[ptr];
- }
- }
- /* solve system B * beta = h */
- memcpy(&beta[1], &h[1], m * sizeof(double));
- xassert(csa->valid);
- bfd_ftran(csa->bfd, beta);
- /* and refine the solution */
- refine_ftran(csa, h, beta);
- return;
- }
- /***********************************************************************
- * eval_pi - compute vector of simplex multipliers
- *
- * This routine computes the vector of current simplex multipliers:
- *
- * pi = inv(B') * cB,
- *
- * where B' is a matrix transposed to the current basis matrix, cB is
- * a subvector of objective coefficients at basic variables. */
- static void eval_pi(struct csa *csa, double pi[])
- { int m = csa->m;
- double *c = csa->coef;
- int *head = csa->head;
- double *cB = csa->work2;
- int i;
- /* construct the right-hand side vector cB */
- for (i = 1; i <= m; i++)
- cB[i] = c[head[i]];
- /* solve system B'* pi = cB */
- memcpy(&pi[1], &cB[1], m * sizeof(double));
- xassert(csa->valid);
- bfd_btran(csa->bfd, pi);
- /* and refine the solution */
- refine_btran(csa, cB, pi);
- return;
- }
- /***********************************************************************
- * eval_cost - compute reduced cost of non-basic variable xN[j]
- *
- * This routine computes the current reduced cost of non-basic variable
- * xN[j]:
- *
- * d[j] = cN[j] - N'[j] * pi,
- *
- * where cN[j] is the objective coefficient at variable xN[j], N[j] is
- * a column of the augmented constraint matrix (I|-A) corresponding to
- * xN[j], pi is the vector of simplex multipliers. */
- static double eval_cost(struct csa *csa, double pi[], int j)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- double *coef = csa->coef;
- int *head = csa->head;
- int k;
- double dj;
- #ifdef GLP_DEBUG
- xassert(1 <= j && j <= n);
- #endif
- k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- dj = coef[k];
- if (k <= m)
- { /* N[j] is k-th column of submatrix I */
- dj -= pi[k];
- }
- else
- { /* N[j] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- dj += A_val[ptr] * pi[A_ind[ptr]];
- }
- return dj;
- }
- /***********************************************************************
- * eval_bbar - compute and store primal values of basic variables
- *
- * This routine computes primal values of all basic variables and then
- * stores them in the solution array. */
- static void eval_bbar(struct csa *csa)
- { eval_beta(csa, csa->bbar);
- return;
- }
- /***********************************************************************
- * eval_cbar - compute and store reduced costs of non-basic variables
- *
- * This routine computes reduced costs of all non-basic variables and
- * then stores them in the solution array. */
- static void eval_cbar(struct csa *csa)
- {
- #ifdef GLP_DEBUG
- int m = csa->m;
- #endif
- int n = csa->n;
- #ifdef GLP_DEBUG
- int *head = csa->head;
- #endif
- double *cbar = csa->cbar;
- double *pi = csa->work3;
- int j;
- #ifdef GLP_DEBUG
- int k;
- #endif
- /* compute simplex multipliers */
- eval_pi(csa, pi);
- /* compute and store reduced costs */
- for (j = 1; j <= n; j++)
- {
- #ifdef GLP_DEBUG
- k = head[m+j]; /* x[k] = xN[j] */
- xassert(1 <= k && k <= m+n);
- #endif
- cbar[j] = eval_cost(csa, pi, j);
- }
- return;
- }
- /***********************************************************************
- * reset_refsp - reset the reference space
- *
- * This routine resets (redefines) the reference space used in the
- * projected steepest edge pricing algorithm. */
- static void reset_refsp(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- int *head = csa->head;
- char *refsp = csa->refsp;
- double *gamma = csa->gamma;
- int j, k;
- xassert(csa->refct == 0);
- csa->refct = 1000;
- memset(&refsp[1], 0, (m+n) * sizeof(char));
- for (j = 1; j <= n; j++)
- { k = head[m+j]; /* x[k] = xN[j] */
- refsp[k] = 1;
- gamma[j] = 1.0;
- }
- return;
- }
- /***********************************************************************
- * eval_gamma - compute steepest edge coefficient
- *
- * This routine computes the steepest edge coefficient for non-basic
- * variable xN[j] using its direct definition:
- *
- * gamma[j] = delta[j] + sum alfa[i,j]^2,
- * i in R
- *
- * where delta[j] = 1, if xN[j] is in the current reference space,
- * and 0 otherwise; R is a set of basic variables xB[i], which are in
- * the current reference space; alfa[i,j] are elements of the current
- * simplex table.
- *
- * NOTE: The routine is intended only for debugginig purposes. */
- static double eval_gamma(struct csa *csa, int j)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *head = csa->head;
- char *refsp = csa->refsp;
- double *alfa = csa->work3;
- double *h = csa->work3;
- int i, k;
- double gamma;
- #ifdef GLP_DEBUG
- xassert(1 <= j && j <= n);
- #endif
- k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- /* construct the right-hand side vector h = - N[j] */
- for (i = 1; i <= m; i++)
- h[i] = 0.0;
- if (k <= m)
- { /* N[j] is k-th column of submatrix I */
- h[k] = -1.0;
- }
- else
- { /* N[j] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- h[A_ind[ptr]] = A_val[ptr];
- }
- /* solve system B * alfa = h */
- xassert(csa->valid);
- bfd_ftran(csa->bfd, alfa);
- /* compute gamma */
- gamma = (refsp[k] ? 1.0 : 0.0);
- for (i = 1; i <= m; i++)
- { k = head[i];
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (refsp[k]) gamma += alfa[i] * alfa[i];
- }
- return gamma;
- }
- /***********************************************************************
- * chuzc - choose non-basic variable (column of the simplex table)
- *
- * This routine chooses non-basic variable xN[q], which has largest
- * weighted reduced cost:
- *
- * |d[q]| / sqrt(gamma[q]) = max |d[j]| / sqrt(gamma[j]),
- * j in J
- *
- * where J is a subset of eligible non-basic variables xN[j], d[j] is
- * reduced cost of xN[j], gamma[j] is the steepest edge coefficient.
- *
- * The working objective function is always minimized, so the sign of
- * d[q] determines direction, in which xN[q] has to change:
- *
- * if d[q] < 0, xN[q] has to increase;
- *
- * if d[q] > 0, xN[q] has to decrease.
- *
- * If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j]
- * is not included in J and therefore ignored. (It is assumed that the
- * working objective row is appropriately scaled, i.e. max|c[k]| = 1.)
- *
- * If J is empty and no variable has been chosen, q is set to 0. */
- static void chuzc(struct csa *csa, double tol_dj)
- { int n = csa->n;
- char *stat = csa->stat;
- double *cbar = csa->cbar;
- double *gamma = csa->gamma;
- int j, q;
- double dj, best, temp;
- /* nothing is chosen so far */
- q = 0, best = 0.0;
- /* look through the list of non-basic variables */
- for (j = 1; j <= n; j++)
- { dj = cbar[j];
- switch (stat[j])
- { case GLP_NL:
- /* xN[j] can increase */
- if (dj >= - tol_dj) continue;
- break;
- case GLP_NU:
- /* xN[j] can decrease */
- if (dj <= + tol_dj) continue;
- break;
- case GLP_NF:
- /* xN[j] can change in any direction */
- if (- tol_dj <= dj && dj <= + tol_dj) continue;
- break;
- case GLP_NS:
- /* xN[j] cannot change at all */
- continue;
- default:
- xassert(stat != stat);
- }
- /* xN[j] is eligible non-basic variable; choose one which has
- largest weighted reduced cost */
- #ifdef GLP_DEBUG
- xassert(gamma[j] > 0.0);
- #endif
- temp = (dj * dj) / gamma[j];
- if (best < temp)
- q = j, best = temp;
- }
- /* store the index of non-basic variable xN[q] chosen */
- csa->q = q;
- return;
- }
- /***********************************************************************
- * eval_tcol - compute pivot column of the simplex table
- *
- * This routine computes the pivot column of the simplex table, which
- * corresponds to non-basic variable xN[q] chosen.
- *
- * The pivot column is the following vector:
- *
- * tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
- *
- * where B is the current basis matrix, N[q] is a column of the matrix
- * (I|-A) corresponding to variable xN[q]. */
- static void eval_tcol(struct csa *csa)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *head = csa->head;
- int q = csa->q;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- double *h = csa->tcol_vec;
- int i, k, nnz;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- k = head[m+q]; /* x[k] = xN[q] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- /* construct the right-hand side vector h = - N[q] */
- for (i = 1; i <= m; i++)
- h[i] = 0.0;
- if (k <= m)
- { /* N[q] is k-th column of submatrix I */
- h[k] = -1.0;
- }
- else
- { /* N[q] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- h[A_ind[ptr]] = A_val[ptr];
- }
- /* solve system B * tcol = h */
- xassert(csa->valid);
- bfd_ftran(csa->bfd, tcol_vec);
- /* construct sparse pattern of the pivot column */
- nnz = 0;
- for (i = 1; i <= m; i++)
- { if (tcol_vec[i] != 0.0)
- tcol_ind[++nnz] = i;
- }
- csa->tcol_nnz = nnz;
- return;
- }
- /***********************************************************************
- * refine_tcol - refine pivot column of the simplex table
- *
- * This routine refines the pivot column of the simplex table assuming
- * that it was previously computed by the routine eval_tcol. */
- static void refine_tcol(struct csa *csa)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- int *head = csa->head;
- int q = csa->q;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- double *h = csa->work3;
- int i, k, nnz;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- k = head[m+q]; /* x[k] = xN[q] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- /* construct the right-hand side vector h = - N[q] */
- for (i = 1; i <= m; i++)
- h[i] = 0.0;
- if (k <= m)
- { /* N[q] is k-th column of submatrix I */
- h[k] = -1.0;
- }
- else
- { /* N[q] is (k-m)-th column of submatrix (-A) */
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int beg, end, ptr;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- h[A_ind[ptr]] = A_val[ptr];
- }
- /* refine solution of B * tcol = h */
- refine_ftran(csa, h, tcol_vec);
- /* construct sparse pattern of the pivot column */
- nnz = 0;
- for (i = 1; i <= m; i++)
- { if (tcol_vec[i] != 0.0)
- tcol_ind[++nnz] = i;
- }
- csa->tcol_nnz = nnz;
- return;
- }
- /***********************************************************************
- * sort_tcol - sort pivot column of the simplex table
- *
- * This routine reorders the list of non-zero elements of the pivot
- * column to put significant elements, whose magnitude is not less than
- * a specified tolerance, in front of the list, and stores the number
- * of significant elements in tcol_num. */
- static void sort_tcol(struct csa *csa, double tol_piv)
- {
- #ifdef GLP_DEBUG
- int m = csa->m;
- #endif
- int nnz = csa->tcol_nnz;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- int i, num, pos;
- double big, eps, temp;
- /* compute infinity (maximum) norm of the column */
- big = 0.0;
- for (pos = 1; pos <= nnz; pos++)
- {
- #ifdef GLP_DEBUG
- i = tcol_ind[pos];
- xassert(1 <= i && i <= m);
- #endif
- temp = fabs(tcol_vec[tcol_ind[pos]]);
- if (big < temp) big = temp;
- }
- csa->tcol_max = big;
- /* determine absolute pivot tolerance */
- eps = tol_piv * (1.0 + 0.01 * big);
- /* move significant column components to front of the list */
- for (num = 0; num < nnz; )
- { i = tcol_ind[nnz];
- if (fabs(tcol_vec[i]) < eps)
- nnz--;
- else
- { num++;
- tcol_ind[nnz] = tcol_ind[num];
- tcol_ind[num] = i;
- }
- }
- csa->tcol_num = num;
- return;
- }
- /***********************************************************************
- * chuzr - choose basic variable (row of the simplex table)
- *
- * This routine chooses basic variable xB[p], which reaches its bound
- * first on changing non-basic variable xN[q] in valid direction.
- *
- * The parameter rtol is a relative tolerance used to relax bounds of
- * basic variables. If rtol = 0, the routine implements the standard
- * ratio test. Otherwise, if rtol > 0, the routine implements Harris'
- * two-pass ratio test. In the latter case rtol should be about three
- * times less than a tolerance used to check primal feasibility. */
- static void chuzr(struct csa *csa, double rtol)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- char *type = csa->type;
- double *lb = csa->lb;
- double *ub = csa->ub;
- double *coef = csa->coef;
- int *head = csa->head;
- int phase = csa->phase;
- double *bbar = csa->bbar;
- double *cbar = csa->cbar;
- int q = csa->q;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- int tcol_num = csa->tcol_num;
- int i, i_stat, k, p, p_stat, pos;
- double alfa, big, delta, s, t, teta, tmax;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */
- #ifdef GLP_DEBUG
- xassert(cbar[q] != 0.0);
- #endif
- s = (cbar[q] > 0.0 ? -1.0 : +1.0);
- /*** FIRST PASS ***/
- k = head[m+q]; /* x[k] = xN[q] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (type[k] == GLP_DB)
- { /* xN[q] has both lower and upper bounds */
- p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0;
- }
- else
- { /* xN[q] has no opposite bound */
- p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
- }
- /* walk through significant elements of the pivot column */
- for (pos = 1; pos <= tcol_num; pos++)
- { i = tcol_ind[pos];
- #ifdef GLP_DEBUG
- xassert(1 <= i && i <= m);
- #endif
- k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- alfa = s * tcol_vec[i];
- #ifdef GLP_DEBUG
- xassert(alfa != 0.0);
- #endif
- /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
- consider the only case when xN[q] is increasing */
- if (alfa > 0.0)
- { /* xB[i] is increasing */
- if (phase == 1 && coef[k] < 0.0)
- { /* xB[i] violates its lower bound, which plays the role
- of an upper bound on phase I */
- delta = rtol * (1.0 + kappa * fabs(lb[k]));
- t = ((lb[k] + delta) - bbar[i]) / alfa;
- i_stat = GLP_NL;
- }
- else if (phase == 1 && coef[k] > 0.0)
- { /* xB[i] violates its upper bound, which plays the role
- of an lower bound on phase I */
- continue;
- }
- else if (type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* xB[i] is within its bounds and has an upper bound */
- delta = rtol * (1.0 + kappa * fabs(ub[k]));
- t = ((ub[k] + delta) - bbar[i]) / alfa;
- i_stat = GLP_NU;
- }
- else
- { /* xB[i] is within its bounds and has no upper bound */
- continue;
- }
- }
- else
- { /* xB[i] is decreasing */
- if (phase == 1 && coef[k] > 0.0)
- { /* xB[i] violates its upper bound, which plays the role
- of an lower bound on phase I */
- delta = rtol * (1.0 + kappa * fabs(ub[k]));
- t = ((ub[k] - delta) - bbar[i]) / alfa;
- i_stat = GLP_NU;
- }
- else if (phase == 1 && coef[k] < 0.0)
- { /* xB[i] violates its lower bound, which plays the role
- of an upper bound on phase I */
- continue;
- }
- else if (type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* xB[i] is within its bounds and has an lower bound */
- delta = rtol * (1.0 + kappa * fabs(lb[k]));
- t = ((lb[k] - delta) - bbar[i]) / alfa;
- i_stat = GLP_NL;
- }
- else
- { /* xB[i] is within its bounds and has no lower bound */
- continue;
- }
- }
- /* t is a change of xN[q], on which xB[i] reaches its bound
- (possibly relaxed); since the basic solution is assumed to
- be primal feasible (or pseudo feasible on phase I), t has
- to be non-negative by definition; however, it may happen
- that xB[i] slightly (i.e. within a tolerance) violates its
- bound, that leads to negative t; in the latter case, if
- xB[i] is chosen, negative t means that xN[q] changes in
- wrong direction; if pivot alfa[i,q] is close to zero, even
- small bound violation of xB[i] may lead to a large change
- of xN[q] in wrong direction; let, for example, xB[i] >= 0
- and in the current basis its value be -5e-9; let also xN[q]
- be on its zero bound and should increase; from the ratio
- test rule it follows that the pivot alfa[i,q] < 0; however,
- if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong
- direction is 5e-9 / (-1e-9) = -5, and using it for updating
- values of other basic variables will give absolutely wrong
- results; therefore, if t is negative, we should replace it
- by exact zero assuming that xB[i] is exactly on its bound,
- and the violation appears due to round-off errors */
- if (t < 0.0) t = 0.0;
- /* apply minimal ratio test */
- if (teta > t || teta == t && big < fabs(alfa))
- p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
- }
- /* the second pass is skipped in the following cases: */
- /* if the standard ratio test is used */
- if (rtol == 0.0) goto done;
- /* if xN[q] reaches its opposite bound or if no basic variable
- has been chosen on the first pass */
- if (p <= 0) goto done;
- /* if xB[p] is a blocking variable, i.e. if it prevents xN[q]
- from any change */
- if (teta == 0.0) goto done;
- /*** SECOND PASS ***/
- /* here tmax is a maximal change of xN[q], on which the solution
- remains primal feasible (or pseudo feasible on phase I) within
- a tolerance */
- #if 0
- tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
- #else
- tmax = teta;
- #endif
- /* nothing is chosen so far */
- p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
- /* walk through significant elements of the pivot column */
- for (pos = 1; pos <= tcol_num; pos++)
- { i = tcol_ind[pos];
- #ifdef GLP_DEBUG
- xassert(1 <= i && i <= m);
- #endif
- k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- alfa = s * tcol_vec[i];
- #ifdef GLP_DEBUG
- xassert(alfa != 0.0);
- #endif
- /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
- consider the only case when xN[q] is increasing */
- if (alfa > 0.0)
- { /* xB[i] is increasing */
- if (phase == 1 && coef[k] < 0.0)
- { /* xB[i] violates its lower bound, which plays the role
- of an upper bound on phase I */
- t = (lb[k] - bbar[i]) / alfa;
- i_stat = GLP_NL;
- }
- else if (phase == 1 && coef[k] > 0.0)
- { /* xB[i] violates its upper bound, which plays the role
- of an lower bound on phase I */
- continue;
- }
- else if (type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* xB[i] is within its bounds and has an upper bound */
- t = (ub[k] - bbar[i]) / alfa;
- i_stat = GLP_NU;
- }
- else
- { /* xB[i] is within its bounds and has no upper bound */
- continue;
- }
- }
- else
- { /* xB[i] is decreasing */
- if (phase == 1 && coef[k] > 0.0)
- { /* xB[i] violates its upper bound, which plays the role
- of an lower bound on phase I */
- t = (ub[k] - bbar[i]) / alfa;
- i_stat = GLP_NU;
- }
- else if (phase == 1 && coef[k] < 0.0)
- { /* xB[i] violates its lower bound, which plays the role
- of an upper bound on phase I */
- continue;
- }
- else if (type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* xB[i] is within its bounds and has an lower bound */
- t = (lb[k] - bbar[i]) / alfa;
- i_stat = GLP_NL;
- }
- else
- { /* xB[i] is within its bounds and has no lower bound */
- continue;
- }
- }
- /* (see comments for the first pass) */
- if (t < 0.0) t = 0.0;
- /* t is a change of xN[q], on which xB[i] reaches its bound;
- if t <= tmax, all basic variables can violate their bounds
- only within relaxation tolerance delta; we can use this
- freedom and choose basic variable having largest influence
- coefficient to avoid possible numeric instability */
- if (t <= tmax && big < fabs(alfa))
- p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
- }
- /* something must be chosen on the second pass */
- xassert(p != 0);
- done: /* store the index and status of basic variable xB[p] chosen */
- csa->p = p;
- if (p > 0 && type[head[p]] == GLP_FX)
- csa->p_stat = GLP_NS;
- else
- csa->p_stat = p_stat;
- /* store corresponding change of non-basic variable xN[q] */
- #ifdef GLP_DEBUG
- xassert(teta >= 0.0);
- #endif
- csa->teta = s * teta;
- return;
- }
- /***********************************************************************
- * eval_rho - compute pivot row of the inverse
- *
- * This routine computes the pivot (p-th) row of the inverse inv(B),
- * which corresponds to basic variable xB[p] chosen:
- *
- * rho = inv(B') * e[p],
- *
- * where B' is a matrix transposed to the current basis matrix, e[p]
- * is unity vector. */
- static void eval_rho(struct csa *csa, double rho[])
- { int m = csa->m;
- int p = csa->p;
- double *e = rho;
- int i;
- #ifdef GLP_DEBUG
- xassert(1 <= p && p <= m);
- #endif
- /* construct the right-hand side vector e[p] */
- for (i = 1; i <= m; i++)
- e[i] = 0.0;
- e[p] = 1.0;
- /* solve system B'* rho = e[p] */
- xassert(csa->valid);
- bfd_btran(csa->bfd, rho);
- return;
- }
- /***********************************************************************
- * refine_rho - refine pivot row of the inverse
- *
- * This routine refines the pivot row of the inverse inv(B) assuming
- * that it was previously computed by the routine eval_rho. */
- static void refine_rho(struct csa *csa, double rho[])
- { int m = csa->m;
- int p = csa->p;
- double *e = csa->work3;
- int i;
- #ifdef GLP_DEBUG
- xassert(1 <= p && p <= m);
- #endif
- /* construct the right-hand side vector e[p] */
- for (i = 1; i <= m; i++)
- e[i] = 0.0;
- e[p] = 1.0;
- /* refine solution of B'* rho = e[p] */
- refine_btran(csa, e, rho);
- return;
- }
- /***********************************************************************
- * eval_trow - compute pivot row of the simplex table
- *
- * This routine computes the pivot row of the simplex table, which
- * corresponds to basic variable xB[p] chosen.
- *
- * The pivot row is the following vector:
- *
- * trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
- *
- * where rho is the pivot row of the inverse inv(B) previously computed
- * by the routine eval_rho.
- *
- * Note that elements of the pivot row corresponding to fixed non-basic
- * variables are not computed. */
- static void eval_trow(struct csa *csa, double rho[])
- { int m = csa->m;
- int n = csa->n;
- #ifdef GLP_DEBUG
- char *stat = csa->stat;
- #endif
- int *N_ptr = csa->N_ptr;
- int *N_len = csa->N_len;
- int *N_ind = csa->N_ind;
- double *N_val = csa->N_val;
- int *trow_ind = csa->trow_ind;
- double *trow_vec = csa->trow_vec;
- int i, j, beg, end, ptr, nnz;
- double temp;
- /* clear the pivot row */
- for (j = 1; j <= n; j++)
- trow_vec[j] = 0.0;
- /* compute the pivot row as a linear combination of rows of the
- matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
- for (i = 1; i <= m; i++)
- { temp = rho[i];
- if (temp == 0.0) continue;
- /* trow := trow - rho[i] * N'[i] */
- beg = N_ptr[i];
- end = beg + N_len[i];
- for (ptr = beg; ptr < end; ptr++)
- {
- #ifdef GLP_DEBUG
- j = N_ind[ptr];
- xassert(1 <= j && j <= n);
- xassert(stat[j] != GLP_NS);
- #endif
- trow_vec[N_ind[ptr]] -= temp * N_val[ptr];
- }
- }
- /* construct sparse pattern of the pivot row */
- nnz = 0;
- for (j = 1; j <= n; j++)
- { if (trow_vec[j] != 0.0)
- trow_ind[++nnz] = j;
- }
- csa->trow_nnz = nnz;
- return;
- }
- /***********************************************************************
- * update_bbar - update values of basic variables
- *
- * This routine updates values of all basic variables for the adjacent
- * basis. */
- static void update_bbar(struct csa *csa)
- {
- #ifdef GLP_DEBUG
- int m = csa->m;
- int n = csa->n;
- #endif
- double *bbar = csa->bbar;
- int q = csa->q;
- int tcol_nnz = csa->tcol_nnz;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- int p = csa->p;
- double teta = csa->teta;
- int i, pos;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- xassert(p < 0 || 1 <= p && p <= m);
- #endif
- /* if xN[q] leaves the basis, compute its value in the adjacent
- basis, where it will replace xB[p] */
- if (p > 0)
- bbar[p] = get_xN(csa, q) + teta;
- /* update values of other basic variables (except xB[p], because
- it will be replaced by xN[q]) */
- if (teta == 0.0) goto done;
- for (pos = 1; pos <= tcol_nnz; pos++)
- { i = tcol_ind[pos];
- /* skip xB[p] */
- if (i == p) continue;
- /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */
- bbar[i] += tcol_vec[i] * teta;
- }
- done: return;
- }
- /***********************************************************************
- * reeval_cost - recompute reduced cost of non-basic variable xN[q]
- *
- * This routine recomputes reduced cost of non-basic variable xN[q] for
- * the current basis more accurately using its direct definition:
- *
- * d[q] = cN[q] - N'[q] * pi =
- *
- * = cN[q] - N'[q] * (inv(B') * cB) =
- *
- * = cN[q] - (cB' * inv(B) * N[q]) =
- *
- * = cN[q] + cB' * (pivot column).
- *
- * It is assumed that the pivot column of the simplex table is already
- * computed. */
- static double reeval_cost(struct csa *csa)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- double *coef = csa->coef;
- int *head = csa->head;
- int q = csa->q;
- int tcol_nnz = csa->tcol_nnz;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- int i, pos;
- double dq;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- dq = coef[head[m+q]];
- for (pos = 1; pos <= tcol_nnz; pos++)
- { i = tcol_ind[pos];
- #ifdef GLP_DEBUG
- xassert(1 <= i && i <= m);
- #endif
- dq += coef[head[i]] * tcol_vec[i];
- }
- return dq;
- }
- /***********************************************************************
- * update_cbar - update reduced costs of non-basic variables
- *
- * This routine updates reduced costs of all (except fixed) non-basic
- * variables for the adjacent basis. */
- static void update_cbar(struct csa *csa)
- {
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- double *cbar = csa->cbar;
- int q = csa->q;
- int trow_nnz = csa->trow_nnz;
- int *trow_ind = csa->trow_ind;
- double *trow_vec = csa->trow_vec;
- int j, pos;
- double new_dq;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- /* compute reduced cost of xB[p] in the adjacent basis, where it
- will replace xN[q] */
- #ifdef GLP_DEBUG
- xassert(trow_vec[q] != 0.0);
- #endif
- new_dq = (cbar[q] /= trow_vec[q]);
- /* update reduced costs of other non-basic variables (except
- xN[q], because it will be replaced by xB[p]) */
- for (pos = 1; pos <= trow_nnz; pos++)
- { j = trow_ind[pos];
- /* skip xN[q] */
- if (j == q) continue;
- cbar[j] -= trow_vec[j] * new_dq;
- }
- return;
- }
- /***********************************************************************
- * update_gamma - update steepest edge coefficients
- *
- * This routine updates steepest-edge coefficients for the adjacent
- * basis. */
- static void update_gamma(struct csa *csa)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- char *type = csa->type;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int *head = csa->head;
- char *refsp = csa->refsp;
- double *gamma = csa->gamma;
- int q = csa->q;
- int tcol_nnz = csa->tcol_nnz;
- int *tcol_ind = csa->tcol_ind;
- double *tcol_vec = csa->tcol_vec;
- int p = csa->p;
- int trow_nnz = csa->trow_nnz;
- int *trow_ind = csa->trow_ind;
- double *trow_vec = csa->trow_vec;
- double *u = csa->work3;
- int i, j, k, pos, beg, end, ptr;
- double gamma_q, delta_q, pivot, s, t, t1, t2;
- #ifdef GLP_DEBUG
- xassert(1 <= p && p <= m);
- xassert(1 <= q && q <= n);
- #endif
- /* the basis changes, so decrease the count */
- xassert(csa->refct > 0);
- csa->refct--;
- /* recompute gamma[q] for the current basis more accurately and
- compute auxiliary vector u */
- gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0);
- for (i = 1; i <= m; i++) u[i] = 0.0;
- for (pos = 1; pos <= tcol_nnz; pos++)
- { i = tcol_ind[pos];
- if (refsp[head[i]])
- { u[i] = t = tcol_vec[i];
- gamma_q += t * t;
- }
- else
- u[i] = 0.0;
- }
- xassert(csa->valid);
- bfd_btran(csa->bfd, u);
- /* update gamma[k] for other non-basic variables (except fixed
- variables and xN[q], because it will be replaced by xB[p]) */
- pivot = trow_vec[q];
- #ifdef GLP_DEBUG
- xassert(pivot != 0.0);
- #endif
- for (pos = 1; pos <= trow_nnz; pos++)
- { j = trow_ind[pos];
- /* skip xN[q] */
- if (j == q) continue;
- /* compute t */
- t = trow_vec[j] / pivot;
- /* compute inner product s = N'[j] * u */
- k = head[m+j]; /* x[k] = xN[j] */
- if (k <= m)
- s = u[k];
- else
- { s = 0.0;
- beg = A_ptr[k-m];
- end = A_ptr[k-m+1];
- for (ptr = beg; ptr < end; ptr++)
- s -= A_val[ptr] * u[A_ind[ptr]];
- }
- /* compute gamma[k] for the adjacent basis */
- t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s;
- t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t;
- gamma[j] = (t1 >= t2 ? t1 : t2);
- if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON;
- }
- /* compute gamma[q] for the adjacent basis */
- if (type[head[p]] == GLP_FX)
- gamma[q] = 1.0;
- else
- { gamma[q] = gamma_q / (pivot * pivot);
- if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON;
- }
- return;
- }
- /***********************************************************************
- * err_in_bbar - compute maximal relative error in primal solution
- *
- * This routine returns maximal relative error:
- *
- * max |beta[i] - bbar[i]| / (1 + |beta[i]|),
- *
- * where beta and bbar are, respectively, directly computed and the
- * current (updated) values of basic variables.
- *
- * NOTE: The routine is intended only for debugginig purposes. */
- static double err_in_bbar(struct csa *csa)
- { int m = csa->m;
- double *bbar = csa->bbar;
- int i;
- double e, emax, *beta;
- beta = xcalloc(1+m, sizeof(double));
- eval_beta(csa, beta);
- emax = 0.0;
- for (i = 1; i <= m; i++)
- { e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
- if (emax < e) emax = e;
- }
- xfree(beta);
- return emax;
- }
- /***********************************************************************
- * err_in_cbar - compute maximal relative error in dual solution
- *
- * This routine returns maximal relative error:
- *
- * max |cost[j] - cbar[j]| / (1 + |cost[j]|),
- *
- * where cost and cbar are, respectively, directly computed and the
- * current (updated) reduced costs of non-basic non-fixed variables.
- *
- * NOTE: The routine is intended only for debugginig purposes. */
- static double err_in_cbar(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- char *stat = csa->stat;
- double *cbar = csa->cbar;
- int j;
- double e, emax, cost, *pi;
- pi = xcalloc(1+m, sizeof(double));
- eval_pi(csa, pi);
- emax = 0.0;
- for (j = 1; j <= n; j++)
- { if (stat[j] == GLP_NS) continue;
- cost = eval_cost(csa, pi, j);
- e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
- if (emax < e) emax = e;
- }
- xfree(pi);
- return emax;
- }
- /***********************************************************************
- * err_in_gamma - compute maximal relative error in steepest edge cff.
- *
- * This routine returns maximal relative error:
- *
- * max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
- *
- * where gamma'[j] and gamma[j] are, respectively, directly computed
- * and the current (updated) steepest edge coefficients for non-basic
- * non-fixed variable x[j].
- *
- * NOTE: The routine is intended only for debugginig purposes. */
- static double err_in_gamma(struct csa *csa)
- { int n = csa->n;
- char *stat = csa->stat;
- double *gamma = csa->gamma;
- int j;
- double e, emax, temp;
- emax = 0.0;
- for (j = 1; j <= n; j++)
- { if (stat[j] == GLP_NS)
- { xassert(gamma[j] == 1.0);
- continue;
- }
- temp = eval_gamma(csa, j);
- e = fabs(temp - gamma[j]) / (1.0 + fabs(temp));
- if (emax < e) emax = e;
- }
- return emax;
- }
- /***********************************************************************
- * change_basis - change basis header
- *
- * This routine changes the basis header to make it corresponding to
- * the adjacent basis. */
- static void change_basis(struct csa *csa)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- char *type = csa->type;
- #endif
- int *head = csa->head;
- char *stat = csa->stat;
- int q = csa->q;
- int p = csa->p;
- int p_stat = csa->p_stat;
- int k;
- #ifdef GLP_DEBUG
- xassert(1 <= q && q <= n);
- #endif
- if (p < 0)
- { /* xN[q] goes to its opposite bound */
- #ifdef GLP_DEBUG
- k = head[m+q]; /* x[k] = xN[q] */
- xassert(1 <= k && k <= m+n);
- xassert(type[k] == GLP_DB);
- #endif
- switch (stat[q])
- { case GLP_NL:
- /* xN[q] increases */
- stat[q] = GLP_NU;
- break;
- case GLP_NU:
- /* xN[q] decreases */
- stat[q] = GLP_NL;
- break;
- default:
- xassert(stat != stat);
- }
- }
- else
- { /* xB[p] leaves the basis, xN[q] enters the basis */
- #ifdef GLP_DEBUG
- xassert(1 <= p && p <= m);
- k = head[p]; /* x[k] = xB[p] */
- switch (p_stat)
- { case GLP_NL:
- /* xB[p] goes to its lower bound */
- xassert(type[k] == GLP_LO || type[k] == GLP_DB);
- break;
- case GLP_NU:
- /* xB[p] goes to its upper bound */
- xassert(type[k] == GLP_UP || type[k] == GLP_DB);
- break;
- case GLP_NS:
- /* xB[p] goes to its fixed value */
- xassert(type[k] == GLP_NS);
- break;
- default:
- xassert(p_stat != p_stat);
- }
- #endif
- /* xB[p] <-> xN[q] */
- k = head[p], head[p] = head[m+q], head[m+q] = k;
- stat[q] = (char)p_stat;
- }
- return;
- }
- /***********************************************************************
- * set_aux_obj - construct auxiliary objective function
- *
- * The auxiliary objective function is a separable piecewise linear
- * convex function, which is the sum of primal infeasibilities:
- *
- * z = t[1] + ... + t[m+n] -> minimize,
- *
- * where:
- *
- * / lb[k] - x[k], if x[k] < lb[k]
- * |
- * t[k] = < 0, if lb[k] <= x[k] <= ub[k]
- * |
- * \ x[k] - ub[k], if x[k] > ub[k]
- *
- * This routine computes objective coefficients for the current basis
- * and returns the number of non-zero terms t[k]. */
- static int set_aux_obj(struct csa *csa, double tol_bnd)
- { int m = csa->m;
- int n = csa->n;
- char *type = csa->type;
- double *lb = csa->lb;
- double *ub = csa->ub;
- double *coef = csa->coef;
- int *head = csa->head;
- double *bbar = csa->bbar;
- int i, k, cnt = 0;
- double eps;
- /* use a bit more restrictive tolerance */
- tol_bnd *= 0.90;
- /* clear all objective coefficients */
- for (k = 1; k <= m+n; k++)
- coef[k] = 0.0;
- /* walk through the list of basic variables */
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- if (type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] has lower bound */
- eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
- if (bbar[i] < lb[k] - eps)
- { /* and violates it */
- coef[k] = -1.0;
- cnt++;
- }
- }
- if (type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] has upper bound */
- eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
- if (bbar[i] > ub[k] + eps)
- { /* and violates it */
- coef[k] = +1.0;
- cnt++;
- }
- }
- }
- return cnt;
- }
- /***********************************************************************
- * set_orig_obj - restore original objective function
- *
- * This routine assigns scaled original objective coefficients to the
- * working objective function. */
- static void set_orig_obj(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- double *coef = csa->coef;
- double *obj = csa->obj;
- double zeta = csa->zeta;
- int i, j;
- for (i = 1; i <= m; i++)
- coef[i] = 0.0;
- for (j = 1; j <= n; j++)
- coef[m+j] = zeta * obj[j];
- return;
- }
- /***********************************************************************
- * check_stab - check numerical stability of basic solution
- *
- * If the current basic solution is primal feasible (or pseudo feasible
- * on phase I) within a tolerance, this routine returns zero, otherwise
- * it returns non-zero. */
- static int check_stab(struct csa *csa, double tol_bnd)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- char *type = csa->type;
- double *lb = csa->lb;
- double *ub = csa->ub;
- double *coef = csa->coef;
- int *head = csa->head;
- int phase = csa->phase;
- double *bbar = csa->bbar;
- int i, k;
- double eps;
- /* walk through the list of basic variables */
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (phase == 1 && coef[k] < 0.0)
- { /* x[k] must not be greater than its lower bound */
- #ifdef GLP_DEBUG
- xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX);
- #endif
- eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
- if (bbar[i] > lb[k] + eps) return 1;
- }
- else if (phase == 1 && coef[k] > 0.0)
- { /* x[k] must not be less than its upper bound */
- #ifdef GLP_DEBUG
- xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX);
- #endif
- eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
- if (bbar[i] < ub[k] - eps) return 1;
- }
- else
- { /* either phase = 1 and coef[k] = 0, or phase = 2 */
- if (type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] must not be less than its lower bound */
- eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
- if (bbar[i] < lb[k] - eps) return 1;
- }
- if (type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] must not be greater then its upper bound */
- eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
- if (bbar[i] > ub[k] + eps) return 1;
- }
- }
- }
- /* basic solution is primal feasible within a tolerance */
- return 0;
- }
- /***********************************************************************
- * check_feas - check primal feasibility of basic solution
- *
- * If the current basic solution is primal feasible within a tolerance,
- * this routine returns zero, otherwise it returns non-zero. */
- static int check_feas(struct csa *csa, double tol_bnd)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- char *type = csa->type;
- #endif
- double *lb = csa->lb;
- double *ub = csa->ub;
- double *coef = csa->coef;
- int *head = csa->head;
- double *bbar = csa->bbar;
- int i, k;
- double eps;
- xassert(csa->phase == 1);
- /* walk through the list of basic variables */
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (coef[k] < 0.0)
- { /* check if x[k] still violates its lower bound */
- #ifdef GLP_DEBUG
- xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX);
- #endif
- eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
- if (bbar[i] < lb[k] - eps) return 1;
- }
- else if (coef[k] > 0.0)
- { /* check if x[k] still violates its upper bound */
- #ifdef GLP_DEBUG
- xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX);
- #endif
- eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
- if (bbar[i] > ub[k] + eps) return 1;
- }
- }
- /* basic solution is primal feasible within a tolerance */
- return 0;
- }
- /***********************************************************************
- * eval_obj - compute original objective function
- *
- * This routine computes the current value of the original objective
- * function. */
- static double eval_obj(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- double *obj = csa->obj;
- int *head = csa->head;
- double *bbar = csa->bbar;
- int i, j, k;
- double sum;
- sum = obj[0];
- /* walk through the list of basic variables */
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k > m)
- sum += obj[k-m] * bbar[i];
- }
- /* walk through the list of non-basic variables */
- for (j = 1; j <= n; j++)
- { k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k > m)
- sum += obj[k-m] * get_xN(csa, j);
- }
- return sum;
- }
- /***********************************************************************
- * display - display the search progress
- *
- * This routine displays some information about the search progress
- * that includes:
- *
- * the search phase;
- *
- * the number of simplex iterations performed by the solver;
- *
- * the original objective value;
- *
- * the sum of (scaled) primal infeasibilities;
- *
- * the number of basic fixed variables. */
- static void display(struct csa *csa, const glp_smcp *parm, int spec)
- { int m = csa->m;
- #ifdef GLP_DEBUG
- int n = csa->n;
- #endif
- char *type = csa->type;
- double *lb = csa->lb;
- double *ub = csa->ub;
- int phase = csa->phase;
- int *head = csa->head;
- double *bbar = csa->bbar;
- int i, k, cnt;
- double sum;
- if (parm->msg_lev < GLP_MSG_ON) goto skip;
- if (parm->out_dly > 0 &&
- 1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
- goto skip;
- if (csa->it_cnt == csa->it_dpy) goto skip;
- if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
- /* compute the sum of primal infeasibilities and determine the
- number of basic fixed variables */
- sum = 0.0, cnt = 0;
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (type[k] == GLP_LO || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] has lower bound */
- if (bbar[i] < lb[k])
- sum += (lb[k] - bbar[i]);
- }
- if (type[k] == GLP_UP || type[k] == GLP_DB ||
- type[k] == GLP_FX)
- { /* x[k] has upper bound */
- if (bbar[i] > ub[k])
- sum += (bbar[i] - ub[k]);
- }
- if (type[k] == GLP_FX) cnt++;
- }
- xprintf("%c%6d: obj = %17.9e infeas = %10.3e (%d)\n",
- phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt);
- csa->it_dpy = csa->it_cnt;
- skip: return;
- }
- /***********************************************************************
- * store_sol - store basic solution back to the problem object
- *
- * This routine stores basic solution components back to the problem
- * object. */
- static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
- int d_stat, int ray)
- { int m = csa->m;
- int n = csa->n;
- double zeta = csa->zeta;
- int *head = csa->head;
- char *stat = csa->stat;
- double *bbar = csa->bbar;
- double *cbar = csa->cbar;
- int i, j, k;
- #ifdef GLP_DEBUG
- xassert(lp->m == m);
- xassert(lp->n == n);
- #endif
- /* basis factorization */
- #ifdef GLP_DEBUG
- xassert(!lp->valid && lp->bfd == NULL);
- xassert(csa->valid && csa->bfd != NULL);
- #endif
- lp->valid = 1, csa->valid = 0;
- lp->bfd = csa->bfd, csa->bfd = NULL;
- memcpy(&lp->head[1], &head[1], m * sizeof(int));
- /* basic solution status */
- lp->pbs_stat = p_stat;
- lp->dbs_stat = d_stat;
- /* objective function value */
- lp->obj_val = eval_obj(csa);
- /* simplex iteration count */
- lp->it_cnt = csa->it_cnt;
- /* unbounded ray */
- lp->some = ray;
- /* basic variables */
- for (i = 1; i <= m; i++)
- { k = head[i]; /* x[k] = xB[i] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { GLPROW *row = lp->row[k];
- row->stat = GLP_BS;
- row->bind = i;
- row->prim = bbar[i] / row->rii;
- row->dual = 0.0;
- }
- else
- { GLPCOL *col = lp->col[k-m];
- col->stat = GLP_BS;
- col->bind = i;
- col->prim = bbar[i] * col->sjj;
- col->dual = 0.0;
- }
- }
- /* non-basic variables */
- for (j = 1; j <= n; j++)
- { k = head[m+j]; /* x[k] = xN[j] */
- #ifdef GLP_DEBUG
- xassert(1 <= k && k <= m+n);
- #endif
- if (k <= m)
- { GLPROW *row = lp->row[k];
- row->stat = stat[j];
- row->bind = 0;
- #if 0
- row->prim = get_xN(csa, j) / row->rii;
- #else
- switch (stat[j])
- { case GLP_NL:
- row->prim = row->lb; break;
- case GLP_NU:
- row->prim = row->ub; break;
- case GLP_NF:
- row->prim = 0.0; break;
- case GLP_NS:
- row->prim = row->lb; break;
- default:
- xassert(stat != stat);
- }
- #endif
- row->dual = (cbar[j] * row->rii) / zeta;
- }
- else
- { GLPCOL *col = lp->col[k-m];
- col->stat = stat[j];
- col->bind = 0;
- #if 0
- col->prim = get_xN(csa, j) * col->sjj;
- #else
- switch (stat[j])
- { case GLP_NL:
- col->prim = col->lb; break;
- case GLP_NU:
- col->prim = col->ub; break;
- case GLP_NF:
- col->prim = 0.0; break;
- case GLP_NS:
- col->prim = col->lb; break;
- default:
- xassert(stat != stat);
- }
- #endif
- col->dual = (cbar[j] / col->sjj) / zeta;
- }
- }
- return;
- }
- /***********************************************************************
- * free_csa - deallocate common storage area
- *
- * This routine frees all the memory allocated to arrays in the common
- * storage area (CSA). */
- static void free_csa(struct csa *csa)
- { xfree(csa->type);
- xfree(csa->lb);
- xfree(csa->ub);
- xfree(csa->coef);
- xfree(csa->obj);
- xfree(csa->A_ptr);
- xfree(csa->A_ind);
- xfree(csa->A_val);
- xfree(csa->head);
- xfree(csa->stat);
- xfree(csa->N_ptr);
- xfree(csa->N_len);
- xfree(csa->N_ind);
- xfree(csa->N_val);
- xfree(csa->bbar);
- xfree(csa->cbar);
- xfree(csa->refsp);
- xfree(csa->gamma);
- xfree(csa->tcol_ind);
- xfree(csa->tcol_vec);
- xfree(csa->trow_ind);
- xfree(csa->trow_vec);
- xfree(csa->work1);
- xfree(csa->work2);
- xfree(csa->work3);
- xfree(csa->work4);
- xfree(csa);
- return;
- }
- /***********************************************************************
- * spx_primal - core LP solver based on the primal simplex method
- *
- * SYNOPSIS
- *
- * #include "glpspx.h"
- * int spx_primal(glp_prob *lp, const glp_smcp *parm);
- *
- * DESCRIPTION
- *
- * The routine spx_primal is a core LP solver based on the two-phase
- * primal simplex method.
- *
- * RETURNS
- *
- * 0 LP instance has been successfully solved.
- *
- * GLP_EITLIM
- * Iteration limit has been exhausted.
- *
- * GLP_ETMLIM
- * Time limit has been exhausted.
- *
- * GLP_EFAIL
- * The solver failed to solve LP instance. */
- int spx_primal(glp_prob *lp, const glp_smcp *parm)
- { struct csa *csa;
- int binv_st = 2;
- /* status of basis matrix factorization:
- 0 - invalid; 1 - just computed; 2 - updated */
- int bbar_st = 0;
- /* status of primal values of basic variables:
- 0 - invalid; 1 - just computed; 2 - updated */
- int cbar_st = 0;
- /* status of reduced costs of non-basic variables:
- 0 - invalid; 1 - just computed; 2 - updated */
- int rigorous = 0;
- /* rigorous mode flag; this flag is used to enable iterative
- refinement on computing pivot rows and columns of the simplex
- table */
- int check = 0;
- int p_stat, d_stat, ret;
- /* allocate and initialize the common storage area */
- csa = alloc_csa(lp);
- init_csa(csa, lp);
- if (parm->msg_lev >= GLP_MSG_DBG)
- xprintf("Objective scale factor = %g\n", csa->zeta);
- loop: /* main loop starts here */
- /* compute factorization of the basis matrix */
- if (binv_st == 0)
- { ret = invert_B(csa);
- if (ret != 0)
- { if (parm->msg_lev >= GLP_MSG_ERR)
- { xprintf("Error: unable to factorize the basis matrix (%d"
- ")\n", ret);
- xprintf("Sorry, basis recovery procedure not implemented"
- " yet\n");
- }
- xassert(!lp->valid && lp->bfd == NULL);
- lp->bfd = csa->bfd, csa->bfd = NULL;
- lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
- lp->obj_val = 0.0;
- lp->it_cnt = csa->it_cnt;
- lp->some = 0;
- ret = GLP_EFAIL;
- goto done;
- }
- csa->valid = 1;
- binv_st = 1; /* just computed */
- /* invalidate basic solution components */
- bbar_st = cbar_st = 0;
- }
- /* compute primal values of basic variables */
- if (bbar_st == 0)
- { eval_bbar(csa);
- bbar_st = 1; /* just computed */
- /* determine the search phase, if not determined yet */
- if (csa->phase == 0)
- { if (set_aux_obj(csa, parm->tol_bnd) > 0)
- { /* current basic solution is primal infeasible */
- /* start to minimize the sum of infeasibilities */
- csa->phase = 1;
- }
- else
- { /* current basic solution is primal feasible */
- /* start to minimize the original objective function */
- set_orig_obj(csa);
- csa->phase = 2;
- }
- xassert(check_stab(csa, parm->tol_bnd) == 0);
- /* working objective coefficients have been changed, so
- invalidate reduced costs */
- cbar_st = 0;
- display(csa, parm, 1);
- }
- /* make sure that the current basic solution remains primal
- feasible (or pseudo feasible on phase I) */
- if (check_stab(csa, parm->tol_bnd))
- { /* there are excessive bound violations due to round-off
- errors */
- if (parm->msg_lev >= GLP_MSG_ERR)
- xprintf("Warning: numerical instability (primal simplex,"
- " phase %s)\n", csa->phase == 1 ? "I" : "II");
- /* restart the search */
- csa->phase = 0;
- binv_st = 0;
- rigorous = 5;
- goto loop;
- }
- }
- xassert(csa->phase == 1 || csa->phase == 2);
- /* on phase I we do not need to wait until the current basic
- solution becomes dual feasible; it is sufficient to make sure
- that no basic variable violates its bounds */
- if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd))
- { /* the current basis is primal feasible; switch to phase II */
- csa->phase = 2;
- set_orig_obj(csa);
- cbar_st = 0;
- display(csa, parm, 1);
- }
- /* compute reduced costs of non-basic variables */
- if (cbar_st == 0)
- { eval_cbar(csa);
- cbar_st = 1; /* just computed */
- }
- /* redefine the reference space, if required */
- switch (parm->pricing)
- { case GLP_PT_STD:
- break;
- case GLP_PT_PSE:
- if (csa->refct == 0) reset_refsp(csa);
- break;
- default:
- xassert(parm != parm);
- }
- /* at this point the basis factorization and all basic solution
- components are valid */
- xassert(binv_st && bbar_st && cbar_st);
- /* check accuracy of current basic solution components (only for
- debugging) */
- if (check)
- { double e_bbar = err_in_bbar(csa);
- double e_cbar = err_in_cbar(csa);
- double e_gamma =
- (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
- xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
- e_bbar, e_cbar, e_gamma);
- xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
- }
- /* check if the iteration limit has been exhausted */
- if (parm->it_lim < INT_MAX &&
- csa->it_cnt - csa->it_beg >= parm->it_lim)
- { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
- { if (bbar_st != 1) bbar_st = 0;
- if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
- goto loop;
- }
- display(csa, parm, 1);
- if (parm->msg_lev >= GLP_MSG_ALL)
- xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
- switch (csa->phase)
- { case 1:
- p_stat = GLP_INFEAS;
- set_orig_obj(csa);
- eval_cbar(csa);
- break;
- case 2:
- p_stat = GLP_FEAS;
- break;
- default:
- xassert(csa != csa);
- }
- chuzc(csa, parm->tol_dj);
- d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
- store_sol(csa, lp, p_stat, d_stat, 0);
- ret = GLP_EITLIM;
- goto done;
- }
- /* check if the time limit has been exhausted */
- if (parm->tm_lim < INT_MAX &&
- 1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
- { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
- { if (bbar_st != 1) bbar_st = 0;
- if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
- goto loop;
- }
- display(csa, parm, 1);
- if (parm->msg_lev >= GLP_MSG_ALL)
- xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
- switch (csa->phase)
- { case 1:
- p_stat = GLP_INFEAS;
- set_orig_obj(csa);
- eval_cbar(csa);
- break;
- case 2:
- p_stat = GLP_FEAS;
- break;
- default:
- xassert(csa != csa);
- }
- chuzc(csa, parm->tol_dj);
- d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
- store_sol(csa, lp, p_stat, d_stat, 0);
- ret = GLP_ETMLIM;
- goto done;
- }
- /* display the search progress */
- display(csa, parm, 0);
- /* choose non-basic variable xN[q] */
- chuzc(csa, parm->tol_dj);
- if (csa->q == 0)
- { if (bbar_st != 1 || cbar_st != 1)
- { if (bbar_st != 1) bbar_st = 0;
- if (cbar_st != 1) cbar_st = 0;
- goto loop;
- }
- display(csa, parm, 1);
- switch (csa->phase)
- { case 1:
- if (parm->msg_lev >= GLP_MSG_ALL)
- xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
- p_stat = GLP_NOFEAS;
- set_orig_obj(csa);
- eval_cbar(csa);
- chuzc(csa, parm->tol_dj);
- d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
- break;
- case 2:
- if (parm->msg_lev >= GLP_MSG_ALL)
- xprintf("OPTIMAL SOLUTION FOUND\n");
- p_stat = d_stat = GLP_FEAS;
- break;
- default:
- xassert(csa != csa);
- }
- store_sol(csa, lp, p_stat, d_stat, 0);
- ret = 0;
- goto done;
- }
- /* compute pivot column of the simplex table */
- eval_tcol(csa);
- if (rigorous) refine_tcol(csa);
- sort_tcol(csa, parm->tol_piv);
- /* check accuracy of the reduced cost of xN[q] */
- { double d1 = csa->cbar[csa->q]; /* less accurate */
- double d2 = reeval_cost(csa); /* more accurate */
- xassert(d1 != 0.0);
- if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) ||
- !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0))
- { if (parm->msg_lev >= GLP_MSG_DBG)
- xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2);
- if (cbar_st != 1 || !rigorous)
- { if (cbar_st != 1) cbar_st = 0;
- rigorous = 5;
- goto loop;
- }
- }
- /* replace cbar[q] by more accurate value keeping its sign */
- if (d1 > 0.0)
- csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON);
- else
- csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON);
- }
- /* choose basic variable xB[p] */
- switch (parm->r_test)
- { case GLP_RT_STD:
- chuzr(csa, 0.0);
- break;
- case GLP_RT_HAR:
- chuzr(csa, 0.30 * parm->tol_bnd);
- break;
- default:
- xassert(parm != parm);
- }
- if (csa->p == 0)
- { if (bbar_st != 1 || cbar_st != 1 || !rigorous)
- { if (bbar_st != 1) bbar_st = 0;
- if (cbar_st != 1) cbar_st = 0;
- rigorous = 1;
- goto loop;
- }
- display(csa, parm, 1);
- switch (csa->phase)
- { case 1:
- if (parm->msg_lev >= GLP_MSG_ERR)
- xprintf("Error: unable to choose basic variable on ph"
- "ase I\n");
- xassert(!lp->valid && lp->bfd == NULL);
- lp->bfd = csa->bfd, csa->bfd = NULL;
- lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
- lp->obj_val = 0.0;
- lp->it_cnt = csa->it_cnt;
- lp->some = 0;
- ret = GLP_EFAIL;
- break;
- case 2:
- if (parm->msg_lev >= GLP_MSG_ALL)
- xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
- store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS,
- csa->head[csa->m+csa->q]);
- ret = 0;
- break;
- default:
- xassert(csa != csa);
- }
- goto done;
- }
- /* check if the pivot element is acceptable */
- if (csa->p > 0)
- { double piv = csa->tcol_vec[csa->p];
- double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max);
- if (fabs(piv) < eps)
- { if (parm->msg_lev >= GLP_MSG_DBG)
- xprintf("piv = %.12g; eps = %g\n", piv, eps);
- if (!rigorous)
- { rigorous = 5;
- goto loop;
- }
- }
- }
- /* now xN[q] and xB[p] have been chosen anyhow */
- /* compute pivot row of the simplex table */
- if (csa->p > 0)
- { double *rho = csa->work4;
- eval_rho(csa, rho);
- if (rigorous) refine_rho(csa, rho);
- eval_trow(csa, rho);
- }
- /* accuracy check based on the pivot element */
- if (csa->p > 0)
- { double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
- double piv2 = csa->trow_vec[csa->q]; /* less accurate */
- xassert(piv1 != 0.0);
- if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
- !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
- { if (parm->msg_lev >= GLP_MSG_DBG)
- xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
- if (binv_st != 1 || !rigorous)
- { if (binv_st != 1) binv_st = 0;
- rigorous = 5;
- goto loop;
- }
- /* use more accurate version in the pivot row */
- if (csa->trow_vec[csa->q] == 0.0)
- { csa->trow_nnz++;
- xassert(csa->trow_nnz <= csa->n);
- csa->trow_ind[csa->trow_nnz] = csa->q;
- }
- csa->trow_vec[csa->q] = piv1;
- }
- }
- /* update primal values of basic variables */
- update_bbar(csa);
- bbar_st = 2; /* updated */
- /* update reduced costs of non-basic variables */
- if (csa->p > 0)
- { update_cbar(csa);
- cbar_st = 2; /* updated */
- /* on phase I objective coefficient of xB[p] in the adjacent
- basis becomes zero */
- if (csa->phase == 1)
- { int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */
- csa->cbar[csa->q] -= csa->coef[k];
- csa->coef[k] = 0.0;
- }
- }
- /* update steepest edge coefficients */
- if (csa->p > 0)
- { switch (parm->pricing)
- { case GLP_PT_STD:
- break;
- case GLP_PT_PSE:
- if (csa->refct > 0) update_gamma(csa);
- break;
- default:
- xassert(parm != parm);
- }
- }
- /* update factorization of the basis matrix */
- if (csa->p > 0)
- { ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
- if (ret == 0)
- binv_st = 2; /* updated */
- else
- { csa->valid = 0;
- binv_st = 0; /* invalid */
- }
- }
- /* update matrix N */
- if (csa->p > 0)
- { del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
- if (csa->type[csa->head[csa->p]] != GLP_FX)
- add_N_col(csa, csa->q, csa->head[csa->p]);
- }
- /* change the basis header */
- change_basis(csa);
- /* iteration complete */
- csa->it_cnt++;
- if (rigorous > 0) rigorous--;
- goto loop;
- done: /* deallocate the common storage area */
- free_csa(csa);
- /* return to the calling program */
- return ret;
- }
- /* eof */
|