123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847 |
- /* glpspm.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glphbm.h"
- #include "glprgr.h"
- #include "glpspm.h"
- /***********************************************************************
- * NAME
- *
- * spm_create_mat - create general sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_create_mat(int m, int n);
- *
- * DESCRIPTION
- *
- * The routine spm_create_mat creates a general sparse matrix having
- * m rows and n columns. Being created the matrix is zero (empty), i.e.
- * has no elements.
- *
- * RETURNS
- *
- * The routine returns a pointer to the matrix created. */
- SPM *spm_create_mat(int m, int n)
- { SPM *A;
- xassert(0 <= m && m < INT_MAX);
- xassert(0 <= n && n < INT_MAX);
- A = xmalloc(sizeof(SPM));
- A->m = m;
- A->n = n;
- if (m == 0 || n == 0)
- { A->pool = NULL;
- A->row = NULL;
- A->col = NULL;
- }
- else
- { int i, j;
- A->pool = dmp_create_pool();
- A->row = xcalloc(1+m, sizeof(SPME *));
- for (i = 1; i <= m; i++) A->row[i] = NULL;
- A->col = xcalloc(1+n, sizeof(SPME *));
- for (j = 1; j <= n; j++) A->col[j] = NULL;
- }
- return A;
- }
- /***********************************************************************
- * NAME
- *
- * spm_new_elem - add new element to sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPME *spm_new_elem(SPM *A, int i, int j, double val);
- *
- * DESCRIPTION
- *
- * The routine spm_new_elem adds a new element to the specified sparse
- * matrix. Parameters i, j, and val specify the row number, the column
- * number, and a numerical value of the element, respectively.
- *
- * RETURNS
- *
- * The routine returns a pointer to the new element added. */
- SPME *spm_new_elem(SPM *A, int i, int j, double val)
- { SPME *e;
- xassert(1 <= i && i <= A->m);
- xassert(1 <= j && j <= A->n);
- e = dmp_get_atom(A->pool, sizeof(SPME));
- e->i = i;
- e->j = j;
- e->val = val;
- e->r_prev = NULL;
- e->r_next = A->row[i];
- if (e->r_next != NULL) e->r_next->r_prev = e;
- e->c_prev = NULL;
- e->c_next = A->col[j];
- if (e->c_next != NULL) e->c_next->c_prev = e;
- A->row[i] = A->col[j] = e;
- return e;
- }
- /***********************************************************************
- * NAME
- *
- * spm_delete_mat - delete general sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * void spm_delete_mat(SPM *A);
- *
- * DESCRIPTION
- *
- * The routine deletes the specified general sparse matrix freeing all
- * the memory allocated to this object. */
- void spm_delete_mat(SPM *A)
- { /* delete sparse matrix */
- if (A->pool != NULL) dmp_delete_pool(A->pool);
- if (A->row != NULL) xfree(A->row);
- if (A->col != NULL) xfree(A->col);
- xfree(A);
- return;
- }
- /***********************************************************************
- * NAME
- *
- * spm_test_mat_e - create test sparse matrix of E(n,c) class
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_test_mat_e(int n, int c);
- *
- * DESCRIPTION
- *
- * The routine spm_test_mat_e creates a test sparse matrix of E(n,c)
- * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
- * Methods for Sparse Matrices. Springer-Verlag, 1983.
- *
- * Matrix of E(n,c) class is a symmetric positive definite matrix of
- * the order n. It has the number 4 on its main diagonal and the number
- * -1 on its four co-diagonals, two of which are neighbour to the main
- * diagonal and two others are shifted from the main diagonal on the
- * distance c.
- *
- * It is necessary that n >= 3 and 2 <= c <= n-1.
- *
- * RETURNS
- *
- * The routine returns a pointer to the matrix created. */
- SPM *spm_test_mat_e(int n, int c)
- { SPM *A;
- int i;
- xassert(n >= 3 && 2 <= c && c <= n-1);
- A = spm_create_mat(n, n);
- for (i = 1; i <= n; i++)
- spm_new_elem(A, i, i, 4.0);
- for (i = 1; i <= n-1; i++)
- { spm_new_elem(A, i, i+1, -1.0);
- spm_new_elem(A, i+1, i, -1.0);
- }
- for (i = 1; i <= n-c; i++)
- { spm_new_elem(A, i, i+c, -1.0);
- spm_new_elem(A, i+c, i, -1.0);
- }
- return A;
- }
- /***********************************************************************
- * NAME
- *
- * spm_test_mat_d - create test sparse matrix of D(n,c) class
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_test_mat_d(int n, int c);
- *
- * DESCRIPTION
- *
- * The routine spm_test_mat_d creates a test sparse matrix of D(n,c)
- * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
- * Methods for Sparse Matrices. Springer-Verlag, 1983.
- *
- * Matrix of D(n,c) class is a non-singular matrix of the order n. It
- * has unity main diagonal, three co-diagonals above the main diagonal
- * on the distance c, which are cyclically continued below the main
- * diagonal, and a triangle block of the size 10x10 in the upper right
- * corner.
- *
- * It is necessary that n >= 14 and 1 <= c <= n-13.
- *
- * RETURNS
- *
- * The routine returns a pointer to the matrix created. */
- SPM *spm_test_mat_d(int n, int c)
- { SPM *A;
- int i, j;
- xassert(n >= 14 && 1 <= c && c <= n-13);
- A = spm_create_mat(n, n);
- for (i = 1; i <= n; i++)
- spm_new_elem(A, i, i, 1.0);
- for (i = 1; i <= n-c; i++)
- spm_new_elem(A, i, i+c, (double)(i+1));
- for (i = n-c+1; i <= n; i++)
- spm_new_elem(A, i, i-n+c, (double)(i+1));
- for (i = 1; i <= n-c-1; i++)
- spm_new_elem(A, i, i+c+1, (double)(-i));
- for (i = n-c; i <= n; i++)
- spm_new_elem(A, i, i-n+c+1, (double)(-i));
- for (i = 1; i <= n-c-2; i++)
- spm_new_elem(A, i, i+c+2, 16.0);
- for (i = n-c-1; i <= n; i++)
- spm_new_elem(A, i, i-n+c+2, 16.0);
- for (j = 1; j <= 10; j++)
- for (i = 1; i <= 11-j; i++)
- spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j);
- return A;
- }
- /***********************************************************************
- * NAME
- *
- * spm_show_mat - write sparse matrix pattern in BMP file format
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * int spm_show_mat(const SPM *A, const char *fname);
- *
- * DESCRIPTION
- *
- * The routine spm_show_mat writes pattern of the specified sparse
- * matrix in uncompressed BMP file format (Windows bitmap) to a binary
- * file whose name is specified by the character string fname.
- *
- * Each pixel corresponds to one matrix element. The pixel colors have
- * the following meaning:
- *
- * Black structurally zero element
- * White positive element
- * Cyan negative element
- * Green zero element
- * Red duplicate element
- *
- * RETURNS
- *
- * If no error occured, the routine returns zero. Otherwise, it prints
- * an appropriate error message and returns non-zero. */
- int spm_show_mat(const SPM *A, const char *fname)
- { int m = A->m;
- int n = A->n;
- int i, j, k, ret;
- char *map;
- xprintf("spm_show_mat: writing matrix pattern to `%s'...\n",
- fname);
- xassert(1 <= m && m <= 32767);
- xassert(1 <= n && n <= 32767);
- map = xmalloc(m * n);
- memset(map, 0x08, m * n);
- for (i = 1; i <= m; i++)
- { SPME *e;
- for (e = A->row[i]; e != NULL; e = e->r_next)
- { j = e->j;
- xassert(1 <= j && j <= n);
- k = n * (i - 1) + (j - 1);
- if (map[k] != 0x08)
- map[k] = 0x0C;
- else if (e->val > 0.0)
- map[k] = 0x0F;
- else if (e->val < 0.0)
- map[k] = 0x0B;
- else
- map[k] = 0x0A;
- }
- }
- ret = rgr_write_bmp16(fname, m, n, map);
- xfree(map);
- return ret;
- }
- /***********************************************************************
- * NAME
- *
- * spm_read_hbm - read sparse matrix in Harwell-Boeing format
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_read_hbm(const char *fname);
- *
- * DESCRIPTION
- *
- * The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing
- * format from a text file whose name is the character string fname.
- *
- * Detailed description of the Harwell-Boeing format recognised by this
- * routine can be found in the following report:
- *
- * I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
- * Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
- *
- * NOTE
- *
- * The routine spm_read_hbm reads the matrix "as is", due to which zero
- * and/or duplicate elements can appear in the matrix.
- *
- * RETURNS
- *
- * If no error occured, the routine returns a pointer to the matrix
- * created. Otherwise, the routine prints an appropriate error message
- * and returns NULL. */
- SPM *spm_read_hbm(const char *fname)
- { SPM *A = NULL;
- HBM *hbm;
- int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind;
- double val, *values;
- char *mxtype;
- hbm = hbm_read_mat(fname);
- if (hbm == NULL)
- { xprintf("spm_read_hbm: unable to read matrix\n");
- goto fini;
- }
- mxtype = hbm->mxtype;
- nrow = hbm->nrow;
- ncol = hbm->ncol;
- nnzero = hbm->nnzero;
- colptr = hbm->colptr;
- rowind = hbm->rowind;
- values = hbm->values;
- if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 ||
- strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 ||
- strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0))
- { xprintf("spm_read_hbm: matrix type `%s' not supported\n",
- mxtype);
- goto fini;
- }
- A = spm_create_mat(nrow, ncol);
- if (mxtype[1] == 'S' || mxtype[1] == 'U')
- xassert(nrow == ncol);
- for (j = 1; j <= ncol; j++)
- { beg = colptr[j];
- end = colptr[j+1];
- xassert(1 <= beg && beg <= end && end <= nnzero + 1);
- for (ptr = beg; ptr < end; ptr++)
- { i = rowind[ptr];
- xassert(1 <= i && i <= nrow);
- if (mxtype[0] == 'R')
- val = values[ptr];
- else
- val = 1.0;
- spm_new_elem(A, i, j, val);
- if (mxtype[1] == 'S' && i != j)
- spm_new_elem(A, j, i, val);
- }
- }
- fini: if (hbm != NULL) hbm_free_mat(hbm);
- return A;
- }
- /***********************************************************************
- * NAME
- *
- * spm_count_nnz - determine number of non-zeros in sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * int spm_count_nnz(const SPM *A);
- *
- * RETURNS
- *
- * The routine spm_count_nnz returns the number of structural non-zero
- * elements in the specified sparse matrix. */
- int spm_count_nnz(const SPM *A)
- { SPME *e;
- int i, nnz = 0;
- for (i = 1; i <= A->m; i++)
- for (e = A->row[i]; e != NULL; e = e->r_next) nnz++;
- return nnz;
- }
- /***********************************************************************
- * NAME
- *
- * spm_drop_zeros - remove zero elements from sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * int spm_drop_zeros(SPM *A, double eps);
- *
- * DESCRIPTION
- *
- * The routine spm_drop_zeros removes all elements from the specified
- * sparse matrix, whose absolute value is less than eps.
- *
- * If the parameter eps is 0, only zero elements are removed from the
- * matrix.
- *
- * RETURNS
- *
- * The routine returns the number of elements removed. */
- int spm_drop_zeros(SPM *A, double eps)
- { SPME *e, *next;
- int i, count = 0;
- for (i = 1; i <= A->m; i++)
- { for (e = A->row[i]; e != NULL; e = next)
- { next = e->r_next;
- if (e->val == 0.0 || fabs(e->val) < eps)
- { /* remove element from the row list */
- if (e->r_prev == NULL)
- A->row[e->i] = e->r_next;
- else
- e->r_prev->r_next = e->r_next;
- if (e->r_next == NULL)
- ;
- else
- e->r_next->r_prev = e->r_prev;
- /* remove element from the column list */
- if (e->c_prev == NULL)
- A->col[e->j] = e->c_next;
- else
- e->c_prev->c_next = e->c_next;
- if (e->c_next == NULL)
- ;
- else
- e->c_next->c_prev = e->c_prev;
- /* return element to the memory pool */
- dmp_free_atom(A->pool, e, sizeof(SPME));
- count++;
- }
- }
- }
- return count;
- }
- /***********************************************************************
- * NAME
- *
- * spm_read_mat - read sparse matrix from text file
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_read_mat(const char *fname);
- *
- * DESCRIPTION
- *
- * The routine reads a sparse matrix from a text file whose name is
- * specified by the parameter fname.
- *
- * For the file format see description of the routine spm_write_mat.
- *
- * RETURNS
- *
- * On success the routine returns a pointer to the matrix created,
- * otherwise NULL. */
- #if 1
- SPM *spm_read_mat(const char *fname)
- { xassert(fname != fname);
- return NULL;
- }
- #else
- SPM *spm_read_mat(const char *fname)
- { SPM *A = NULL;
- PDS *pds;
- jmp_buf jump;
- int i, j, k, m, n, nnz, fail = 0;
- double val;
- xprintf("spm_read_mat: reading matrix from `%s'...\n", fname);
- pds = pds_open_file(fname);
- if (pds == NULL)
- { xprintf("spm_read_mat: unable to open `%s' - %s\n", fname,
- strerror(errno));
- fail = 1;
- goto done;
- }
- if (setjmp(jump))
- { fail = 1;
- goto done;
- }
- pds_set_jump(pds, jump);
- /* number of rows, number of columns, number of non-zeros */
- m = pds_scan_int(pds);
- if (m < 0)
- pds_error(pds, "invalid number of rows\n");
- n = pds_scan_int(pds);
- if (n < 0)
- pds_error(pds, "invalid number of columns\n");
- nnz = pds_scan_int(pds);
- if (nnz < 0)
- pds_error(pds, "invalid number of non-zeros\n");
- /* create matrix */
- xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n",
- m, n, nnz);
- A = spm_create_mat(m, n);
- /* read matrix elements */
- for (k = 1; k <= nnz; k++)
- { /* row index, column index, element value */
- i = pds_scan_int(pds);
- if (!(1 <= i && i <= m))
- pds_error(pds, "row index out of range\n");
- j = pds_scan_int(pds);
- if (!(1 <= j && j <= n))
- pds_error(pds, "column index out of range\n");
- val = pds_scan_num(pds);
- /* add new element to the matrix */
- spm_new_elem(A, i, j, val);
- }
- xprintf("spm_read_mat: %d lines were read\n", pds->count);
- done: if (pds != NULL) pds_close_file(pds);
- if (fail && A != NULL) spm_delete_mat(A), A = NULL;
- return A;
- }
- #endif
- /***********************************************************************
- * NAME
- *
- * spm_write_mat - write sparse matrix to text file
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * int spm_write_mat(const SPM *A, const char *fname);
- *
- * DESCRIPTION
- *
- * The routine spm_write_mat writes the specified sparse matrix to a
- * text file whose name is specified by the parameter fname. This file
- * can be read back with the routine spm_read_mat.
- *
- * RETURNS
- *
- * On success the routine returns zero, otherwise non-zero.
- *
- * FILE FORMAT
- *
- * The file created by the routine spm_write_mat is a plain text file,
- * which contains the following information:
- *
- * m n nnz
- * row[1] col[1] val[1]
- * row[2] col[2] val[2]
- * . . .
- * row[nnz] col[nnz] val[nnz]
- *
- * where:
- * m is the number of rows;
- * n is the number of columns;
- * nnz is the number of non-zeros;
- * row[k], k = 1,...,nnz, are row indices;
- * col[k], k = 1,...,nnz, are column indices;
- * val[k], k = 1,...,nnz, are element values. */
- #if 1
- int spm_write_mat(const SPM *A, const char *fname)
- { xassert(A != A);
- xassert(fname != fname);
- return 0;
- }
- #else
- int spm_write_mat(const SPM *A, const char *fname)
- { FILE *fp;
- int i, nnz, ret = 0;
- xprintf("spm_write_mat: writing matrix to `%s'...\n", fname);
- fp = fopen(fname, "w");
- if (fp == NULL)
- { xprintf("spm_write_mat: unable to create `%s' - %s\n", fname,
- strerror(errno));
- ret = 1;
- goto done;
- }
- /* number of rows, number of columns, number of non-zeros */
- nnz = spm_count_nnz(A);
- fprintf(fp, "%d %d %d\n", A->m, A->n, nnz);
- /* walk through rows of the matrix */
- for (i = 1; i <= A->m; i++)
- { SPME *e;
- /* walk through elements of i-th row */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- { /* row index, column index, element value */
- fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val);
- }
- }
- fflush(fp);
- if (ferror(fp))
- { xprintf("spm_write_mat: writing error on `%s' - %s\n", fname,
- strerror(errno));
- ret = 1;
- goto done;
- }
- xprintf("spm_write_mat: %d lines were written\n", 1 + nnz);
- done: if (fp != NULL) fclose(fp);
- return ret;
- }
- #endif
- /***********************************************************************
- * NAME
- *
- * spm_transpose - transpose sparse matrix
- *
- * SYNOPSIS
- *
- * #include "glpspm.h"
- * SPM *spm_transpose(const SPM *A);
- *
- * RETURNS
- *
- * The routine computes and returns sparse matrix B, which is a matrix
- * transposed to sparse matrix A. */
- SPM *spm_transpose(const SPM *A)
- { SPM *B;
- int i;
- B = spm_create_mat(A->n, A->m);
- for (i = 1; i <= A->m; i++)
- { SPME *e;
- for (e = A->row[i]; e != NULL; e = e->r_next)
- spm_new_elem(B, e->j, i, e->val);
- }
- return B;
- }
- SPM *spm_add_sym(const SPM *A, const SPM *B)
- { /* add two sparse matrices (symbolic phase) */
- SPM *C;
- int i, j, *flag;
- xassert(A->m == B->m);
- xassert(A->n == B->n);
- /* create resultant matrix */
- C = spm_create_mat(A->m, A->n);
- /* allocate and clear the flag array */
- flag = xcalloc(1+C->n, sizeof(int));
- for (j = 1; j <= C->n; j++)
- flag[j] = 0;
- /* compute pattern of C = A + B */
- for (i = 1; i <= C->m; i++)
- { SPME *e;
- /* at the beginning i-th row of C is empty */
- /* (i-th row of C) := (i-th row of C) union (i-th row of A) */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- { /* (note that i-th row of A may have duplicate elements) */
- j = e->j;
- if (!flag[j])
- { spm_new_elem(C, i, j, 0.0);
- flag[j] = 1;
- }
- }
- /* (i-th row of C) := (i-th row of C) union (i-th row of B) */
- for (e = B->row[i]; e != NULL; e = e->r_next)
- { /* (note that i-th row of B may have duplicate elements) */
- j = e->j;
- if (!flag[j])
- { spm_new_elem(C, i, j, 0.0);
- flag[j] = 1;
- }
- }
- /* reset the flag array */
- for (e = C->row[i]; e != NULL; e = e->r_next)
- flag[e->j] = 0;
- }
- /* check and deallocate the flag array */
- for (j = 1; j <= C->n; j++)
- xassert(!flag[j]);
- xfree(flag);
- return C;
- }
- void spm_add_num(SPM *C, double alfa, const SPM *A, double beta,
- const SPM *B)
- { /* add two sparse matrices (numeric phase) */
- int i, j;
- double *work;
- /* allocate and clear the working array */
- work = xcalloc(1+C->n, sizeof(double));
- for (j = 1; j <= C->n; j++)
- work[j] = 0.0;
- /* compute matrix C = alfa * A + beta * B */
- for (i = 1; i <= C->n; i++)
- { SPME *e;
- /* work := alfa * (i-th row of A) + beta * (i-th row of B) */
- /* (note that A and/or B may have duplicate elements) */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- work[e->j] += alfa * e->val;
- for (e = B->row[i]; e != NULL; e = e->r_next)
- work[e->j] += beta * e->val;
- /* (i-th row of C) := work, work := 0 */
- for (e = C->row[i]; e != NULL; e = e->r_next)
- { j = e->j;
- e->val = work[j];
- work[j] = 0.0;
- }
- }
- /* check and deallocate the working array */
- for (j = 1; j <= C->n; j++)
- xassert(work[j] == 0.0);
- xfree(work);
- return;
- }
- SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B)
- { /* add two sparse matrices (driver routine) */
- SPM *C;
- C = spm_add_sym(A, B);
- spm_add_num(C, alfa, A, beta, B);
- return C;
- }
- SPM *spm_mul_sym(const SPM *A, const SPM *B)
- { /* multiply two sparse matrices (symbolic phase) */
- int i, j, k, *flag;
- SPM *C;
- xassert(A->n == B->m);
- /* create resultant matrix */
- C = spm_create_mat(A->m, B->n);
- /* allocate and clear the flag array */
- flag = xcalloc(1+C->n, sizeof(int));
- for (j = 1; j <= C->n; j++)
- flag[j] = 0;
- /* compute pattern of C = A * B */
- for (i = 1; i <= C->m; i++)
- { SPME *e, *ee;
- /* compute pattern of i-th row of C */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- { k = e->j;
- for (ee = B->row[k]; ee != NULL; ee = ee->r_next)
- { j = ee->j;
- /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */
- if (!flag[j])
- { /* c[i,j] does not exist, so create it */
- spm_new_elem(C, i, j, 0.0);
- flag[j] = 1;
- }
- }
- }
- /* reset the flag array */
- for (e = C->row[i]; e != NULL; e = e->r_next)
- flag[e->j] = 0;
- }
- /* check and deallocate the flag array */
- for (j = 1; j <= C->n; j++)
- xassert(!flag[j]);
- xfree(flag);
- return C;
- }
- void spm_mul_num(SPM *C, const SPM *A, const SPM *B)
- { /* multiply two sparse matrices (numeric phase) */
- int i, j;
- double *work;
- /* allocate and clear the working array */
- work = xcalloc(1+A->n, sizeof(double));
- for (j = 1; j <= A->n; j++)
- work[j] = 0.0;
- /* compute matrix C = A * B */
- for (i = 1; i <= C->m; i++)
- { SPME *e, *ee;
- double temp;
- /* work := (i-th row of A) */
- /* (note that A may have duplicate elements) */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- work[e->j] += e->val;
- /* compute i-th row of C */
- for (e = C->row[i]; e != NULL; e = e->r_next)
- { j = e->j;
- /* c[i,j] := work * (j-th column of B) */
- temp = 0.0;
- for (ee = B->col[j]; ee != NULL; ee = ee->c_next)
- temp += work[ee->i] * ee->val;
- e->val = temp;
- }
- /* reset the working array */
- for (e = A->row[i]; e != NULL; e = e->r_next)
- work[e->j] = 0.0;
- }
- /* check and deallocate the working array */
- for (j = 1; j <= A->n; j++)
- xassert(work[j] == 0.0);
- xfree(work);
- return;
- }
- SPM *spm_mul_mat(const SPM *A, const SPM *B)
- { /* multiply two sparse matrices (driver routine) */
- SPM *C;
- C = spm_mul_sym(A, B);
- spm_mul_num(C, A, B);
- return C;
- }
- PER *spm_create_per(int n)
- { /* create permutation matrix */
- PER *P;
- int k;
- xassert(n >= 0);
- P = xmalloc(sizeof(PER));
- P->n = n;
- P->row = xcalloc(1+n, sizeof(int));
- P->col = xcalloc(1+n, sizeof(int));
- /* initially it is identity matrix */
- for (k = 1; k <= n; k++)
- P->row[k] = P->col[k] = k;
- return P;
- }
- void spm_check_per(PER *P)
- { /* check permutation matrix for correctness */
- int i, j;
- xassert(P->n >= 0);
- for (i = 1; i <= P->n; i++)
- { j = P->row[i];
- xassert(1 <= j && j <= P->n);
- xassert(P->col[j] == i);
- }
- return;
- }
- void spm_delete_per(PER *P)
- { /* delete permutation matrix */
- xfree(P->row);
- xfree(P->col);
- xfree(P);
- return;
- }
- /* eof */
|