123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 |
- /* glpscf.c (Schur complement factorization) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpscf.h"
- #define xfault xerror
- #define _GLPSCF_DEBUG 0
- #define eps 1e-10
- /***********************************************************************
- * NAME
- *
- * scf_create_it - create Schur complement factorization
- *
- * SYNOPSIS
- *
- * #include "glpscf.h"
- * SCF *scf_create_it(int n_max);
- *
- * DESCRIPTION
- *
- * The routine scf_create_it creates the factorization of matrix C,
- * which initially has no rows and columns.
- *
- * The parameter n_max specifies the maximal order of matrix C to be
- * factorized, 1 <= n_max <= 32767.
- *
- * RETURNS
- *
- * The routine scf_create_it returns a pointer to the structure SCF,
- * which defines the factorization. */
- SCF *scf_create_it(int n_max)
- { SCF *scf;
- #if _GLPSCF_DEBUG
- xprintf("scf_create_it: warning: debug mode enabled\n");
- #endif
- if (!(1 <= n_max && n_max <= 32767))
- xfault("scf_create_it: n_max = %d; invalid parameter\n",
- n_max);
- scf = xmalloc(sizeof(SCF));
- scf->n_max = n_max;
- scf->n = 0;
- scf->f = xcalloc(1 + n_max * n_max, sizeof(double));
- scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double));
- scf->p = xcalloc(1 + n_max, sizeof(int));
- scf->t_opt = SCF_TBG;
- scf->rank = 0;
- #if _GLPSCF_DEBUG
- scf->c = xcalloc(1 + n_max * n_max, sizeof(double));
- #else
- scf->c = NULL;
- #endif
- scf->w = xcalloc(1 + n_max, sizeof(double));
- return scf;
- }
- /***********************************************************************
- * The routine f_loc determines location of matrix element F[i,j] in
- * the one-dimensional array f. */
- static int f_loc(SCF *scf, int i, int j)
- { int n_max = scf->n_max;
- int n = scf->n;
- xassert(1 <= i && i <= n);
- xassert(1 <= j && j <= n);
- return (i - 1) * n_max + j;
- }
- /***********************************************************************
- * The routine u_loc determines location of matrix element U[i,j] in
- * the one-dimensional array u. */
- static int u_loc(SCF *scf, int i, int j)
- { int n_max = scf->n_max;
- int n = scf->n;
- xassert(1 <= i && i <= n);
- xassert(i <= j && j <= n);
- return (i - 1) * n_max + j - i * (i - 1) / 2;
- }
- /***********************************************************************
- * The routine bg_transform applies Bartels-Golub version of gaussian
- * elimination to restore triangular structure of matrix U.
- *
- * On entry matrix U has the following structure:
- *
- * 1 k n
- * 1 * * * * * * * * * *
- * . * * * * * * * * *
- * . . * * * * * * * *
- * . . . * * * * * * *
- * k . . . . * * * * * *
- * . . . . . * * * * *
- * . . . . . . * * * *
- * . . . . . . . * * *
- * . . . . . . . . * *
- * n . . . . # # # # # #
- *
- * where '#' is a row spike to be eliminated.
- *
- * Elements of n-th row are passed separately in locations un[k], ...,
- * un[n]. On exit the content of the array un is destroyed.
- *
- * REFERENCES
- *
- * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
- * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
- static void bg_transform(SCF *scf, int k, double un[])
- { int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int j, k1, kj, kk, n1, nj;
- double t;
- xassert(1 <= k && k <= n);
- /* main elimination loop */
- for (k = k; k < n; k++)
- { /* determine location of U[k,k] */
- kk = u_loc(scf, k, k);
- /* determine location of F[k,1] */
- k1 = f_loc(scf, k, 1);
- /* determine location of F[n,1] */
- n1 = f_loc(scf, n, 1);
- /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to
- provide |U[k,k]| >= |U[n,k]| */
- if (fabs(u[kk]) < fabs(un[k]))
- { /* interchange k-th and n-th rows of matrix U */
- for (j = k, kj = kk; j <= n; j++, kj++)
- t = u[kj], u[kj] = un[j], un[j] = t;
- /* interchange k-th and n-th rows of matrix F to keep the
- main equality F * C = U * P */
- for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
- t = f[kj], f[kj] = f[nj], f[nj] = t;
- }
- /* now |U[k,k]| >= |U[n,k]| */
- /* if U[k,k] is too small in the magnitude, replace U[k,k] and
- U[n,k] by exact zero */
- if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0;
- /* if U[n,k] is already zero, elimination is not needed */
- if (un[k] == 0.0) continue;
- /* compute gaussian multiplier t = U[n,k] / U[k,k] */
- t = un[k] / u[kk];
- /* apply gaussian elimination to nullify U[n,k] */
- /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */
- for (j = k+1, kj = kk+1; j <= n; j++, kj++)
- un[j] -= t * u[kj];
- /* (n-th row of F) := (n-th row of F) - t * (k-th row of F)
- to keep the main equality F * C = U * P */
- for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
- f[nj] -= t * f[kj];
- }
- /* if U[n,n] is too small in the magnitude, replace it by exact
- zero */
- if (fabs(un[n]) < eps) un[n] = 0.0;
- /* store U[n,n] in a proper location */
- u[u_loc(scf, n, n)] = un[n];
- return;
- }
- /***********************************************************************
- * The routine givens computes the parameters of Givens plane rotation
- * c = cos(teta) and s = sin(teta) such that:
- *
- * ( c -s ) ( a ) ( r )
- * ( ) ( ) = ( ) ,
- * ( s c ) ( b ) ( 0 )
- *
- * where a and b are given scalars.
- *
- * REFERENCES
- *
- * G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */
- static void givens(double a, double b, double *c, double *s)
- { double t;
- if (b == 0.0)
- (*c) = 1.0, (*s) = 0.0;
- else if (fabs(a) <= fabs(b))
- t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t;
- else
- t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t;
- return;
- }
- /*----------------------------------------------------------------------
- * The routine gr_transform applies Givens plane rotations to restore
- * triangular structure of matrix U.
- *
- * On entry matrix U has the following structure:
- *
- * 1 k n
- * 1 * * * * * * * * * *
- * . * * * * * * * * *
- * . . * * * * * * * *
- * . . . * * * * * * *
- * k . . . . * * * * * *
- * . . . . . * * * * *
- * . . . . . . * * * *
- * . . . . . . . * * *
- * . . . . . . . . * *
- * n . . . . # # # # # #
- *
- * where '#' is a row spike to be eliminated.
- *
- * Elements of n-th row are passed separately in locations un[k], ...,
- * un[n]. On exit the content of the array un is destroyed.
- *
- * REFERENCES
- *
- * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
- * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
- static void gr_transform(SCF *scf, int k, double un[])
- { int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int j, k1, kj, kk, n1, nj;
- double c, s;
- xassert(1 <= k && k <= n);
- /* main elimination loop */
- for (k = k; k < n; k++)
- { /* determine location of U[k,k] */
- kk = u_loc(scf, k, k);
- /* determine location of F[k,1] */
- k1 = f_loc(scf, k, 1);
- /* determine location of F[n,1] */
- n1 = f_loc(scf, n, 1);
- /* if both U[k,k] and U[n,k] are too small in the magnitude,
- replace them by exact zero */
- if (fabs(u[kk]) < eps && fabs(un[k]) < eps)
- u[kk] = un[k] = 0.0;
- /* if U[n,k] is already zero, elimination is not needed */
- if (un[k] == 0.0) continue;
- /* compute the parameters of Givens plane rotation */
- givens(u[kk], un[k], &c, &s);
- /* apply Givens rotation to k-th and n-th rows of matrix U */
- for (j = k, kj = kk; j <= n; j++, kj++)
- { double ukj = u[kj], unj = un[j];
- u[kj] = c * ukj - s * unj;
- un[j] = s * ukj + c * unj;
- }
- /* apply Givens rotation to k-th and n-th rows of matrix F
- to keep the main equality F * C = U * P */
- for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
- { double fkj = f[kj], fnj = f[nj];
- f[kj] = c * fkj - s * fnj;
- f[nj] = s * fkj + c * fnj;
- }
- }
- /* if U[n,n] is too small in the magnitude, replace it by exact
- zero */
- if (fabs(un[n]) < eps) un[n] = 0.0;
- /* store U[n,n] in a proper location */
- u[u_loc(scf, n, n)] = un[n];
- return;
- }
- /***********************************************************************
- * The routine transform restores triangular structure of matrix U.
- * It is a driver to the routines bg_transform and gr_transform (see
- * comments to these routines above). */
- static void transform(SCF *scf, int k, double un[])
- { switch (scf->t_opt)
- { case SCF_TBG:
- bg_transform(scf, k, un);
- break;
- case SCF_TGR:
- gr_transform(scf, k, un);
- break;
- default:
- xassert(scf != scf);
- }
- return;
- }
- /***********************************************************************
- * The routine estimate_rank estimates the rank of matrix C.
- *
- * Since all transformations applied to matrix F are non-singular,
- * and F is assumed to be well conditioned, from the main equaility
- * F * C = U * P it follows that rank(C) = rank(U), where rank(U) is
- * estimated as the number of non-zero diagonal elements of U. */
- static int estimate_rank(SCF *scf)
- { int n_max = scf->n_max;
- int n = scf->n;
- double *u = scf->u;
- int i, ii, inc, rank = 0;
- for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n;
- i++, ii += inc, inc--)
- if (u[ii] != 0.0) rank++;
- return rank;
- }
- #if _GLPSCF_DEBUG
- /***********************************************************************
- * The routine check_error computes the maximal relative error between
- * left- and right-hand sides of the main equality F * C = U * P. (This
- * routine is intended only for debugging.) */
- static void check_error(SCF *scf, const char *func)
- { int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int *p = scf->p;
- double *c = scf->c;
- int i, j, k;
- double d, dmax = 0.0, s, t;
- xassert(c != NULL);
- for (i = 1; i <= n; i++)
- { for (j = 1; j <= n; j++)
- { /* compute element (i,j) of product F * C */
- s = 0.0;
- for (k = 1; k <= n; k++)
- s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)];
- /* compute element (i,j) of product U * P */
- k = p[j];
- t = (i <= k ? u[u_loc(scf, i, k)] : 0.0);
- /* compute the maximal relative error */
- d = fabs(s - t) / (1.0 + fabs(t));
- if (dmax < d) dmax = d;
- }
- }
- if (dmax > 1e-8)
- xprintf("%s: dmax = %g; relative error too large\n", func,
- dmax);
- return;
- }
- #endif
- /***********************************************************************
- * NAME
- *
- * scf_update_exp - update factorization on expanding C
- *
- * SYNOPSIS
- *
- * #include "glpscf.h"
- * int scf_update_exp(SCF *scf, const double x[], const double y[],
- * double z);
- *
- * DESCRIPTION
- *
- * The routine scf_update_exp updates the factorization of matrix C on
- * expanding it by adding a new row and column as follows:
- *
- * ( C x )
- * new C = ( )
- * ( y' z )
- *
- * where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is
- * a new diagonal element.
- *
- * If on entry the factorization is empty, the parameters x and y can
- * be specified as NULL.
- *
- * RETURNS
- *
- * 0 The factorization has been successfully updated.
- *
- * SCF_ESING
- * The factorization has been successfully updated, however, new
- * matrix C is singular within working precision. Note that the new
- * factorization remains valid.
- *
- * SCF_ELIMIT
- * There is not enough room to expand the factorization, because
- * n = n_max. The factorization remains unchanged.
- *
- * ALGORITHM
- *
- * We can see that:
- *
- * ( F 0 ) ( C x ) ( FC Fx ) ( UP Fx )
- * ( ) ( ) = ( ) = ( ) =
- * ( 0 1 ) ( y' z ) ( y' z ) ( y' z )
- *
- * ( U Fx ) ( P 0 )
- * = ( ) ( ),
- * ( y'P' z ) ( 0 1 )
- *
- * therefore to keep the main equality F * C = U * P we can take:
- *
- * ( F 0 ) ( U Fx ) ( P 0 )
- * new F = ( ), new U = ( ), new P = ( ),
- * ( 0 1 ) ( y'P' z ) ( 0 1 )
- *
- * and eliminate the row spike y'P' in the last row of new U to restore
- * its upper triangular structure. */
- int scf_update_exp(SCF *scf, const double x[], const double y[],
- double z)
- { int n_max = scf->n_max;
- int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int *p = scf->p;
- #if _GLPSCF_DEBUG
- double *c = scf->c;
- #endif
- double *un = scf->w;
- int i, ij, in, j, k, nj, ret = 0;
- double t;
- /* check if the factorization can be expanded */
- if (n == n_max)
- { /* there is not enough room */
- ret = SCF_ELIMIT;
- goto done;
- }
- /* increase the order of the factorization */
- scf->n = ++n;
- /* fill new zero column of matrix F */
- for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
- f[in] = 0.0;
- /* fill new zero row of matrix F */
- for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
- f[nj] = 0.0;
- /* fill new unity diagonal element of matrix F */
- f[f_loc(scf, n, n)] = 1.0;
- /* compute new column of matrix U, which is (old F) * x */
- for (i = 1; i < n; i++)
- { /* u[i,n] := (i-th row of old F) * x */
- t = 0.0;
- for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++)
- t += f[ij] * x[j];
- u[u_loc(scf, i, n)] = t;
- }
- /* compute new (spiked) row of matrix U, which is (old P) * y */
- for (j = 1; j < n; j++) un[j] = y[p[j]];
- /* store new diagonal element of matrix U, which is z */
- un[n] = z;
- /* expand matrix P */
- p[n] = n;
- #if _GLPSCF_DEBUG
- /* expand matrix C */
- /* fill its new column, which is x */
- for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
- c[in] = x[i];
- /* fill its new row, which is y */
- for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
- c[nj] = y[j];
- /* fill its new diagonal element, which is z */
- c[f_loc(scf, n, n)] = z;
- #endif
- /* restore upper triangular structure of matrix U */
- for (k = 1; k < n; k++)
- if (un[k] != 0.0) break;
- transform(scf, k, un);
- /* estimate the rank of matrices C and U */
- scf->rank = estimate_rank(scf);
- if (scf->rank != n) ret = SCF_ESING;
- #if _GLPSCF_DEBUG
- /* check that the factorization is accurate enough */
- check_error(scf, "scf_update_exp");
- #endif
- done: return ret;
- }
- /***********************************************************************
- * The routine solve solves the system C * x = b.
- *
- * From the main equation F * C = U * P it follows that:
- *
- * C * x = b => F * C * x = F * b => U * P * x = F * b =>
- *
- * P * x = inv(U) * F * b => x = P' * inv(U) * F * b.
- *
- * On entry the array x contains right-hand side vector b. On exit this
- * array contains solution vector x. */
- static void solve(SCF *scf, double x[])
- { int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int *p = scf->p;
- double *y = scf->w;
- int i, j, ij;
- double t;
- /* y := F * b */
- for (i = 1; i <= n; i++)
- { /* y[i] = (i-th row of F) * b */
- t = 0.0;
- for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
- t += f[ij] * x[j];
- y[i] = t;
- }
- /* y := inv(U) * y */
- for (i = n; i >= 1; i--)
- { t = y[i];
- for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--)
- t -= u[ij] * y[j];
- y[i] = t / u[ij];
- }
- /* x := P' * y */
- for (i = 1; i <= n; i++) x[p[i]] = y[i];
- return;
- }
- /***********************************************************************
- * The routine tsolve solves the transposed system C' * x = b.
- *
- * From the main equation F * C = U * P it follows that:
- *
- * C' * F' = P' * U',
- *
- * therefore:
- *
- * C' * x = b => C' * F' * inv(F') * x = b =>
- *
- * P' * U' * inv(F') * x = b => U' * inv(F') * x = P * b =>
- *
- * inv(F') * x = inv(U') * P * b => x = F' * inv(U') * P * b.
- *
- * On entry the array x contains right-hand side vector b. On exit this
- * array contains solution vector x. */
- static void tsolve(SCF *scf, double x[])
- { int n = scf->n;
- double *f = scf->f;
- double *u = scf->u;
- int *p = scf->p;
- double *y = scf->w;
- int i, j, ij;
- double t;
- /* y := P * b */
- for (i = 1; i <= n; i++) y[i] = x[p[i]];
- /* y := inv(U') * y */
- for (i = 1; i <= n; i++)
- { /* compute y[i] */
- ij = u_loc(scf, i, i);
- t = (y[i] /= u[ij]);
- /* substitute y[i] in other equations */
- for (j = i+1, ij++; j <= n; j++, ij++)
- y[j] -= u[ij] * t;
- }
- /* x := F' * y (computed as linear combination of rows of F) */
- for (j = 1; j <= n; j++) x[j] = 0.0;
- for (i = 1; i <= n; i++)
- { t = y[i]; /* coefficient of linear combination */
- for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
- x[j] += f[ij] * t;
- }
- return;
- }
- /***********************************************************************
- * NAME
- *
- * scf_solve_it - solve either system C * x = b or C' * x = b
- *
- * SYNOPSIS
- *
- * #include "glpscf.h"
- * void scf_solve_it(SCF *scf, int tr, double x[]);
- *
- * DESCRIPTION
- *
- * The routine scf_solve_it solves either the system C * x = b (if tr
- * is zero) or the system C' * x = b, where C' is a matrix transposed
- * to C (if tr is non-zero). C is assumed to be non-singular.
- *
- * On entry the array x should contain the right-hand side vector b in
- * locations x[1], ..., x[n], where n is the order of matrix C. On exit
- * the array x contains the solution vector x in the same locations. */
- void scf_solve_it(SCF *scf, int tr, double x[])
- { if (scf->rank < scf->n)
- xfault("scf_solve_it: singular matrix\n");
- if (!tr)
- solve(scf, x);
- else
- tsolve(scf, x);
- return;
- }
- void scf_reset_it(SCF *scf)
- { /* reset factorization for empty matrix C */
- scf->n = scf->rank = 0;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * scf_delete_it - delete Schur complement factorization
- *
- * SYNOPSIS
- *
- * #include "glpscf.h"
- * void scf_delete_it(SCF *scf);
- *
- * DESCRIPTION
- *
- * The routine scf_delete_it deletes the specified factorization and
- * frees all the memory allocated to this object. */
- void scf_delete_it(SCF *scf)
- { xfree(scf->f);
- xfree(scf->u);
- xfree(scf->p);
- #if _GLPSCF_DEBUG
- xfree(scf->c);
- #endif
- xfree(scf->w);
- xfree(scf);
- return;
- }
- /* eof */
|