123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- /* glpnet09.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpapi.h"
- #include "glpnet.h"
- /***********************************************************************
- * NAME
- *
- * kellerman - cover edges by cliques with Kellerman's heuristic
- *
- * SYNOPSIS
- *
- * #include "glpnet.h"
- * int kellerman(int n, int (*func)(void *info, int i, int ind[]),
- * void *info, glp_graph *H);
- *
- * DESCRIPTION
- *
- * The routine kellerman implements Kellerman's heuristic algorithm
- * to find a minimal set of cliques which cover all edges of specified
- * graph G = (V, E).
- *
- * The parameter n specifies the number of vertices |V|, n >= 0.
- *
- * Formal routine func specifies the set of edges E in the following
- * way. Running the routine kellerman calls the routine func and passes
- * to it parameter i, which is the number of some vertex, 1 <= i <= n.
- * In response the routine func should store numbers of all vertices
- * adjacent to vertex i to locations ind[1], ind[2], ..., ind[len] and
- * return the value of len, which is the number of adjacent vertices,
- * 0 <= len <= n. Self-loops are allowed, but ignored. Multiple edges
- * are not allowed.
- *
- * The parameter info is a transit pointer (magic cookie) passed to the
- * formal routine func as its first parameter.
- *
- * The result provided by the routine kellerman is the bipartite graph
- * H = (V union C, F), which defines the covering found. (The program
- * object of type glp_graph specified by the parameter H should be
- * previously created with the routine glp_create_graph. On entry the
- * routine kellerman erases the content of this object with the routine
- * glp_erase_graph.) Vertices of first part V correspond to vertices of
- * the graph G and have the same ordinal numbers 1, 2, ..., n. Vertices
- * of second part C correspond to cliques and have ordinal numbers
- * n+1, n+2, ..., n+k, where k is the total number of cliques in the
- * edge covering found. Every edge f in F in the program object H is
- * represented as arc f = (i->j), where i in V and j in C, which means
- * that vertex i of the graph G is in clique C[j], 1 <= j <= k. (Thus,
- * if two vertices of the graph G are in the same clique, these vertices
- * are adjacent in G, and corresponding edge is covered by that clique.)
- *
- * RETURNS
- *
- * The routine Kellerman returns k, the total number of cliques in the
- * edge covering found.
- *
- * REFERENCE
- *
- * For more details see: glpk/doc/notes/keller.pdf (in Russian). */
- struct set
- { /* set of vertices */
- int size;
- /* size (cardinality) of the set, 0 <= card <= n */
- int *list; /* int list[1+n]; */
- /* the set contains vertices list[1,...,size] */
- int *pos; /* int pos[1+n]; */
- /* pos[i] > 0 means that vertex i is in the set and
- list[pos[i]] = i; pos[i] = 0 means that vertex i is not in
- the set */
- };
- int kellerman(int n, int (*func)(void *info, int i, int ind[]),
- void *info, void /* glp_graph */ *H_)
- { glp_graph *H = H_;
- struct set W_, *W = &W_, V_, *V = &V_;
- glp_arc *a;
- int i, j, k, m, t, len, card, best;
- xassert(n >= 0);
- /* H := (V, 0; 0), where V is the set of vertices of graph G */
- glp_erase_graph(H, H->v_size, H->a_size);
- glp_add_vertices(H, n);
- /* W := 0 */
- W->size = 0;
- W->list = xcalloc(1+n, sizeof(int));
- W->pos = xcalloc(1+n, sizeof(int));
- memset(&W->pos[1], 0, sizeof(int) * n);
- /* V := 0 */
- V->size = 0;
- V->list = xcalloc(1+n, sizeof(int));
- V->pos = xcalloc(1+n, sizeof(int));
- memset(&V->pos[1], 0, sizeof(int) * n);
- /* main loop */
- for (i = 1; i <= n; i++)
- { /* W must be empty */
- xassert(W->size == 0);
- /* W := { j : i > j and (i,j) in E } */
- len = func(info, i, W->list);
- xassert(0 <= len && len <= n);
- for (t = 1; t <= len; t++)
- { j = W->list[t];
- xassert(1 <= j && j <= n);
- if (j >= i) continue;
- xassert(W->pos[j] == 0);
- W->list[++W->size] = j, W->pos[j] = W->size;
- }
- /* on i-th iteration we need to cover edges (i,j) for all
- j in W */
- /* if W is empty, it is a special case */
- if (W->size == 0)
- { /* set k := k + 1 and create new clique C[k] = { i } */
- k = glp_add_vertices(H, 1) - n;
- glp_add_arc(H, i, n + k);
- continue;
- }
- /* try to include vertex i into existing cliques */
- /* V must be empty */
- xassert(V->size == 0);
- /* k is the number of cliques found so far */
- k = H->nv - n;
- for (m = 1; m <= k; m++)
- { /* do while V != W; since here V is within W, we can use
- equivalent condition: do while |V| < |W| */
- if (V->size == W->size) break;
- /* check if C[m] is within W */
- for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
- { j = a->tail->i;
- if (W->pos[j] == 0) break;
- }
- if (a != NULL) continue;
- /* C[m] is within W, expand clique C[m] with vertex i */
- /* C[m] := C[m] union {i} */
- glp_add_arc(H, i, n + m);
- /* V is a set of vertices whose incident edges are already
- covered by existing cliques */
- /* V := V union C[m] */
- for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
- { j = a->tail->i;
- if (V->pos[j] == 0)
- V->list[++V->size] = j, V->pos[j] = V->size;
- }
- }
- /* remove from set W the vertices whose incident edges are
- already covered by existing cliques */
- /* W := W \ V, V := 0 */
- for (t = 1; t <= V->size; t++)
- { j = V->list[t], V->pos[j] = 0;
- if (W->pos[j] != 0)
- { /* remove vertex j from W */
- if (W->pos[j] != W->size)
- { int jj = W->list[W->size];
- W->list[W->pos[j]] = jj;
- W->pos[jj] = W->pos[j];
- }
- W->size--, W->pos[j] = 0;
- }
- }
- V->size = 0;
- /* now set W contains only vertices whose incident edges are
- still not covered by existing cliques; create new cliques
- to cover remaining edges until set W becomes empty */
- while (W->size > 0)
- { /* find clique C[m], 1 <= m <= k, which shares maximal
- number of vertices with W; to break ties choose clique
- having smallest number m */
- m = 0, best = -1;
- k = H->nv - n;
- for (t = 1; t <= k; t++)
- { /* compute cardinality of intersection of W and C[t] */
- card = 0;
- for (a = H->v[n + t]->in; a != NULL; a = a->h_next)
- { j = a->tail->i;
- if (W->pos[j] != 0) card++;
- }
- if (best < card)
- m = t, best = card;
- }
- xassert(m > 0);
- /* set k := k + 1 and create new clique:
- C[k] := (W intersect C[m]) union { i }, which covers all
- edges incident to vertices from (W intersect C[m]) */
- k = glp_add_vertices(H, 1) - n;
- for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
- { j = a->tail->i;
- if (W->pos[j] != 0)
- { /* vertex j is in both W and C[m]; include it in new
- clique C[k] */
- glp_add_arc(H, j, n + k);
- /* remove vertex j from W, since edge (i,j) will be
- covered by new clique C[k] */
- if (W->pos[j] != W->size)
- { int jj = W->list[W->size];
- W->list[W->pos[j]] = jj;
- W->pos[jj] = W->pos[j];
- }
- W->size--, W->pos[j] = 0;
- }
- }
- /* include vertex i to new clique C[k] to cover edges (i,j)
- incident to all vertices j just removed from W */
- glp_add_arc(H, i, n + k);
- }
- }
- /* free working arrays */
- xfree(W->list);
- xfree(W->pos);
- xfree(V->list);
- xfree(V->pos);
- /* return the number of cliques in the edge covering found */
- return H->nv - n;
- }
- /* eof */
|