123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- /* glpnet08.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Two subroutines sub() and wclique() below are intended to find a
- * maximum weight clique in a given undirected graph. These subroutines
- * are slightly modified version of the program WCLIQUE developed by
- * Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based
- * on ideas from the article "P. R. J. Ostergard, A new algorithm for
- * the maximum-weight clique problem, submitted for publication", which
- * in turn is a generalization of the algorithm for unweighted graphs
- * presented in "P. R. J. Ostergard, A fast algorithm for the maximum
- * clique problem, submitted for publication".
- *
- * USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE.
- *
- * Changes were made by Andrew Makhorin <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpnet.h"
- /***********************************************************************
- * NAME
- *
- * wclique - find maximum weight clique with Ostergard's algorithm
- *
- * SYNOPSIS
- *
- * int wclique(int n, const int w[], const unsigned char a[],
- * int ind[]);
- *
- * DESCRIPTION
- *
- * The routine wclique finds a maximum weight clique in an undirected
- * graph with Ostergard's algorithm.
- *
- * INPUT PARAMETERS
- *
- * n is the number of vertices, n > 0.
- *
- * w[i], i = 1,...,n, is a weight of vertex i.
- *
- * a[*] is the strict (without main diagonal) lower triangle of the
- * graph adjacency matrix in packed format.
- *
- * OUTPUT PARAMETER
- *
- * ind[k], k = 1,...,size, is the number of a vertex included in the
- * clique found, 1 <= ind[k] <= n, where size is the number of vertices
- * in the clique returned on exit.
- *
- * RETURNS
- *
- * The routine returns the clique size, i.e. the number of vertices in
- * the clique. */
- struct csa
- { /* common storage area */
- int n;
- /* number of vertices */
- const int *wt; /* int wt[0:n-1]; */
- /* weights */
- const unsigned char *a;
- /* adjacency matrix (packed lower triangle without main diag.) */
- int record;
- /* weight of best clique */
- int rec_level;
- /* number of vertices in best clique */
- int *rec; /* int rec[0:n-1]; */
- /* best clique so far */
- int *clique; /* int clique[0:n-1]; */
- /* table for pruning */
- int *set; /* int set[0:n-1]; */
- /* current clique */
- };
- #define n (csa->n)
- #define wt (csa->wt)
- #define a (csa->a)
- #define record (csa->record)
- #define rec_level (csa->rec_level)
- #define rec (csa->rec)
- #define clique (csa->clique)
- #define set (csa->set)
- #if 0
- static int is_edge(struct csa *csa, int i, int j)
- { /* if there is arc (i,j), the routine returns true; otherwise
- false; 0 <= i, j < n */
- int k;
- xassert(0 <= i && i < n);
- xassert(0 <= j && j < n);
- if (i == j) return 0;
- if (i < j) k = i, i = j, j = k;
- k = (i * (i - 1)) / 2 + j;
- return a[k / CHAR_BIT] &
- (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT));
- }
- #else
- #define is_edge(csa, i, j) ((i) == (j) ? 0 : \
- (i) > (j) ? is_edge1(i, j) : is_edge1(j, i))
- #define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j))
- #define is_edge2(k) (a[(k) / CHAR_BIT] & \
- (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT)))
- #endif
- static void sub(struct csa *csa, int ct, int table[], int level,
- int weight, int l_weight)
- { int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable;
- newtable = xcalloc(n, sizeof(int));
- if (ct <= 0)
- { /* 0 or 1 elements left; include these */
- if (ct == 0)
- { set[level++] = table[0];
- weight += l_weight;
- }
- if (weight > record)
- { record = weight;
- rec_level = level;
- for (i = 0; i < level; i++) rec[i] = set[i];
- }
- goto done;
- }
- for (i = ct; i >= 0; i--)
- { if ((level == 0) && (i < ct)) goto done;
- k = table[i];
- if ((level > 0) && (clique[k] <= (record - weight)))
- goto done; /* prune */
- set[level] = k;
- curr_weight = weight + wt[k];
- l_weight -= wt[k];
- if (l_weight <= (record - curr_weight))
- goto done; /* prune */
- p1 = newtable;
- p2 = table;
- left_weight = 0;
- while (p2 < table + i)
- { j = *p2++;
- if (is_edge(csa, j, k))
- { *p1++ = j;
- left_weight += wt[j];
- }
- }
- if (left_weight <= (record - curr_weight)) continue;
- sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight,
- left_weight);
- }
- done: xfree(newtable);
- return;
- }
- int wclique(int _n, const int w[], const unsigned char _a[], int ind[])
- { struct csa _csa, *csa = &_csa;
- int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos;
- glp_long timer;
- n = _n;
- xassert(n > 0);
- wt = &w[1];
- a = _a;
- record = 0;
- rec_level = 0;
- rec = &ind[1];
- clique = xcalloc(n, sizeof(int));
- set = xcalloc(n, sizeof(int));
- used = xcalloc(n, sizeof(int));
- nwt = xcalloc(n, sizeof(int));
- pos = xcalloc(n, sizeof(int));
- /* start timer */
- timer = xtime();
- /* order vertices */
- for (i = 0; i < n; i++)
- { nwt[i] = 0;
- for (j = 0; j < n; j++)
- if (is_edge(csa, i, j)) nwt[i] += wt[j];
- }
- for (i = 0; i < n; i++)
- used[i] = 0;
- for (i = n-1; i >= 0; i--)
- { max_wt = -1;
- max_nwt = -1;
- for (j = 0; j < n; j++)
- { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt
- && nwt[j] > max_nwt)))
- { max_wt = wt[j];
- max_nwt = nwt[j];
- p = j;
- }
- }
- pos[i] = p;
- used[p] = 1;
- for (j = 0; j < n; j++)
- if ((!used[j]) && (j != p) && (is_edge(csa, p, j)))
- nwt[j] -= wt[p];
- }
- /* main routine */
- wth = 0;
- for (i = 0; i < n; i++)
- { wth += wt[pos[i]];
- sub(csa, i, pos, 0, 0, wth);
- clique[pos[i]] = record;
- if (xdifftime(xtime(), timer) >= 5.0 - 0.001)
- { /* print current record and reset timer */
- xprintf("level = %d (%d); best = %d\n", i+1, n, record);
- timer = xtime();
- }
- }
- xfree(clique);
- xfree(set);
- xfree(used);
- xfree(nwt);
- xfree(pos);
- /* return the solution found */
- for (i = 1; i <= rec_level; i++) ind[i]++;
- return rec_level;
- }
- #undef n
- #undef wt
- #undef a
- #undef record
- #undef rec_level
- #undef rec
- #undef clique
- #undef set
- /* eof */
|