123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /* glpnet07.c (Ford-Fulkerson algorithm) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpnet.h"
- /***********************************************************************
- * NAME
- *
- * ffalg - Ford-Fulkerson algorithm
- *
- * SYNOPSIS
- *
- * #include "glpnet.h"
- * void ffalg(int nv, int na, const int tail[], const int head[],
- * int s, int t, const int cap[], int x[], char cut[]);
- *
- * DESCRIPTION
- *
- * The routine ffalg implements the Ford-Fulkerson algorithm to find a
- * maximal flow in the specified flow network.
- *
- * INPUT PARAMETERS
- *
- * nv is the number of nodes, nv >= 2.
- *
- * na is the number of arcs, na >= 0.
- *
- * tail[a], a = 1,...,na, is the index of tail node of arc a.
- *
- * head[a], a = 1,...,na, is the index of head node of arc a.
- *
- * s is the source node index, 1 <= s <= nv.
- *
- * t is the sink node index, 1 <= t <= nv, t != s.
- *
- * cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0.
- *
- * NOTE: Multiple arcs are allowed, but self-loops are not allowed.
- *
- * OUTPUT PARAMETERS
- *
- * x[a], a = 1,...,na, is optimal value of the flow through arc a.
- *
- * cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise.
- * The set of arcs, whose one endpoint is labelled and other is not,
- * defines the minimal cut corresponding to the maximal flow found.
- * If the parameter cut is NULL, the cut information are not stored.
- *
- * REFERENCES
- *
- * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND
- * Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow,"
- * pp.30-33. */
- void ffalg(int nv, int na, const int tail[], const int head[],
- int s, int t, const int cap[], int x[], char cut[])
- { int a, delta, i, j, k, pos1, pos2, temp,
- *ptr, *arc, *link, *list;
- /* sanity checks */
- xassert(nv >= 2);
- xassert(na >= 0);
- xassert(1 <= s && s <= nv);
- xassert(1 <= t && t <= nv);
- xassert(s != t);
- for (a = 1; a <= na; a++)
- { i = tail[a], j = head[a];
- xassert(1 <= i && i <= nv);
- xassert(1 <= j && j <= nv);
- xassert(i != j);
- xassert(cap[a] >= 0);
- }
- /* allocate working arrays */
- ptr = xcalloc(1+nv+1, sizeof(int));
- arc = xcalloc(1+na+na, sizeof(int));
- link = xcalloc(1+nv, sizeof(int));
- list = xcalloc(1+nv, sizeof(int));
- /* ptr[i] := (degree of node i) */
- for (i = 1; i <= nv; i++)
- ptr[i] = 0;
- for (a = 1; a <= na; a++)
- { ptr[tail[a]]++;
- ptr[head[a]]++;
- }
- /* initialize arc pointers */
- ptr[1]++;
- for (i = 1; i < nv; i++)
- ptr[i+1] += ptr[i];
- ptr[nv+1] = ptr[nv];
- /* build arc lists */
- for (a = 1; a <= na; a++)
- { arc[--ptr[tail[a]]] = a;
- arc[--ptr[head[a]]] = a;
- }
- xassert(ptr[1] == 1);
- xassert(ptr[nv+1] == na+na+1);
- /* now the indices of arcs incident to node i are stored in
- locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */
- /* initialize arc flows */
- for (a = 1; a <= na; a++)
- x[a] = 0;
- loop: /* main loop starts here */
- /* build augmenting tree rooted at s */
- /* link[i] = 0 means that node i is not labelled yet;
- link[i] = a means that arc a immediately precedes node i */
- /* initially node s is labelled as the root */
- for (i = 1; i <= nv; i++)
- link[i] = 0;
- link[s] = -1, list[1] = s, pos1 = pos2 = 1;
- /* breadth first search */
- while (pos1 <= pos2)
- { /* dequeue node i */
- i = list[pos1++];
- /* consider all arcs incident to node i */
- for (k = ptr[i]; k < ptr[i+1]; k++)
- { a = arc[k];
- if (tail[a] == i)
- { /* a = i->j is a forward arc from s to t */
- j = head[a];
- /* if node j has been labelled, skip the arc */
- if (link[j] != 0) continue;
- /* if the arc does not allow increasing the flow through
- it, skip the arc */
- if (x[a] == cap[a]) continue;
- }
- else if (head[a] == i)
- { /* a = i<-j is a backward arc from s to t */
- j = tail[a];
- /* if node j has been labelled, skip the arc */
- if (link[j] != 0) continue;
- /* if the arc does not allow decreasing the flow through
- it, skip the arc */
- if (x[a] == 0) continue;
- }
- else
- xassert(a != a);
- /* label node j and enqueue it */
- link[j] = a, list[++pos2] = j;
- /* check for breakthrough */
- if (j == t) goto brkt;
- }
- }
- /* NONBREAKTHROUGH */
- /* no augmenting path exists; current flow is maximal */
- /* store minimal cut information, if necessary */
- if (cut != NULL)
- { for (i = 1; i <= nv; i++)
- cut[i] = (char)(link[i] != 0);
- }
- goto done;
- brkt: /* BREAKTHROUGH */
- /* walk through arcs of the augmenting path (s, ..., t) found in
- the reverse order and determine maximal change of the flow */
- delta = 0;
- for (j = t; j != s; j = i)
- { /* arc a immediately precedes node j in the path */
- a = link[j];
- if (head[a] == j)
- { /* a = i->j is a forward arc of the cycle */
- i = tail[a];
- /* x[a] may be increased until its upper bound */
- temp = cap[a] - x[a];
- }
- else if (tail[a] == j)
- { /* a = i<-j is a backward arc of the cycle */
- i = head[a];
- /* x[a] may be decreased until its lower bound */
- temp = x[a];
- }
- else
- xassert(a != a);
- if (delta == 0 || delta > temp) delta = temp;
- }
- xassert(delta > 0);
- /* increase the flow along the path */
- for (j = t; j != s; j = i)
- { /* arc a immediately precedes node j in the path */
- a = link[j];
- if (head[a] == j)
- { /* a = i->j is a forward arc of the cycle */
- i = tail[a];
- x[a] += delta;
- }
- else if (tail[a] == j)
- { /* a = i<-j is a backward arc of the cycle */
- i = head[a];
- x[a] -= delta;
- }
- else
- xassert(a != a);
- }
- goto loop;
- done: /* free working arrays */
- xfree(ptr);
- xfree(arc);
- xfree(link);
- xfree(list);
- return;
- }
- /* eof */
|