123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072 |
- /* glpmpl03.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #define _GLPSTD_ERRNO
- #define _GLPSTD_STDIO
- #include "glpenv.h"
- #include "glpmpl.h"
- /**********************************************************************/
- /* * * FLOATING-POINT NUMBERS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- fp_add - floating-point addition.
- --
- -- This routine computes the sum x + y. */
- double fp_add(MPL *mpl, double x, double y)
- { if (x > 0.0 && y > 0.0 && x > + 0.999 * DBL_MAX - y ||
- x < 0.0 && y < 0.0 && x < - 0.999 * DBL_MAX - y)
- mpl_error(mpl, "%.*g + %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- return x + y;
- }
- /*----------------------------------------------------------------------
- -- fp_sub - floating-point subtraction.
- --
- -- This routine computes the difference x - y. */
- double fp_sub(MPL *mpl, double x, double y)
- { if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y ||
- x < 0.0 && y > 0.0 && x < - 0.999 * DBL_MAX + y)
- mpl_error(mpl, "%.*g - %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- return x - y;
- }
- /*----------------------------------------------------------------------
- -- fp_less - floating-point non-negative subtraction.
- --
- -- This routine computes the non-negative difference max(0, x - y). */
- double fp_less(MPL *mpl, double x, double y)
- { if (x < y) return 0.0;
- if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y)
- mpl_error(mpl, "%.*g less %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- return x - y;
- }
- /*----------------------------------------------------------------------
- -- fp_mul - floating-point multiplication.
- --
- -- This routine computes the product x * y. */
- double fp_mul(MPL *mpl, double x, double y)
- { if (fabs(y) > 1.0 && fabs(x) > (0.999 * DBL_MAX) / fabs(y))
- mpl_error(mpl, "%.*g * %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- return x * y;
- }
- /*----------------------------------------------------------------------
- -- fp_div - floating-point division.
- --
- -- This routine computes the quotient x / y. */
- double fp_div(MPL *mpl, double x, double y)
- { if (fabs(y) < DBL_MIN)
- mpl_error(mpl, "%.*g / %.*g; floating-point zero divide",
- DBL_DIG, x, DBL_DIG, y);
- if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y))
- mpl_error(mpl, "%.*g / %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- return x / y;
- }
- /*----------------------------------------------------------------------
- -- fp_idiv - floating-point quotient of exact division.
- --
- -- This routine computes the quotient of exact division x div y. */
- double fp_idiv(MPL *mpl, double x, double y)
- { if (fabs(y) < DBL_MIN)
- mpl_error(mpl, "%.*g div %.*g; floating-point zero divide",
- DBL_DIG, x, DBL_DIG, y);
- if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y))
- mpl_error(mpl, "%.*g div %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- x /= y;
- return x > 0.0 ? floor(x) : x < 0.0 ? ceil(x) : 0.0;
- }
- /*----------------------------------------------------------------------
- -- fp_mod - floating-point remainder of exact division.
- --
- -- This routine computes the remainder of exact division x mod y.
- --
- -- NOTE: By definition x mod y = x - y * floor(x / y). */
- double fp_mod(MPL *mpl, double x, double y)
- { double r;
- xassert(mpl == mpl);
- if (x == 0.0)
- r = 0.0;
- else if (y == 0.0)
- r = x;
- else
- { r = fmod(fabs(x), fabs(y));
- if (r != 0.0)
- { if (x < 0.0) r = - r;
- if (x > 0.0 && y < 0.0 || x < 0.0 && y > 0.0) r += y;
- }
- }
- return r;
- }
- /*----------------------------------------------------------------------
- -- fp_power - floating-point exponentiation (raise to power).
- --
- -- This routine computes the exponentiation x ** y. */
- double fp_power(MPL *mpl, double x, double y)
- { double r;
- if (x == 0.0 && y <= 0.0 || x < 0.0 && y != floor(y))
- mpl_error(mpl, "%.*g ** %.*g; result undefined",
- DBL_DIG, x, DBL_DIG, y);
- if (x == 0.0) goto eval;
- if (fabs(x) > 1.0 && y > +1.0 &&
- +log(fabs(x)) > (0.999 * log(DBL_MAX)) / y ||
- fabs(x) < 1.0 && y < -1.0 &&
- +log(fabs(x)) < (0.999 * log(DBL_MAX)) / y)
- mpl_error(mpl, "%.*g ** %.*g; floating-point overflow",
- DBL_DIG, x, DBL_DIG, y);
- if (fabs(x) > 1.0 && y < -1.0 &&
- -log(fabs(x)) < (0.999 * log(DBL_MAX)) / y ||
- fabs(x) < 1.0 && y > +1.0 &&
- -log(fabs(x)) > (0.999 * log(DBL_MAX)) / y)
- r = 0.0;
- else
- eval: r = pow(x, y);
- return r;
- }
- /*----------------------------------------------------------------------
- -- fp_exp - floating-point base-e exponential.
- --
- -- This routine computes the base-e exponential e ** x. */
- double fp_exp(MPL *mpl, double x)
- { if (x > 0.999 * log(DBL_MAX))
- mpl_error(mpl, "exp(%.*g); floating-point overflow", DBL_DIG, x);
- return exp(x);
- }
- /*----------------------------------------------------------------------
- -- fp_log - floating-point natural logarithm.
- --
- -- This routine computes the natural logarithm log x. */
- double fp_log(MPL *mpl, double x)
- { if (x <= 0.0)
- mpl_error(mpl, "log(%.*g); non-positive argument", DBL_DIG, x);
- return log(x);
- }
- /*----------------------------------------------------------------------
- -- fp_log10 - floating-point common (decimal) logarithm.
- --
- -- This routine computes the common (decimal) logarithm lg x. */
- double fp_log10(MPL *mpl, double x)
- { if (x <= 0.0)
- mpl_error(mpl, "log10(%.*g); non-positive argument", DBL_DIG, x);
- return log10(x);
- }
- /*----------------------------------------------------------------------
- -- fp_sqrt - floating-point square root.
- --
- -- This routine computes the square root x ** 0.5. */
- double fp_sqrt(MPL *mpl, double x)
- { if (x < 0.0)
- mpl_error(mpl, "sqrt(%.*g); negative argument", DBL_DIG, x);
- return sqrt(x);
- }
- /*----------------------------------------------------------------------
- -- fp_sin - floating-point trigonometric sine.
- --
- -- This routine computes the trigonometric sine sin(x). */
- double fp_sin(MPL *mpl, double x)
- { if (!(-1e6 <= x && x <= +1e6))
- mpl_error(mpl, "sin(%.*g); argument too large", DBL_DIG, x);
- return sin(x);
- }
- /*----------------------------------------------------------------------
- -- fp_cos - floating-point trigonometric cosine.
- --
- -- This routine computes the trigonometric cosine cos(x). */
- double fp_cos(MPL *mpl, double x)
- { if (!(-1e6 <= x && x <= +1e6))
- mpl_error(mpl, "cos(%.*g); argument too large", DBL_DIG, x);
- return cos(x);
- }
- /*----------------------------------------------------------------------
- -- fp_atan - floating-point trigonometric arctangent.
- --
- -- This routine computes the trigonometric arctangent atan(x). */
- double fp_atan(MPL *mpl, double x)
- { xassert(mpl == mpl);
- return atan(x);
- }
- /*----------------------------------------------------------------------
- -- fp_atan2 - floating-point trigonometric arctangent.
- --
- -- This routine computes the trigonometric arctangent atan(y / x). */
- double fp_atan2(MPL *mpl, double y, double x)
- { xassert(mpl == mpl);
- return atan2(y, x);
- }
- /*----------------------------------------------------------------------
- -- fp_round - round floating-point value to n fractional digits.
- --
- -- This routine rounds given floating-point value x to n fractional
- -- digits with the formula:
- --
- -- round(x, n) = floor(x * 10^n + 0.5) / 10^n.
- --
- -- The parameter n is assumed to be integer. */
- double fp_round(MPL *mpl, double x, double n)
- { double ten_to_n;
- if (n != floor(n))
- mpl_error(mpl, "round(%.*g, %.*g); non-integer second argument",
- DBL_DIG, x, DBL_DIG, n);
- if (n <= DBL_DIG + 2)
- { ten_to_n = pow(10.0, n);
- if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n)
- { x = floor(x * ten_to_n + 0.5);
- if (x != 0.0) x /= ten_to_n;
- }
- }
- return x;
- }
- /*----------------------------------------------------------------------
- -- fp_trunc - truncate floating-point value to n fractional digits.
- --
- -- This routine truncates given floating-point value x to n fractional
- -- digits with the formula:
- --
- -- ( floor(x * 10^n) / 10^n, if x >= 0
- -- trunc(x, n) = <
- -- ( ceil(x * 10^n) / 10^n, if x < 0
- --
- -- The parameter n is assumed to be integer. */
- double fp_trunc(MPL *mpl, double x, double n)
- { double ten_to_n;
- if (n != floor(n))
- mpl_error(mpl, "trunc(%.*g, %.*g); non-integer second argument",
- DBL_DIG, x, DBL_DIG, n);
- if (n <= DBL_DIG + 2)
- { ten_to_n = pow(10.0, n);
- if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n)
- { x = (x >= 0.0 ? floor(x * ten_to_n) : ceil(x * ten_to_n));
- if (x != 0.0) x /= ten_to_n;
- }
- }
- return x;
- }
- /**********************************************************************/
- /* * * PSEUDO-RANDOM NUMBER GENERATORS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- fp_irand224 - pseudo-random integer in the range [0, 2^24).
- --
- -- This routine returns a next pseudo-random integer (converted to
- -- floating-point) which is uniformly distributed between 0 and 2^24-1,
- -- inclusive. */
- #define two_to_the_24 0x1000000
- double fp_irand224(MPL *mpl)
- { return
- (double)rng_unif_rand(mpl->rand, two_to_the_24);
- }
- /*----------------------------------------------------------------------
- -- fp_uniform01 - pseudo-random number in the range [0, 1).
- --
- -- This routine returns a next pseudo-random number which is uniformly
- -- distributed in the range [0, 1). */
- #define two_to_the_31 ((unsigned int)0x80000000)
- double fp_uniform01(MPL *mpl)
- { return
- (double)rng_next_rand(mpl->rand) / (double)two_to_the_31;
- }
- /*----------------------------------------------------------------------
- -- fp_uniform - pseudo-random number in the range [a, b).
- --
- -- This routine returns a next pseudo-random number which is uniformly
- -- distributed in the range [a, b). */
- double fp_uniform(MPL *mpl, double a, double b)
- { double x;
- if (a >= b)
- mpl_error(mpl, "Uniform(%.*g, %.*g); invalid range",
- DBL_DIG, a, DBL_DIG, b);
- x = fp_uniform01(mpl);
- #if 0
- x = a * (1.0 - x) + b * x;
- #else
- x = fp_add(mpl, a * (1.0 - x), b * x);
- #endif
- return x;
- }
- /*----------------------------------------------------------------------
- -- fp_normal01 - Gaussian random variate with mu = 0 and sigma = 1.
- --
- -- This routine returns a Gaussian random variate with zero mean and
- -- unit standard deviation. The polar (Box-Mueller) method is used.
- --
- -- This code is a modified version of the routine gsl_ran_gaussian from
- -- the GNU Scientific Library Version 1.0. */
- double fp_normal01(MPL *mpl)
- { double x, y, r2;
- do
- { /* choose x, y in uniform square (-1,-1) to (+1,+1) */
- x = -1.0 + 2.0 * fp_uniform01(mpl);
- y = -1.0 + 2.0 * fp_uniform01(mpl);
- /* see if it is in the unit circle */
- r2 = x * x + y * y;
- } while (r2 > 1.0 || r2 == 0.0);
- /* Box-Muller transform */
- return y * sqrt(-2.0 * log (r2) / r2);
- }
- /*----------------------------------------------------------------------
- -- fp_normal - Gaussian random variate with specified mu and sigma.
- --
- -- This routine returns a Gaussian random variate with mean mu and
- -- standard deviation sigma. */
- double fp_normal(MPL *mpl, double mu, double sigma)
- { double x;
- #if 0
- x = mu + sigma * fp_normal01(mpl);
- #else
- x = fp_add(mpl, mu, fp_mul(mpl, sigma, fp_normal01(mpl)));
- #endif
- return x;
- }
- /**********************************************************************/
- /* * * SEGMENTED CHARACTER STRINGS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- create_string - create character string.
- --
- -- This routine creates a segmented character string, which is exactly
- -- equivalent to specified character string. */
- STRING *create_string
- ( MPL *mpl,
- char buf[MAX_LENGTH+1] /* not changed */
- )
- #if 0
- { STRING *head, *tail;
- int i, j;
- xassert(buf != NULL);
- xassert(strlen(buf) <= MAX_LENGTH);
- head = tail = dmp_get_atom(mpl->strings, sizeof(STRING));
- for (i = j = 0; ; i++)
- { if ((tail->seg[j++] = buf[i]) == '\0') break;
- if (j == STRSEG_SIZE)
- tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))), j = 0;
- }
- tail->next = NULL;
- return head;
- }
- #else
- { STRING *str;
- xassert(strlen(buf) <= MAX_LENGTH);
- str = dmp_get_atom(mpl->strings, strlen(buf)+1);
- strcpy(str, buf);
- return str;
- }
- #endif
- /*----------------------------------------------------------------------
- -- copy_string - make copy of character string.
- --
- -- This routine returns an exact copy of segmented character string. */
- STRING *copy_string
- ( MPL *mpl,
- STRING *str /* not changed */
- )
- #if 0
- { STRING *head, *tail;
- xassert(str != NULL);
- head = tail = dmp_get_atom(mpl->strings, sizeof(STRING));
- for (; str != NULL; str = str->next)
- { memcpy(tail->seg, str->seg, STRSEG_SIZE);
- if (str->next != NULL)
- tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING)));
- }
- tail->next = NULL;
- return head;
- }
- #else
- { xassert(mpl == mpl);
- return create_string(mpl, str);
- }
- #endif
- /*----------------------------------------------------------------------
- -- compare_strings - compare one character string with another.
- --
- -- This routine compares one segmented character strings with another
- -- and returns the result of comparison as follows:
- --
- -- = 0 - both strings are identical;
- -- < 0 - the first string precedes the second one;
- -- > 0 - the first string follows the second one. */
- int compare_strings
- ( MPL *mpl,
- STRING *str1, /* not changed */
- STRING *str2 /* not changed */
- )
- #if 0
- { int j, c1, c2;
- xassert(mpl == mpl);
- for (;; str1 = str1->next, str2 = str2->next)
- { xassert(str1 != NULL);
- xassert(str2 != NULL);
- for (j = 0; j < STRSEG_SIZE; j++)
- { c1 = (unsigned char)str1->seg[j];
- c2 = (unsigned char)str2->seg[j];
- if (c1 < c2) return -1;
- if (c1 > c2) return +1;
- if (c1 == '\0') goto done;
- }
- }
- done: return 0;
- }
- #else
- { xassert(mpl == mpl);
- return strcmp(str1, str2);
- }
- #endif
- /*----------------------------------------------------------------------
- -- fetch_string - extract content of character string.
- --
- -- This routine returns a character string, which is exactly equivalent
- -- to specified segmented character string. */
- char *fetch_string
- ( MPL *mpl,
- STRING *str, /* not changed */
- char buf[MAX_LENGTH+1] /* modified */
- )
- #if 0
- { int i, j;
- xassert(mpl == mpl);
- xassert(buf != NULL);
- for (i = 0; ; str = str->next)
- { xassert(str != NULL);
- for (j = 0; j < STRSEG_SIZE; j++)
- if ((buf[i++] = str->seg[j]) == '\0') goto done;
- }
- done: xassert(strlen(buf) <= MAX_LENGTH);
- return buf;
- }
- #else
- { xassert(mpl == mpl);
- return strcpy(buf, str);
- }
- #endif
- /*----------------------------------------------------------------------
- -- delete_string - delete character string.
- --
- -- This routine deletes specified segmented character string. */
- void delete_string
- ( MPL *mpl,
- STRING *str /* destroyed */
- )
- #if 0
- { STRING *temp;
- xassert(str != NULL);
- while (str != NULL)
- { temp = str;
- str = str->next;
- dmp_free_atom(mpl->strings, temp, sizeof(STRING));
- }
- return;
- }
- #else
- { dmp_free_atom(mpl->strings, str, strlen(str)+1);
- return;
- }
- #endif
- /**********************************************************************/
- /* * * SYMBOLS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- create_symbol_num - create symbol of numeric type.
- --
- -- This routine creates a symbol, which has a numeric value specified
- -- as floating-point number. */
- SYMBOL *create_symbol_num(MPL *mpl, double num)
- { SYMBOL *sym;
- sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
- sym->num = num;
- sym->str = NULL;
- return sym;
- }
- /*----------------------------------------------------------------------
- -- create_symbol_str - create symbol of abstract type.
- --
- -- This routine creates a symbol, which has an abstract value specified
- -- as segmented character string. */
- SYMBOL *create_symbol_str
- ( MPL *mpl,
- STRING *str /* destroyed */
- )
- { SYMBOL *sym;
- xassert(str != NULL);
- sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
- sym->num = 0.0;
- sym->str = str;
- return sym;
- }
- /*----------------------------------------------------------------------
- -- copy_symbol - make copy of symbol.
- --
- -- This routine returns an exact copy of symbol. */
- SYMBOL *copy_symbol
- ( MPL *mpl,
- SYMBOL *sym /* not changed */
- )
- { SYMBOL *copy;
- xassert(sym != NULL);
- copy = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
- if (sym->str == NULL)
- { copy->num = sym->num;
- copy->str = NULL;
- }
- else
- { copy->num = 0.0;
- copy->str = copy_string(mpl, sym->str);
- }
- return copy;
- }
- /*----------------------------------------------------------------------
- -- compare_symbols - compare one symbol with another.
- --
- -- This routine compares one symbol with another and returns the result
- -- of comparison as follows:
- --
- -- = 0 - both symbols are identical;
- -- < 0 - the first symbol precedes the second one;
- -- > 0 - the first symbol follows the second one.
- --
- -- Note that the linear order, in which symbols follow each other, is
- -- implementation-dependent. It may be not an alphabetical order. */
- int compare_symbols
- ( MPL *mpl,
- SYMBOL *sym1, /* not changed */
- SYMBOL *sym2 /* not changed */
- )
- { xassert(sym1 != NULL);
- xassert(sym2 != NULL);
- /* let all numeric quantities precede all symbolic quantities */
- if (sym1->str == NULL && sym2->str == NULL)
- { if (sym1->num < sym2->num) return -1;
- if (sym1->num > sym2->num) return +1;
- return 0;
- }
- if (sym1->str == NULL) return -1;
- if (sym2->str == NULL) return +1;
- return compare_strings(mpl, sym1->str, sym2->str);
- }
- /*----------------------------------------------------------------------
- -- delete_symbol - delete symbol.
- --
- -- This routine deletes specified symbol. */
- void delete_symbol
- ( MPL *mpl,
- SYMBOL *sym /* destroyed */
- )
- { xassert(sym != NULL);
- if (sym->str != NULL) delete_string(mpl, sym->str);
- dmp_free_atom(mpl->symbols, sym, sizeof(SYMBOL));
- return;
- }
- /*----------------------------------------------------------------------
- -- format_symbol - format symbol for displaying or printing.
- --
- -- This routine converts specified symbol to a charater string, which
- -- is suitable for displaying or printing.
- --
- -- The resultant string is never longer than 255 characters. If it gets
- -- longer, it is truncated from the right and appended by dots. */
- char *format_symbol
- ( MPL *mpl,
- SYMBOL *sym /* not changed */
- )
- { char *buf = mpl->sym_buf;
- xassert(sym != NULL);
- if (sym->str == NULL)
- sprintf(buf, "%.*g", DBL_DIG, sym->num);
- else
- { char str[MAX_LENGTH+1];
- int quoted, j, len;
- fetch_string(mpl, sym->str, str);
- if (!(isalpha((unsigned char)str[0]) || str[0] == '_'))
- quoted = 1;
- else
- { quoted = 0;
- for (j = 1; str[j] != '\0'; j++)
- { if (!(isalnum((unsigned char)str[j]) ||
- strchr("+-._", (unsigned char)str[j]) != NULL))
- { quoted = 1;
- break;
- }
- }
- }
- # define safe_append(c) \
- (void)(len < 255 ? (buf[len++] = (char)(c)) : 0)
- buf[0] = '\0', len = 0;
- if (quoted) safe_append('\'');
- for (j = 0; str[j] != '\0'; j++)
- { if (quoted && str[j] == '\'') safe_append('\'');
- safe_append(str[j]);
- }
- if (quoted) safe_append('\'');
- # undef safe_append
- buf[len] = '\0';
- if (len == 255) strcpy(buf+252, "...");
- }
- xassert(strlen(buf) <= 255);
- return buf;
- }
- /*----------------------------------------------------------------------
- -- concat_symbols - concatenate one symbol with another.
- --
- -- This routine concatenates values of two given symbols and assigns
- -- the resultant character string to a new symbol, which is returned on
- -- exit. Both original symbols are destroyed. */
- SYMBOL *concat_symbols
- ( MPL *mpl,
- SYMBOL *sym1, /* destroyed */
- SYMBOL *sym2 /* destroyed */
- )
- { char str1[MAX_LENGTH+1], str2[MAX_LENGTH+1];
- xassert(MAX_LENGTH >= DBL_DIG + DBL_DIG);
- if (sym1->str == NULL)
- sprintf(str1, "%.*g", DBL_DIG, sym1->num);
- else
- fetch_string(mpl, sym1->str, str1);
- if (sym2->str == NULL)
- sprintf(str2, "%.*g", DBL_DIG, sym2->num);
- else
- fetch_string(mpl, sym2->str, str2);
- if (strlen(str1) + strlen(str2) > MAX_LENGTH)
- { char buf[255+1];
- strcpy(buf, format_symbol(mpl, sym1));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s & %s; resultant symbol exceeds %d characters",
- buf, format_symbol(mpl, sym2), MAX_LENGTH);
- }
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- return create_symbol_str(mpl, create_string(mpl, strcat(str1,
- str2)));
- }
- /**********************************************************************/
- /* * * N-TUPLES * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- create_tuple - create n-tuple.
- --
- -- This routine creates a n-tuple, which initially has no components,
- -- i.e. which is 0-tuple. */
- TUPLE *create_tuple(MPL *mpl)
- { TUPLE *tuple;
- xassert(mpl == mpl);
- tuple = NULL;
- return tuple;
- }
- /*----------------------------------------------------------------------
- -- expand_tuple - append symbol to n-tuple.
- --
- -- This routine expands n-tuple appending to it a given symbol, which
- -- becomes its new last component. */
- TUPLE *expand_tuple
- ( MPL *mpl,
- TUPLE *tuple, /* destroyed */
- SYMBOL *sym /* destroyed */
- )
- { TUPLE *tail, *temp;
- xassert(sym != NULL);
- /* create a new component */
- tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
- tail->sym = sym;
- tail->next = NULL;
- /* and append it to the component list */
- if (tuple == NULL)
- tuple = tail;
- else
- { for (temp = tuple; temp->next != NULL; temp = temp->next);
- temp->next = tail;
- }
- return tuple;
- }
- /*----------------------------------------------------------------------
- -- tuple_dimen - determine dimension of n-tuple.
- --
- -- This routine returns dimension of n-tuple, i.e. number of components
- -- in the n-tuple. */
- int tuple_dimen
- ( MPL *mpl,
- TUPLE *tuple /* not changed */
- )
- { TUPLE *temp;
- int dim = 0;
- xassert(mpl == mpl);
- for (temp = tuple; temp != NULL; temp = temp->next) dim++;
- return dim;
- }
- /*----------------------------------------------------------------------
- -- copy_tuple - make copy of n-tuple.
- --
- -- This routine returns an exact copy of n-tuple. */
- TUPLE *copy_tuple
- ( MPL *mpl,
- TUPLE *tuple /* not changed */
- )
- { TUPLE *head, *tail;
- if (tuple == NULL)
- head = NULL;
- else
- { head = tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
- for (; tuple != NULL; tuple = tuple->next)
- { xassert(tuple->sym != NULL);
- tail->sym = copy_symbol(mpl, tuple->sym);
- if (tuple->next != NULL)
- tail = (tail->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE)));
- }
- tail->next = NULL;
- }
- return head;
- }
- /*----------------------------------------------------------------------
- -- compare_tuples - compare one n-tuple with another.
- --
- -- This routine compares two given n-tuples, which must have the same
- -- dimension (not checked for the sake of efficiency), and returns one
- -- of the following codes:
- --
- -- = 0 - both n-tuples are identical;
- -- < 0 - the first n-tuple precedes the second one;
- -- > 0 - the first n-tuple follows the second one.
- --
- -- Note that the linear order, in which n-tuples follow each other, is
- -- implementation-dependent. It may be not an alphabetical order. */
- int compare_tuples
- ( MPL *mpl,
- TUPLE *tuple1, /* not changed */
- TUPLE *tuple2 /* not changed */
- )
- { TUPLE *item1, *item2;
- int ret;
- xassert(mpl == mpl);
- for (item1 = tuple1, item2 = tuple2; item1 != NULL;
- item1 = item1->next, item2 = item2->next)
- { xassert(item2 != NULL);
- xassert(item1->sym != NULL);
- xassert(item2->sym != NULL);
- ret = compare_symbols(mpl, item1->sym, item2->sym);
- if (ret != 0) return ret;
- }
- xassert(item2 == NULL);
- return 0;
- }
- /*----------------------------------------------------------------------
- -- build_subtuple - build subtuple of given n-tuple.
- --
- -- This routine builds subtuple, which consists of first dim components
- -- of given n-tuple. */
- TUPLE *build_subtuple
- ( MPL *mpl,
- TUPLE *tuple, /* not changed */
- int dim
- )
- { TUPLE *head, *temp;
- int j;
- head = create_tuple(mpl);
- for (j = 1, temp = tuple; j <= dim; j++, temp = temp->next)
- { xassert(temp != NULL);
- head = expand_tuple(mpl, head, copy_symbol(mpl, temp->sym));
- }
- return head;
- }
- /*----------------------------------------------------------------------
- -- delete_tuple - delete n-tuple.
- --
- -- This routine deletes specified n-tuple. */
- void delete_tuple
- ( MPL *mpl,
- TUPLE *tuple /* destroyed */
- )
- { TUPLE *temp;
- while (tuple != NULL)
- { temp = tuple;
- tuple = temp->next;
- xassert(temp->sym != NULL);
- delete_symbol(mpl, temp->sym);
- dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE));
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- format_tuple - format n-tuple for displaying or printing.
- --
- -- This routine converts specified n-tuple to a character string, which
- -- is suitable for displaying or printing.
- --
- -- The resultant string is never longer than 255 characters. If it gets
- -- longer, it is truncated from the right and appended by dots. */
- char *format_tuple
- ( MPL *mpl,
- int c,
- TUPLE *tuple /* not changed */
- )
- { TUPLE *temp;
- int dim, j, len;
- char *buf = mpl->tup_buf, str[255+1], *save;
- # define safe_append(c) \
- (void)(len < 255 ? (buf[len++] = (char)(c)) : 0)
- buf[0] = '\0', len = 0;
- dim = tuple_dimen(mpl, tuple);
- if (c == '[' && dim > 0) safe_append('[');
- if (c == '(' && dim > 1) safe_append('(');
- for (temp = tuple; temp != NULL; temp = temp->next)
- { if (temp != tuple) safe_append(',');
- xassert(temp->sym != NULL);
- save = mpl->sym_buf;
- mpl->sym_buf = str;
- format_symbol(mpl, temp->sym);
- mpl->sym_buf = save;
- xassert(strlen(str) < sizeof(str));
- for (j = 0; str[j] != '\0'; j++) safe_append(str[j]);
- }
- if (c == '[' && dim > 0) safe_append(']');
- if (c == '(' && dim > 1) safe_append(')');
- # undef safe_append
- buf[len] = '\0';
- if (len == 255) strcpy(buf+252, "...");
- xassert(strlen(buf) <= 255);
- return buf;
- }
- /**********************************************************************/
- /* * * ELEMENTAL SETS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- create_elemset - create elemental set.
- --
- -- This routine creates an elemental set, whose members are n-tuples of
- -- specified dimension. Being created the set is initially empty. */
- ELEMSET *create_elemset(MPL *mpl, int dim)
- { ELEMSET *set;
- xassert(dim > 0);
- set = create_array(mpl, A_NONE, dim);
- return set;
- }
- /*----------------------------------------------------------------------
- -- find_tuple - check if elemental set contains given n-tuple.
- --
- -- This routine finds given n-tuple in specified elemental set in order
- -- to check if the set contains that n-tuple. If the n-tuple is found,
- -- the routine returns pointer to corresponding array member. Otherwise
- -- null pointer is returned. */
- MEMBER *find_tuple
- ( MPL *mpl,
- ELEMSET *set, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { xassert(set != NULL);
- xassert(set->type == A_NONE);
- xassert(set->dim == tuple_dimen(mpl, tuple));
- return find_member(mpl, set, tuple);
- }
- /*----------------------------------------------------------------------
- -- add_tuple - add new n-tuple to elemental set.
- --
- -- This routine adds given n-tuple to specified elemental set.
- --
- -- For the sake of efficiency this routine doesn't check whether the
- -- set already contains the same n-tuple or not. Therefore the calling
- -- program should use the routine find_tuple (if necessary) in order to
- -- make sure that the given n-tuple is not contained in the set, since
- -- duplicate n-tuples within the same set are not allowed. */
- MEMBER *add_tuple
- ( MPL *mpl,
- ELEMSET *set, /* modified */
- TUPLE *tuple /* destroyed */
- )
- { MEMBER *memb;
- xassert(set != NULL);
- xassert(set->type == A_NONE);
- xassert(set->dim == tuple_dimen(mpl, tuple));
- memb = add_member(mpl, set, tuple);
- memb->value.none = NULL;
- return memb;
- }
- /*----------------------------------------------------------------------
- -- check_then_add - check and add new n-tuple to elemental set.
- --
- -- This routine is equivalent to the routine add_tuple except that it
- -- does check for duplicate n-tuples. */
- MEMBER *check_then_add
- ( MPL *mpl,
- ELEMSET *set, /* modified */
- TUPLE *tuple /* destroyed */
- )
- { if (find_tuple(mpl, set, tuple) != NULL)
- mpl_error(mpl, "duplicate tuple %s detected", format_tuple(mpl,
- '(', tuple));
- return add_tuple(mpl, set, tuple);
- }
- /*----------------------------------------------------------------------
- -- copy_elemset - make copy of elemental set.
- --
- -- This routine makes an exact copy of elemental set. */
- ELEMSET *copy_elemset
- ( MPL *mpl,
- ELEMSET *set /* not changed */
- )
- { ELEMSET *copy;
- MEMBER *memb;
- xassert(set != NULL);
- xassert(set->type == A_NONE);
- xassert(set->dim > 0);
- copy = create_elemset(mpl, set->dim);
- for (memb = set->head; memb != NULL; memb = memb->next)
- add_tuple(mpl, copy, copy_tuple(mpl, memb->tuple));
- return copy;
- }
- /*----------------------------------------------------------------------
- -- delete_elemset - delete elemental set.
- --
- -- This routine deletes specified elemental set. */
- void delete_elemset
- ( MPL *mpl,
- ELEMSET *set /* destroyed */
- )
- { xassert(set != NULL);
- xassert(set->type == A_NONE);
- delete_array(mpl, set);
- return;
- }
- /*----------------------------------------------------------------------
- -- arelset_size - compute size of "arithmetic" elemental set.
- --
- -- This routine computes the size of "arithmetic" elemental set, which
- -- is specified in the form of arithmetic progression:
- --
- -- { t0 .. tf by dt }.
- --
- -- The size is computed using the formula:
- --
- -- n = max(0, floor((tf - t0) / dt) + 1). */
- int arelset_size(MPL *mpl, double t0, double tf, double dt)
- { double temp;
- if (dt == 0.0)
- mpl_error(mpl, "%.*g .. %.*g by %.*g; zero stride not allowed",
- DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt);
- if (tf > 0.0 && t0 < 0.0 && tf > + 0.999 * DBL_MAX + t0)
- temp = +DBL_MAX;
- else if (tf < 0.0 && t0 > 0.0 && tf < - 0.999 * DBL_MAX + t0)
- temp = -DBL_MAX;
- else
- temp = tf - t0;
- if (fabs(dt) < 1.0 && fabs(temp) > (0.999 * DBL_MAX) * fabs(dt))
- { if (temp > 0.0 && dt > 0.0 || temp < 0.0 && dt < 0.0)
- temp = +DBL_MAX;
- else
- temp = 0.0;
- }
- else
- { temp = floor(temp / dt) + 1.0;
- if (temp < 0.0) temp = 0.0;
- }
- xassert(temp >= 0.0);
- if (temp > (double)(INT_MAX - 1))
- mpl_error(mpl, "%.*g .. %.*g by %.*g; set too large",
- DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt);
- return (int)(temp + 0.5);
- }
- /*----------------------------------------------------------------------
- -- arelset_member - compute member of "arithmetic" elemental set.
- --
- -- This routine returns a numeric value of symbol, which is equivalent
- -- to j-th member of given "arithmetic" elemental set specified in the
- -- form of arithmetic progression:
- --
- -- { t0 .. tf by dt }.
- --
- -- The symbol value is computed with the formula:
- --
- -- j-th member = t0 + (j - 1) * dt,
- --
- -- The number j must satisfy to the restriction 1 <= j <= n, where n is
- -- the set size computed by the routine arelset_size. */
- double arelset_member(MPL *mpl, double t0, double tf, double dt, int j)
- { xassert(1 <= j && j <= arelset_size(mpl, t0, tf, dt));
- return t0 + (double)(j - 1) * dt;
- }
- /*----------------------------------------------------------------------
- -- create_arelset - create "arithmetic" elemental set.
- --
- -- This routine creates "arithmetic" elemental set, which is specified
- -- in the form of arithmetic progression:
- --
- -- { t0 .. tf by dt }.
- --
- -- Components of this set are 1-tuples. */
- ELEMSET *create_arelset(MPL *mpl, double t0, double tf, double dt)
- { ELEMSET *set;
- int j, n;
- set = create_elemset(mpl, 1);
- n = arelset_size(mpl, t0, tf, dt);
- for (j = 1; j <= n; j++)
- { add_tuple
- ( mpl,
- set,
- expand_tuple
- ( mpl,
- create_tuple(mpl),
- create_symbol_num
- ( mpl,
- arelset_member(mpl, t0, tf, dt, j)
- )
- )
- );
- }
- return set;
- }
- /*----------------------------------------------------------------------
- -- set_union - union of two elemental sets.
- --
- -- This routine computes the union:
- --
- -- X U Y = { j | (j in X) or (j in Y) },
- --
- -- where X and Y are given elemental sets (destroyed on exit). */
- ELEMSET *set_union
- ( MPL *mpl,
- ELEMSET *X, /* destroyed */
- ELEMSET *Y /* destroyed */
- )
- { MEMBER *memb;
- xassert(X != NULL);
- xassert(X->type == A_NONE);
- xassert(X->dim > 0);
- xassert(Y != NULL);
- xassert(Y->type == A_NONE);
- xassert(Y->dim > 0);
- xassert(X->dim == Y->dim);
- for (memb = Y->head; memb != NULL; memb = memb->next)
- { if (find_tuple(mpl, X, memb->tuple) == NULL)
- add_tuple(mpl, X, copy_tuple(mpl, memb->tuple));
- }
- delete_elemset(mpl, Y);
- return X;
- }
- /*----------------------------------------------------------------------
- -- set_diff - difference between two elemental sets.
- --
- -- This routine computes the difference:
- --
- -- X \ Y = { j | (j in X) and (j not in Y) },
- --
- -- where X and Y are given elemental sets (destroyed on exit). */
- ELEMSET *set_diff
- ( MPL *mpl,
- ELEMSET *X, /* destroyed */
- ELEMSET *Y /* destroyed */
- )
- { ELEMSET *Z;
- MEMBER *memb;
- xassert(X != NULL);
- xassert(X->type == A_NONE);
- xassert(X->dim > 0);
- xassert(Y != NULL);
- xassert(Y->type == A_NONE);
- xassert(Y->dim > 0);
- xassert(X->dim == Y->dim);
- Z = create_elemset(mpl, X->dim);
- for (memb = X->head; memb != NULL; memb = memb->next)
- { if (find_tuple(mpl, Y, memb->tuple) == NULL)
- add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
- }
- delete_elemset(mpl, X);
- delete_elemset(mpl, Y);
- return Z;
- }
- /*----------------------------------------------------------------------
- -- set_symdiff - symmetric difference between two elemental sets.
- --
- -- This routine computes the symmetric difference:
- --
- -- X (+) Y = (X \ Y) U (Y \ X),
- --
- -- where X and Y are given elemental sets (destroyed on exit). */
- ELEMSET *set_symdiff
- ( MPL *mpl,
- ELEMSET *X, /* destroyed */
- ELEMSET *Y /* destroyed */
- )
- { ELEMSET *Z;
- MEMBER *memb;
- xassert(X != NULL);
- xassert(X->type == A_NONE);
- xassert(X->dim > 0);
- xassert(Y != NULL);
- xassert(Y->type == A_NONE);
- xassert(Y->dim > 0);
- xassert(X->dim == Y->dim);
- /* Z := X \ Y */
- Z = create_elemset(mpl, X->dim);
- for (memb = X->head; memb != NULL; memb = memb->next)
- { if (find_tuple(mpl, Y, memb->tuple) == NULL)
- add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
- }
- /* Z := Z U (Y \ X) */
- for (memb = Y->head; memb != NULL; memb = memb->next)
- { if (find_tuple(mpl, X, memb->tuple) == NULL)
- add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
- }
- delete_elemset(mpl, X);
- delete_elemset(mpl, Y);
- return Z;
- }
- /*----------------------------------------------------------------------
- -- set_inter - intersection of two elemental sets.
- --
- -- This routine computes the intersection:
- --
- -- X ^ Y = { j | (j in X) and (j in Y) },
- --
- -- where X and Y are given elemental sets (destroyed on exit). */
- ELEMSET *set_inter
- ( MPL *mpl,
- ELEMSET *X, /* destroyed */
- ELEMSET *Y /* destroyed */
- )
- { ELEMSET *Z;
- MEMBER *memb;
- xassert(X != NULL);
- xassert(X->type == A_NONE);
- xassert(X->dim > 0);
- xassert(Y != NULL);
- xassert(Y->type == A_NONE);
- xassert(Y->dim > 0);
- xassert(X->dim == Y->dim);
- Z = create_elemset(mpl, X->dim);
- for (memb = X->head; memb != NULL; memb = memb->next)
- { if (find_tuple(mpl, Y, memb->tuple) != NULL)
- add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
- }
- delete_elemset(mpl, X);
- delete_elemset(mpl, Y);
- return Z;
- }
- /*----------------------------------------------------------------------
- -- set_cross - cross (Cartesian) product of two elemental sets.
- --
- -- This routine computes the cross (Cartesian) product:
- --
- -- X x Y = { (i,j) | (i in X) and (j in Y) },
- --
- -- where X and Y are given elemental sets (destroyed on exit). */
- ELEMSET *set_cross
- ( MPL *mpl,
- ELEMSET *X, /* destroyed */
- ELEMSET *Y /* destroyed */
- )
- { ELEMSET *Z;
- MEMBER *memx, *memy;
- TUPLE *tuple, *temp;
- xassert(X != NULL);
- xassert(X->type == A_NONE);
- xassert(X->dim > 0);
- xassert(Y != NULL);
- xassert(Y->type == A_NONE);
- xassert(Y->dim > 0);
- Z = create_elemset(mpl, X->dim + Y->dim);
- for (memx = X->head; memx != NULL; memx = memx->next)
- { for (memy = Y->head; memy != NULL; memy = memy->next)
- { tuple = copy_tuple(mpl, memx->tuple);
- for (temp = memy->tuple; temp != NULL; temp = temp->next)
- tuple = expand_tuple(mpl, tuple, copy_symbol(mpl,
- temp->sym));
- add_tuple(mpl, Z, tuple);
- }
- }
- delete_elemset(mpl, X);
- delete_elemset(mpl, Y);
- return Z;
- }
- /**********************************************************************/
- /* * * ELEMENTAL VARIABLES * * */
- /**********************************************************************/
- /* (there are no specific routines for elemental variables) */
- /**********************************************************************/
- /* * * LINEAR FORMS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- constant_term - create constant term.
- --
- -- This routine creates the linear form, which is a constant term. */
- FORMULA *constant_term(MPL *mpl, double coef)
- { FORMULA *form;
- if (coef == 0.0)
- form = NULL;
- else
- { form = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- form->coef = coef;
- form->var = NULL;
- form->next = NULL;
- }
- return form;
- }
- /*----------------------------------------------------------------------
- -- single_variable - create single variable.
- --
- -- This routine creates the linear form, which is a single elemental
- -- variable. */
- FORMULA *single_variable
- ( MPL *mpl,
- ELEMVAR *var /* referenced */
- )
- { FORMULA *form;
- xassert(var != NULL);
- form = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- form->coef = 1.0;
- form->var = var;
- form->next = NULL;
- return form;
- }
- /*----------------------------------------------------------------------
- -- copy_formula - make copy of linear form.
- --
- -- This routine returns an exact copy of linear form. */
- FORMULA *copy_formula
- ( MPL *mpl,
- FORMULA *form /* not changed */
- )
- { FORMULA *head, *tail;
- if (form == NULL)
- head = NULL;
- else
- { head = tail = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- for (; form != NULL; form = form->next)
- { tail->coef = form->coef;
- tail->var = form->var;
- if (form->next != NULL)
- tail = (tail->next = dmp_get_atom(mpl->formulae, sizeof(FORMULA)));
- }
- tail->next = NULL;
- }
- return head;
- }
- /*----------------------------------------------------------------------
- -- delete_formula - delete linear form.
- --
- -- This routine deletes specified linear form. */
- void delete_formula
- ( MPL *mpl,
- FORMULA *form /* destroyed */
- )
- { FORMULA *temp;
- while (form != NULL)
- { temp = form;
- form = form->next;
- dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA));
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- linear_comb - linear combination of two linear forms.
- --
- -- This routine computes the linear combination:
- --
- -- a * fx + b * fy,
- --
- -- where a and b are numeric coefficients, fx and fy are linear forms
- -- (destroyed on exit). */
- FORMULA *linear_comb
- ( MPL *mpl,
- double a, FORMULA *fx, /* destroyed */
- double b, FORMULA *fy /* destroyed */
- )
- { FORMULA *form = NULL, *term, *temp;
- double c0 = 0.0;
- for (term = fx; term != NULL; term = term->next)
- { if (term->var == NULL)
- c0 = fp_add(mpl, c0, fp_mul(mpl, a, term->coef));
- else
- term->var->temp =
- fp_add(mpl, term->var->temp, fp_mul(mpl, a, term->coef));
- }
- for (term = fy; term != NULL; term = term->next)
- { if (term->var == NULL)
- c0 = fp_add(mpl, c0, fp_mul(mpl, b, term->coef));
- else
- term->var->temp =
- fp_add(mpl, term->var->temp, fp_mul(mpl, b, term->coef));
- }
- for (term = fx; term != NULL; term = term->next)
- { if (term->var != NULL && term->var->temp != 0.0)
- { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- temp->coef = term->var->temp, temp->var = term->var;
- temp->next = form, form = temp;
- term->var->temp = 0.0;
- }
- }
- for (term = fy; term != NULL; term = term->next)
- { if (term->var != NULL && term->var->temp != 0.0)
- { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- temp->coef = term->var->temp, temp->var = term->var;
- temp->next = form, form = temp;
- term->var->temp = 0.0;
- }
- }
- if (c0 != 0.0)
- { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
- temp->coef = c0, temp->var = NULL;
- temp->next = form, form = temp;
- }
- delete_formula(mpl, fx);
- delete_formula(mpl, fy);
- return form;
- }
- /*----------------------------------------------------------------------
- -- remove_constant - remove constant term from linear form.
- --
- -- This routine removes constant term from linear form and stores its
- -- value to given location. */
- FORMULA *remove_constant
- ( MPL *mpl,
- FORMULA *form, /* destroyed */
- double *coef /* modified */
- )
- { FORMULA *head = NULL, *temp;
- *coef = 0.0;
- while (form != NULL)
- { temp = form;
- form = form->next;
- if (temp->var == NULL)
- { /* constant term */
- *coef = fp_add(mpl, *coef, temp->coef);
- dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA));
- }
- else
- { /* linear term */
- temp->next = head;
- head = temp;
- }
- }
- return head;
- }
- /*----------------------------------------------------------------------
- -- reduce_terms - reduce identical terms in linear form.
- --
- -- This routine reduces identical terms in specified linear form. */
- FORMULA *reduce_terms
- ( MPL *mpl,
- FORMULA *form /* destroyed */
- )
- { FORMULA *term, *next_term;
- double c0 = 0.0;
- for (term = form; term != NULL; term = term->next)
- { if (term->var == NULL)
- c0 = fp_add(mpl, c0, term->coef);
- else
- term->var->temp = fp_add(mpl, term->var->temp, term->coef);
- }
- next_term = form, form = NULL;
- for (term = next_term; term != NULL; term = next_term)
- { next_term = term->next;
- if (term->var == NULL && c0 != 0.0)
- { term->coef = c0, c0 = 0.0;
- term->next = form, form = term;
- }
- else if (term->var != NULL && term->var->temp != 0.0)
- { term->coef = term->var->temp, term->var->temp = 0.0;
- term->next = form, form = term;
- }
- else
- dmp_free_atom(mpl->formulae, term, sizeof(FORMULA));
- }
- return form;
- }
- /**********************************************************************/
- /* * * ELEMENTAL CONSTRAINTS * * */
- /**********************************************************************/
- /* (there are no specific routines for elemental constraints) */
- /**********************************************************************/
- /* * * GENERIC VALUES * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- delete_value - delete generic value.
- --
- -- This routine deletes specified generic value.
- --
- -- NOTE: The generic value to be deleted must be valid. */
- void delete_value
- ( MPL *mpl,
- int type,
- VALUE *value /* content destroyed */
- )
- { xassert(value != NULL);
- switch (type)
- { case A_NONE:
- value->none = NULL;
- break;
- case A_NUMERIC:
- value->num = 0.0;
- break;
- case A_SYMBOLIC:
- delete_symbol(mpl, value->sym), value->sym = NULL;
- break;
- case A_LOGICAL:
- value->bit = 0;
- break;
- case A_TUPLE:
- delete_tuple(mpl, value->tuple), value->tuple = NULL;
- break;
- case A_ELEMSET:
- delete_elemset(mpl, value->set), value->set = NULL;
- break;
- case A_ELEMVAR:
- value->var = NULL;
- break;
- case A_FORMULA:
- delete_formula(mpl, value->form), value->form = NULL;
- break;
- case A_ELEMCON:
- value->con = NULL;
- break;
- default:
- xassert(type != type);
- }
- return;
- }
- /**********************************************************************/
- /* * * SYMBOLICALLY INDEXED ARRAYS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- create_array - create array.
- --
- -- This routine creates an array of specified type and dimension. Being
- -- created the array is initially empty.
- --
- -- The type indicator determines generic values, which can be assigned
- -- to the array members:
- --
- -- A_NONE - none (members have no assigned values)
- -- A_NUMERIC - floating-point numbers
- -- A_SYMBOLIC - symbols
- -- A_ELEMSET - elemental sets
- -- A_ELEMVAR - elemental variables
- -- A_ELEMCON - elemental constraints
- --
- -- The dimension may be 0, in which case the array consists of the only
- -- member (such arrays represent 0-dimensional objects). */
- ARRAY *create_array(MPL *mpl, int type, int dim)
- { ARRAY *array;
- xassert(type == A_NONE || type == A_NUMERIC ||
- type == A_SYMBOLIC || type == A_ELEMSET ||
- type == A_ELEMVAR || type == A_ELEMCON);
- xassert(dim >= 0);
- array = dmp_get_atom(mpl->arrays, sizeof(ARRAY));
- array->type = type;
- array->dim = dim;
- array->size = 0;
- array->head = NULL;
- array->tail = NULL;
- array->tree = NULL;
- array->prev = NULL;
- array->next = mpl->a_list;
- /* include the array in the global array list */
- if (array->next != NULL) array->next->prev = array;
- mpl->a_list = array;
- return array;
- }
- /*----------------------------------------------------------------------
- -- find_member - find array member with given n-tuple.
- --
- -- This routine finds an array member, which has given n-tuple. If the
- -- array is short, the linear search is used. Otherwise the routine
- -- autimatically creates the search tree (i.e. the array index) to find
- -- members for logarithmic time. */
- static int compare_member_tuples(void *info, const void *key1,
- const void *key2)
- { /* this is an auxiliary routine used to compare keys, which are
- n-tuples assigned to array members */
- return compare_tuples((MPL *)info, (TUPLE *)key1, (TUPLE *)key2);
- }
- MEMBER *find_member
- ( MPL *mpl,
- ARRAY *array, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- xassert(array != NULL);
- /* the n-tuple must have the same dimension as the array */
- xassert(tuple_dimen(mpl, tuple) == array->dim);
- /* if the array is large enough, create the search tree and index
- all existing members of the array */
- if (array->size > 30 && array->tree == NULL)
- { array->tree = avl_create_tree(compare_member_tuples, mpl);
- for (memb = array->head; memb != NULL; memb = memb->next)
- avl_set_node_link(avl_insert_node(array->tree, memb->tuple),
- (void *)memb);
- }
- /* find a member, which has the given tuple */
- if (array->tree == NULL)
- { /* the search tree doesn't exist; use the linear search */
- for (memb = array->head; memb != NULL; memb = memb->next)
- if (compare_tuples(mpl, memb->tuple, tuple) == 0) break;
- }
- else
- { /* the search tree exists; use the binary search */
- AVLNODE *node;
- node = avl_find_node(array->tree, tuple);
- memb = (MEMBER *)(node == NULL ? NULL : avl_get_node_link(node));
- }
- return memb;
- }
- /*----------------------------------------------------------------------
- -- add_member - add new member to array.
- --
- -- This routine creates a new member with given n-tuple and adds it to
- -- specified array.
- --
- -- For the sake of efficiency this routine doesn't check whether the
- -- array already contains a member with the given n-tuple or not. Thus,
- -- if necessary, the calling program should use the routine find_member
- -- in order to be sure that the array contains no member with the same
- -- n-tuple, because members with duplicate n-tuples are not allowed.
- --
- -- This routine assigns no generic value to the new member, because the
- -- calling program must do that. */
- MEMBER *add_member
- ( MPL *mpl,
- ARRAY *array, /* modified */
- TUPLE *tuple /* destroyed */
- )
- { MEMBER *memb;
- xassert(array != NULL);
- /* the n-tuple must have the same dimension as the array */
- xassert(tuple_dimen(mpl, tuple) == array->dim);
- /* create new member */
- memb = dmp_get_atom(mpl->members, sizeof(MEMBER));
- memb->tuple = tuple;
- memb->next = NULL;
- memset(&memb->value, '?', sizeof(VALUE));
- /* and append it to the member list */
- array->size++;
- if (array->head == NULL)
- array->head = memb;
- else
- array->tail->next = memb;
- array->tail = memb;
- /* if the search tree exists, index the new member */
- if (array->tree != NULL)
- avl_set_node_link(avl_insert_node(array->tree, memb->tuple),
- (void *)memb);
- return memb;
- }
- /*----------------------------------------------------------------------
- -- delete_array - delete array.
- --
- -- This routine deletes specified array.
- --
- -- Generic values assigned to the array members are not deleted by this
- -- routine. The calling program itself must delete all assigned generic
- -- values before deleting the array. */
- void delete_array
- ( MPL *mpl,
- ARRAY *array /* destroyed */
- )
- { MEMBER *memb;
- xassert(array != NULL);
- /* delete all existing array members */
- while (array->head != NULL)
- { memb = array->head;
- array->head = memb->next;
- delete_tuple(mpl, memb->tuple);
- dmp_free_atom(mpl->members, memb, sizeof(MEMBER));
- }
- /* if the search tree exists, also delete it */
- if (array->tree != NULL) avl_delete_tree(array->tree);
- /* remove the array from the global array list */
- if (array->prev == NULL)
- mpl->a_list = array->next;
- else
- array->prev->next = array->next;
- if (array->next == NULL)
- ;
- else
- array->next->prev = array->prev;
- /* delete the array descriptor */
- dmp_free_atom(mpl->arrays, array, sizeof(ARRAY));
- return;
- }
- /**********************************************************************/
- /* * * DOMAINS AND DUMMY INDICES * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- assign_dummy_index - assign new value to dummy index.
- --
- -- This routine assigns new value to specified dummy index and, that is
- -- important, invalidates all temporary resultant values, which depends
- -- on that dummy index. */
- void assign_dummy_index
- ( MPL *mpl,
- DOMAIN_SLOT *slot, /* modified */
- SYMBOL *value /* not changed */
- )
- { CODE *leaf, *code;
- xassert(slot != NULL);
- xassert(value != NULL);
- /* delete the current value assigned to the dummy index */
- if (slot->value != NULL)
- { /* if the current value and the new one are identical, actual
- assignment is not needed */
- if (compare_symbols(mpl, slot->value, value) == 0) goto done;
- /* delete a symbol, which is the current value */
- delete_symbol(mpl, slot->value), slot->value = NULL;
- }
- /* now walk through all the pseudo-codes with op = O_INDEX, which
- refer to the dummy index to be changed (these pseudo-codes are
- leaves in the forest of *all* expressions in the database) */
- for (leaf = slot->list; leaf != NULL; leaf = leaf->arg.index.
- next)
- { xassert(leaf->op == O_INDEX);
- /* invalidate all resultant values, which depend on the dummy
- index, walking from the current leaf toward the root of the
- corresponding expression tree */
- for (code = leaf; code != NULL; code = code->up)
- { if (code->valid)
- { /* invalidate and delete resultant value */
- code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- }
- }
- /* assign new value to the dummy index */
- slot->value = copy_symbol(mpl, value);
- done: return;
- }
- /*----------------------------------------------------------------------
- -- update_dummy_indices - update current values of dummy indices.
- --
- -- This routine assigns components of "backup" n-tuple to dummy indices
- -- of specified domain block. If no "backup" n-tuple is defined for the
- -- domain block, values of the dummy indices remain untouched. */
- void update_dummy_indices
- ( MPL *mpl,
- DOMAIN_BLOCK *block /* not changed */
- )
- { DOMAIN_SLOT *slot;
- TUPLE *temp;
- if (block->backup != NULL)
- { for (slot = block->list, temp = block->backup; slot != NULL;
- slot = slot->next, temp = temp->next)
- { xassert(temp != NULL);
- xassert(temp->sym != NULL);
- assign_dummy_index(mpl, slot, temp->sym);
- }
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- enter_domain_block - enter domain block.
- --
- -- Let specified domain block have the form:
- --
- -- { ..., (j1, j2, ..., jn) in J, ... }
- --
- -- where j1, j2, ..., jn are dummy indices, J is a basic set.
- --
- -- This routine does the following:
- --
- -- 1. Checks if the given n-tuple is a member of the basic set J. Note
- -- that J being *out of the scope* of the domain block cannot depend
- -- on the dummy indices in the same and inner domain blocks, so it
- -- can be computed before the dummy indices are assigned new values.
- -- If this check fails, the routine returns with non-zero code.
- --
- -- 2. Saves current values of the dummy indices j1, j2, ..., jn.
- --
- -- 3. Assigns new values, which are components of the given n-tuple, to
- -- the dummy indices j1, j2, ..., jn. If dimension of the n-tuple is
- -- larger than n, its extra components n+1, n+2, ... are not used.
- --
- -- 4. Calls the formal routine func which either enters the next domain
- -- block or evaluates some code within the domain scope.
- --
- -- 5. Restores former values of the dummy indices j1, j2, ..., jn.
- --
- -- Since current values assigned to the dummy indices on entry to this
- -- routine are restored on exit, the formal routine func is allowed to
- -- call this routine recursively. */
- int enter_domain_block
- ( MPL *mpl,
- DOMAIN_BLOCK *block, /* not changed */
- TUPLE *tuple, /* not changed */
- void *info, void (*func)(MPL *mpl, void *info)
- )
- { TUPLE *backup;
- int ret = 0;
- /* check if the given n-tuple is a member of the basic set */
- xassert(block->code != NULL);
- if (!is_member(mpl, block->code, tuple))
- { ret = 1;
- goto done;
- }
- /* save reference to "backup" n-tuple, which was used to assign
- current values of the dummy indices (it is sufficient to save
- reference, not value, because that n-tuple is defined in some
- outer level of recursion and therefore cannot be changed on
- this and deeper recursive calls) */
- backup = block->backup;
- /* set up new "backup" n-tuple, which defines new values of the
- dummy indices */
- block->backup = tuple;
- /* assign new values to the dummy indices */
- update_dummy_indices(mpl, block);
- /* call the formal routine that does the rest part of the job */
- func(mpl, info);
- /* restore reference to the former "backup" n-tuple */
- block->backup = backup;
- /* restore former values of the dummy indices; note that if the
- domain block just escaped has no other active instances which
- may exist due to recursion (it is indicated by a null pointer
- to the former n-tuple), former values of the dummy indices are
- undefined; therefore in this case the routine keeps currently
- assigned values of the dummy indices that involves keeping all
- dependent temporary results and thereby, if this domain block
- is not used recursively, allows improving efficiency */
- update_dummy_indices(mpl, block);
- done: return ret;
- }
- /*----------------------------------------------------------------------
- -- eval_within_domain - perform evaluation within domain scope.
- --
- -- This routine assigns new values (symbols) to all dummy indices of
- -- specified domain and calls the formal routine func, which is used to
- -- evaluate some code in the domain scope. Each free dummy index in the
- -- domain is assigned a value specified in the corresponding component
- -- of given n-tuple. Non-free dummy indices are assigned values, which
- -- are computed by this routine.
- --
- -- Number of components in the given n-tuple must be the same as number
- -- of free indices in the domain.
- --
- -- If the given n-tuple is not a member of the domain set, the routine
- -- func is not called, and non-zero code is returned.
- --
- -- For the sake of convenience it is allowed to specify domain as NULL
- -- (then n-tuple also must be 0-tuple, i.e. empty), in which case this
- -- routine just calls the routine func and returns zero.
- --
- -- This routine allows recursive calls from the routine func providing
- -- correct values of dummy indices for each instance.
- --
- -- NOTE: The n-tuple passed to this routine must not be changed by any
- -- other routines called from the formal routine func until this
- -- routine has returned. */
- struct eval_domain_info
- { /* working info used by the routine eval_within_domain */
- DOMAIN *domain;
- /* domain, which has to be entered */
- DOMAIN_BLOCK *block;
- /* domain block, which is currently processed */
- TUPLE *tuple;
- /* tail of original n-tuple, whose components have to be assigned
- to free dummy indices in the current domain block */
- void *info;
- /* transit pointer passed to the formal routine func */
- void (*func)(MPL *mpl, void *info);
- /* routine, which has to be executed in the domain scope */
- int failure;
- /* this flag indicates that given n-tuple is not a member of the
- domain set */
- };
- static void eval_domain_func(MPL *mpl, void *_my_info)
- { /* this routine recursively enters into the domain scope and then
- calls the routine func */
- struct eval_domain_info *my_info = _my_info;
- if (my_info->block != NULL)
- { /* the current domain block to be entered exists */
- DOMAIN_BLOCK *block;
- DOMAIN_SLOT *slot;
- TUPLE *tuple = NULL, *temp = NULL;
- /* save pointer to the current domain block */
- block = my_info->block;
- /* and get ready to enter the next block (if it exists) */
- my_info->block = block->next;
- /* construct temporary n-tuple, whose components correspond to
- dummy indices (slots) of the current domain; components of
- the temporary n-tuple that correspond to free dummy indices
- are assigned references (not values!) to symbols specified
- in the corresponding components of the given n-tuple, while
- other components that correspond to non-free dummy indices
- are assigned symbolic values computed here */
- for (slot = block->list; slot != NULL; slot = slot->next)
- { /* create component that corresponds to the current slot */
- if (tuple == NULL)
- tuple = temp = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
- else
- temp = (temp->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE)));
- if (slot->code == NULL)
- { /* dummy index is free; take reference to symbol, which
- is specified in the corresponding component of given
- n-tuple */
- xassert(my_info->tuple != NULL);
- temp->sym = my_info->tuple->sym;
- xassert(temp->sym != NULL);
- my_info->tuple = my_info->tuple->next;
- }
- else
- { /* dummy index is non-free; compute symbolic value to be
- temporarily assigned to the dummy index */
- temp->sym = eval_symbolic(mpl, slot->code);
- }
- }
- temp->next = NULL;
- /* enter the current domain block */
- if (enter_domain_block(mpl, block, tuple, my_info,
- eval_domain_func)) my_info->failure = 1;
- /* delete temporary n-tuple as well as symbols that correspond
- to non-free dummy indices (they were computed here) */
- for (slot = block->list; slot != NULL; slot = slot->next)
- { xassert(tuple != NULL);
- temp = tuple;
- tuple = tuple->next;
- if (slot->code != NULL)
- { /* dummy index is non-free; delete symbolic value */
- delete_symbol(mpl, temp->sym);
- }
- /* delete component that corresponds to the current slot */
- dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE));
- }
- }
- else
- { /* there are no more domain blocks, i.e. we have reached the
- domain scope */
- xassert(my_info->tuple == NULL);
- /* check optional predicate specified for the domain */
- if (my_info->domain->code != NULL && !eval_logical(mpl,
- my_info->domain->code))
- { /* the predicate is false */
- my_info->failure = 2;
- }
- else
- { /* the predicate is true; do the job */
- my_info->func(mpl, my_info->info);
- }
- }
- return;
- }
- int eval_within_domain
- ( MPL *mpl,
- DOMAIN *domain, /* not changed */
- TUPLE *tuple, /* not changed */
- void *info, void (*func)(MPL *mpl, void *info)
- )
- { /* this routine performs evaluation within domain scope */
- struct eval_domain_info _my_info, *my_info = &_my_info;
- if (domain == NULL)
- { xassert(tuple == NULL);
- func(mpl, info);
- my_info->failure = 0;
- }
- else
- { xassert(tuple != NULL);
- my_info->domain = domain;
- my_info->block = domain->list;
- my_info->tuple = tuple;
- my_info->info = info;
- my_info->func = func;
- my_info->failure = 0;
- /* enter the very first domain block */
- eval_domain_func(mpl, my_info);
- }
- return my_info->failure;
- }
- /*----------------------------------------------------------------------
- -- loop_within_domain - perform iterations within domain scope.
- --
- -- This routine iteratively assigns new values (symbols) to the dummy
- -- indices of specified domain by enumerating all n-tuples, which are
- -- members of the domain set, and for every n-tuple it calls the formal
- -- routine func to evaluate some code within the domain scope.
- --
- -- If the routine func returns non-zero, enumeration within the domain
- -- is prematurely terminated.
- --
- -- For the sake of convenience it is allowed to specify domain as NULL,
- -- in which case this routine just calls the routine func only once and
- -- returns zero.
- --
- -- This routine allows recursive calls from the routine func providing
- -- correct values of dummy indices for each instance. */
- struct loop_domain_info
- { /* working info used by the routine loop_within_domain */
- DOMAIN *domain;
- /* domain, which has to be entered */
- DOMAIN_BLOCK *block;
- /* domain block, which is currently processed */
- int looping;
- /* clearing this flag leads to terminating enumeration */
- void *info;
- /* transit pointer passed to the formal routine func */
- int (*func)(MPL *mpl, void *info);
- /* routine, which needs to be executed in the domain scope */
- };
- static void loop_domain_func(MPL *mpl, void *_my_info)
- { /* this routine enumerates all n-tuples in the basic set of the
- current domain block, enters recursively into the domain scope
- for every n-tuple, and then calls the routine func */
- struct loop_domain_info *my_info = _my_info;
- if (my_info->block != NULL)
- { /* the current domain block to be entered exists */
- DOMAIN_BLOCK *block;
- DOMAIN_SLOT *slot;
- TUPLE *bound;
- /* save pointer to the current domain block */
- block = my_info->block;
- /* and get ready to enter the next block (if it exists) */
- my_info->block = block->next;
- /* compute symbolic values, at which non-free dummy indices of
- the current domain block are bound; since that values don't
- depend on free dummy indices of the current block, they can
- be computed once out of the enumeration loop */
- bound = create_tuple(mpl);
- for (slot = block->list; slot != NULL; slot = slot->next)
- { if (slot->code != NULL)
- bound = expand_tuple(mpl, bound, eval_symbolic(mpl,
- slot->code));
- }
- /* start enumeration */
- xassert(block->code != NULL);
- if (block->code->op == O_DOTS)
- { /* the basic set is "arithmetic", in which case it doesn't
- need to be computed explicitly */
- TUPLE *tuple;
- int n, j;
- double t0, tf, dt;
- /* compute "parameters" of the basic set */
- t0 = eval_numeric(mpl, block->code->arg.arg.x);
- tf = eval_numeric(mpl, block->code->arg.arg.y);
- if (block->code->arg.arg.z == NULL)
- dt = 1.0;
- else
- dt = eval_numeric(mpl, block->code->arg.arg.z);
- /* determine cardinality of the basic set */
- n = arelset_size(mpl, t0, tf, dt);
- /* create dummy 1-tuple for members of the basic set */
- tuple = expand_tuple(mpl, create_tuple(mpl),
- create_symbol_num(mpl, 0.0));
- /* in case of "arithmetic" set there is exactly one dummy
- index, which cannot be non-free */
- xassert(bound == NULL);
- /* walk through 1-tuples of the basic set */
- for (j = 1; j <= n && my_info->looping; j++)
- { /* construct dummy 1-tuple for the current member */
- tuple->sym->num = arelset_member(mpl, t0, tf, dt, j);
- /* enter the current domain block */
- enter_domain_block(mpl, block, tuple, my_info,
- loop_domain_func);
- }
- /* delete dummy 1-tuple */
- delete_tuple(mpl, tuple);
- }
- else
- { /* the basic set is of general kind, in which case it needs
- to be explicitly computed */
- ELEMSET *set;
- MEMBER *memb;
- TUPLE *temp1, *temp2;
- /* compute the basic set */
- set = eval_elemset(mpl, block->code);
- /* walk through all n-tuples of the basic set */
- for (memb = set->head; memb != NULL && my_info->looping;
- memb = memb->next)
- { /* all components of the current n-tuple that correspond
- to non-free dummy indices must be feasible; otherwise
- the n-tuple is not in the basic set */
- temp1 = memb->tuple;
- temp2 = bound;
- for (slot = block->list; slot != NULL; slot = slot->next)
- { xassert(temp1 != NULL);
- if (slot->code != NULL)
- { /* non-free dummy index */
- xassert(temp2 != NULL);
- if (compare_symbols(mpl, temp1->sym, temp2->sym)
- != 0)
- { /* the n-tuple is not in the basic set */
- goto skip;
- }
- temp2 = temp2->next;
- }
- temp1 = temp1->next;
- }
- xassert(temp1 == NULL);
- xassert(temp2 == NULL);
- /* enter the current domain block */
- enter_domain_block(mpl, block, memb->tuple, my_info,
- loop_domain_func);
- skip: ;
- }
- /* delete the basic set */
- delete_elemset(mpl, set);
- }
- /* delete symbolic values binding non-free dummy indices */
- delete_tuple(mpl, bound);
- /* restore pointer to the current domain block */
- my_info->block = block;
- }
- else
- { /* there are no more domain blocks, i.e. we have reached the
- domain scope */
- /* check optional predicate specified for the domain */
- if (my_info->domain->code != NULL && !eval_logical(mpl,
- my_info->domain->code))
- { /* the predicate is false */
- /* nop */;
- }
- else
- { /* the predicate is true; do the job */
- my_info->looping = !my_info->func(mpl, my_info->info);
- }
- }
- return;
- }
- void loop_within_domain
- ( MPL *mpl,
- DOMAIN *domain, /* not changed */
- void *info, int (*func)(MPL *mpl, void *info)
- )
- { /* this routine performs iterations within domain scope */
- struct loop_domain_info _my_info, *my_info = &_my_info;
- if (domain == NULL)
- func(mpl, info);
- else
- { my_info->domain = domain;
- my_info->block = domain->list;
- my_info->looping = 1;
- my_info->info = info;
- my_info->func = func;
- /* enter the very first domain block */
- loop_domain_func(mpl, my_info);
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- out_of_domain - raise domain exception.
- --
- -- This routine is called when a reference is made to a member of some
- -- model object, but its n-tuple is out of the object domain. */
- void out_of_domain
- ( MPL *mpl,
- char *name, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { xassert(name != NULL);
- xassert(tuple != NULL);
- mpl_error(mpl, "%s%s out of domain", name, format_tuple(mpl, '[',
- tuple));
- /* no return */
- }
- /*----------------------------------------------------------------------
- -- get_domain_tuple - obtain current n-tuple from domain.
- --
- -- This routine constructs n-tuple, whose components are current values
- -- assigned to *free* dummy indices of specified domain.
- --
- -- For the sake of convenience it is allowed to specify domain as NULL,
- -- in which case this routine returns 0-tuple.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- TUPLE *get_domain_tuple
- ( MPL *mpl,
- DOMAIN *domain /* not changed */
- )
- { DOMAIN_BLOCK *block;
- DOMAIN_SLOT *slot;
- TUPLE *tuple;
- tuple = create_tuple(mpl);
- if (domain != NULL)
- { for (block = domain->list; block != NULL; block = block->next)
- { for (slot = block->list; slot != NULL; slot = slot->next)
- { if (slot->code == NULL)
- { xassert(slot->value != NULL);
- tuple = expand_tuple(mpl, tuple, copy_symbol(mpl,
- slot->value));
- }
- }
- }
- }
- return tuple;
- }
- /*----------------------------------------------------------------------
- -- clean_domain - clean domain.
- --
- -- This routine cleans specified domain that assumes deleting all stuff
- -- dynamically allocated during the generation phase. */
- void clean_domain(MPL *mpl, DOMAIN *domain)
- { DOMAIN_BLOCK *block;
- DOMAIN_SLOT *slot;
- /* if no domain is specified, do nothing */
- if (domain == NULL) goto done;
- /* clean all domain blocks */
- for (block = domain->list; block != NULL; block = block->next)
- { /* clean all domain slots */
- for (slot = block->list; slot != NULL; slot = slot->next)
- { /* clean pseudo-code for computing bound value */
- clean_code(mpl, slot->code);
- /* delete symbolic value assigned to dummy index */
- if (slot->value != NULL)
- delete_symbol(mpl, slot->value), slot->value = NULL;
- }
- /* clean pseudo-code for computing basic set */
- clean_code(mpl, block->code);
- }
- /* clean pseudo-code for computing domain predicate */
- clean_code(mpl, domain->code);
- done: return;
- }
- /**********************************************************************/
- /* * * MODEL SETS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- check_elem_set - check elemental set assigned to set member.
- --
- -- This routine checks if given elemental set being assigned to member
- -- of specified model set satisfies to all restrictions.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- void check_elem_set
- ( MPL *mpl,
- SET *set, /* not changed */
- TUPLE *tuple, /* not changed */
- ELEMSET *refer /* not changed */
- )
- { WITHIN *within;
- MEMBER *memb;
- int eqno;
- /* elemental set must be within all specified supersets */
- for (within = set->within, eqno = 1; within != NULL; within =
- within->next, eqno++)
- { xassert(within->code != NULL);
- for (memb = refer->head; memb != NULL; memb = memb->next)
- { if (!is_member(mpl, within->code, memb->tuple))
- { char buf[255+1];
- strcpy(buf, format_tuple(mpl, '(', memb->tuple));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s contains %s which not within specified "
- "set; see (%d)", set->name, format_tuple(mpl, '[',
- tuple), buf, eqno);
- }
- }
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- take_member_set - obtain elemental set assigned to set member.
- --
- -- This routine obtains a reference to elemental set assigned to given
- -- member of specified model set and returns it on exit.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- ELEMSET *take_member_set /* returns reference, not value */
- ( MPL *mpl,
- SET *set, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- ELEMSET *refer;
- /* find member in the set array */
- memb = find_member(mpl, set->array, tuple);
- if (memb != NULL)
- { /* member exists, so just take the reference */
- refer = memb->value.set;
- }
- else if (set->assign != NULL)
- { /* compute value using assignment expression */
- refer = eval_elemset(mpl, set->assign);
- add: /* check that the elemental set satisfies to all restrictions,
- assign it to new member, and add the member to the array */
- check_elem_set(mpl, set, tuple, refer);
- memb = add_member(mpl, set->array, copy_tuple(mpl, tuple));
- memb->value.set = refer;
- }
- else if (set->option != NULL)
- { /* compute default elemental set */
- refer = eval_elemset(mpl, set->option);
- goto add;
- }
- else
- { /* no value (elemental set) is provided */
- mpl_error(mpl, "no value for %s%s", set->name, format_tuple(mpl,
- '[', tuple));
- }
- return refer;
- }
- /*----------------------------------------------------------------------
- -- eval_member_set - evaluate elemental set assigned to set member.
- --
- -- This routine evaluates a reference to elemental set assigned to given
- -- member of specified model set and returns it on exit. */
- struct eval_set_info
- { /* working info used by the routine eval_member_set */
- SET *set;
- /* model set */
- TUPLE *tuple;
- /* n-tuple, which defines set member */
- MEMBER *memb;
- /* normally this pointer is NULL; the routine uses this pointer
- to check data provided in the data section, in which case it
- points to a member currently checked; this check is performed
- automatically only once when a reference to any member occurs
- for the first time */
- ELEMSET *refer;
- /* evaluated reference to elemental set */
- };
- static void eval_set_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine to work within domain scope */
- struct eval_set_info *info = _info;
- if (info->memb != NULL)
- { /* checking call; check elemental set being assigned */
- check_elem_set(mpl, info->set, info->memb->tuple,
- info->memb->value.set);
- }
- else
- { /* normal call; evaluate member, which has given n-tuple */
- info->refer = take_member_set(mpl, info->set, info->tuple);
- }
- return;
- }
- #if 1 /* 12/XII-2008 */
- static void saturate_set(MPL *mpl, SET *set)
- { GADGET *gadget = set->gadget;
- ELEMSET *data;
- MEMBER *elem, *memb;
- TUPLE *tuple, *work[20];
- int i;
- xprintf("Generating %s...\n", set->name);
- eval_whole_set(mpl, gadget->set);
- /* gadget set must have exactly one member */
- xassert(gadget->set->array != NULL);
- xassert(gadget->set->array->head != NULL);
- xassert(gadget->set->array->head == gadget->set->array->tail);
- data = gadget->set->array->head->value.set;
- xassert(data->type == A_NONE);
- xassert(data->dim == gadget->set->dimen);
- /* walk thru all elements of the plain set */
- for (elem = data->head; elem != NULL; elem = elem->next)
- { /* create a copy of n-tuple */
- tuple = copy_tuple(mpl, elem->tuple);
- /* rearrange component of the n-tuple */
- for (i = 0; i < gadget->set->dimen; i++)
- work[i] = NULL;
- for (i = 0; tuple != NULL; tuple = tuple->next)
- work[gadget->ind[i++]-1] = tuple;
- xassert(i == gadget->set->dimen);
- for (i = 0; i < gadget->set->dimen; i++)
- { xassert(work[i] != NULL);
- work[i]->next = work[i+1];
- }
- /* construct subscript list from first set->dim components */
- if (set->dim == 0)
- tuple = NULL;
- else
- tuple = work[0], work[set->dim-1]->next = NULL;
- /* find corresponding member of the set to be initialized */
- memb = find_member(mpl, set->array, tuple);
- if (memb == NULL)
- { /* not found; add new member to the set and assign it empty
- elemental set */
- memb = add_member(mpl, set->array, tuple);
- memb->value.set = create_elemset(mpl, set->dimen);
- }
- else
- { /* found; free subscript list */
- delete_tuple(mpl, tuple);
- }
- /* construct new n-tuple from rest set->dimen components */
- tuple = work[set->dim];
- xassert(set->dim + set->dimen == gadget->set->dimen);
- work[gadget->set->dimen-1]->next = NULL;
- /* and add it to the elemental set assigned to the member
- (no check for duplicates is needed) */
- add_tuple(mpl, memb->value.set, tuple);
- }
- /* the set has been saturated with data */
- set->data = 1;
- return;
- }
- #endif
- ELEMSET *eval_member_set /* returns reference, not value */
- ( MPL *mpl,
- SET *set, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { /* this routine evaluates set member */
- struct eval_set_info _info, *info = &_info;
- xassert(set->dim == tuple_dimen(mpl, tuple));
- info->set = set;
- info->tuple = tuple;
- #if 1 /* 12/XII-2008 */
- if (set->gadget != NULL && set->data == 0)
- { /* initialize the set with data from a plain set */
- saturate_set(mpl, set);
- }
- #endif
- if (set->data == 1)
- { /* check data, which are provided in the data section, but not
- checked yet */
- /* save pointer to the last array member; note that during the
- check new members may be added beyond the last member due to
- references to the same parameter from default expression as
- well as from expressions that define restricting supersets;
- however, values assigned to the new members will be checked
- by other routine, so we don't need to check them here */
- MEMBER *tail = set->array->tail;
- /* change the data status to prevent infinite recursive loop
- due to references to the same set during the check */
- set->data = 2;
- /* check elemental sets assigned to array members in the data
- section until the marked member has been reached */
- for (info->memb = set->array->head; info->memb != NULL;
- info->memb = info->memb->next)
- { if (eval_within_domain(mpl, set->domain, info->memb->tuple,
- info, eval_set_func))
- out_of_domain(mpl, set->name, info->memb->tuple);
- if (info->memb == tail) break;
- }
- /* the check has been finished */
- }
- /* evaluate member, which has given n-tuple */
- info->memb = NULL;
- if (eval_within_domain(mpl, info->set->domain, info->tuple, info,
- eval_set_func))
- out_of_domain(mpl, set->name, info->tuple);
- /* bring evaluated reference to the calling program */
- return info->refer;
- }
- /*----------------------------------------------------------------------
- -- eval_whole_set - evaluate model set over entire domain.
- --
- -- This routine evaluates all members of specified model set over entire
- -- domain. */
- static int whole_set_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- SET *set = (SET *)info;
- TUPLE *tuple = get_domain_tuple(mpl, set->domain);
- eval_member_set(mpl, set, tuple);
- delete_tuple(mpl, tuple);
- return 0;
- }
- void eval_whole_set(MPL *mpl, SET *set)
- { loop_within_domain(mpl, set->domain, set, whole_set_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean set - clean model set.
- --
- -- This routine cleans specified model set that assumes deleting all
- -- stuff dynamically allocated during the generation phase. */
- void clean_set(MPL *mpl, SET *set)
- { WITHIN *within;
- MEMBER *memb;
- /* clean subscript domain */
- clean_domain(mpl, set->domain);
- /* clean pseudo-code for computing supersets */
- for (within = set->within; within != NULL; within = within->next)
- clean_code(mpl, within->code);
- /* clean pseudo-code for computing assigned value */
- clean_code(mpl, set->assign);
- /* clean pseudo-code for computing default value */
- clean_code(mpl, set->option);
- /* reset data status flag */
- set->data = 0;
- /* delete content array */
- for (memb = set->array->head; memb != NULL; memb = memb->next)
- delete_value(mpl, set->array->type, &memb->value);
- delete_array(mpl, set->array), set->array = NULL;
- return;
- }
- /**********************************************************************/
- /* * * MODEL PARAMETERS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- check_value_num - check numeric value assigned to parameter member.
- --
- -- This routine checks if numeric value being assigned to some member
- -- of specified numeric model parameter satisfies to all restrictions.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- void check_value_num
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple, /* not changed */
- double value
- )
- { CONDITION *cond;
- WITHIN *in;
- int eqno;
- /* the value must satisfy to the parameter type */
- switch (par->type)
- { case A_NUMERIC:
- break;
- case A_INTEGER:
- if (value != floor(value))
- mpl_error(mpl, "%s%s = %.*g not integer", par->name,
- format_tuple(mpl, '[', tuple), DBL_DIG, value);
- break;
- case A_BINARY:
- if (!(value == 0.0 || value == 1.0))
- mpl_error(mpl, "%s%s = %.*g not binary", par->name,
- format_tuple(mpl, '[', tuple), DBL_DIG, value);
- break;
- default:
- xassert(par != par);
- }
- /* the value must satisfy to all specified conditions */
- for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next,
- eqno++)
- { double bound;
- char *rho;
- xassert(cond->code != NULL);
- bound = eval_numeric(mpl, cond->code);
- switch (cond->rho)
- { case O_LT:
- if (!(value < bound))
- { rho = "<";
- err: mpl_error(mpl, "%s%s = %.*g not %s %.*g; see (%d)",
- par->name, format_tuple(mpl, '[', tuple), DBL_DIG,
- value, rho, DBL_DIG, bound, eqno);
- }
- break;
- case O_LE:
- if (!(value <= bound)) { rho = "<="; goto err; }
- break;
- case O_EQ:
- if (!(value == bound)) { rho = "="; goto err; }
- break;
- case O_GE:
- if (!(value >= bound)) { rho = ">="; goto err; }
- break;
- case O_GT:
- if (!(value > bound)) { rho = ">"; goto err; }
- break;
- case O_NE:
- if (!(value != bound)) { rho = "<>"; goto err; }
- break;
- default:
- xassert(cond != cond);
- }
- }
- /* the value must be in all specified supersets */
- for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++)
- { TUPLE *dummy;
- xassert(in->code != NULL);
- xassert(in->code->dim == 1);
- dummy = expand_tuple(mpl, create_tuple(mpl),
- create_symbol_num(mpl, value));
- if (!is_member(mpl, in->code, dummy))
- mpl_error(mpl, "%s%s = %.*g not in specified set; see (%d)",
- par->name, format_tuple(mpl, '[', tuple), DBL_DIG,
- value, eqno);
- delete_tuple(mpl, dummy);
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- take_member_num - obtain num. value assigned to parameter member.
- --
- -- This routine obtains a numeric value assigned to member of specified
- -- numeric model parameter and returns it on exit.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- double take_member_num
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- double value;
- /* find member in the parameter array */
- memb = find_member(mpl, par->array, tuple);
- if (memb != NULL)
- { /* member exists, so just take its value */
- value = memb->value.num;
- }
- else if (par->assign != NULL)
- { /* compute value using assignment expression */
- value = eval_numeric(mpl, par->assign);
- add: /* check that the value satisfies to all restrictions, assign
- it to new member, and add the member to the array */
- check_value_num(mpl, par, tuple, value);
- memb = add_member(mpl, par->array, copy_tuple(mpl, tuple));
- memb->value.num = value;
- }
- else if (par->option != NULL)
- { /* compute default value */
- value = eval_numeric(mpl, par->option);
- goto add;
- }
- else if (par->defval != NULL)
- { /* take default value provided in the data section */
- if (par->defval->str != NULL)
- mpl_error(mpl, "cannot convert %s to floating-point number",
- format_symbol(mpl, par->defval));
- value = par->defval->num;
- goto add;
- }
- else
- { /* no value is provided */
- mpl_error(mpl, "no value for %s%s", par->name, format_tuple(mpl,
- '[', tuple));
- }
- return value;
- }
- /*----------------------------------------------------------------------
- -- eval_member_num - evaluate num. value assigned to parameter member.
- --
- -- This routine evaluates a numeric value assigned to given member of
- -- specified numeric model parameter and returns it on exit. */
- struct eval_num_info
- { /* working info used by the routine eval_member_num */
- PARAMETER *par;
- /* model parameter */
- TUPLE *tuple;
- /* n-tuple, which defines parameter member */
- MEMBER *memb;
- /* normally this pointer is NULL; the routine uses this pointer
- to check data provided in the data section, in which case it
- points to a member currently checked; this check is performed
- automatically only once when a reference to any member occurs
- for the first time */
- double value;
- /* evaluated numeric value */
- };
- static void eval_num_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine to work within domain scope */
- struct eval_num_info *info = _info;
- if (info->memb != NULL)
- { /* checking call; check numeric value being assigned */
- check_value_num(mpl, info->par, info->memb->tuple,
- info->memb->value.num);
- }
- else
- { /* normal call; evaluate member, which has given n-tuple */
- info->value = take_member_num(mpl, info->par, info->tuple);
- }
- return;
- }
- double eval_member_num
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { /* this routine evaluates numeric parameter member */
- struct eval_num_info _info, *info = &_info;
- xassert(par->type == A_NUMERIC || par->type == A_INTEGER ||
- par->type == A_BINARY);
- xassert(par->dim == tuple_dimen(mpl, tuple));
- info->par = par;
- info->tuple = tuple;
- if (par->data == 1)
- { /* check data, which are provided in the data section, but not
- checked yet */
- /* save pointer to the last array member; note that during the
- check new members may be added beyond the last member due to
- references to the same parameter from default expression as
- well as from expressions that define restricting conditions;
- however, values assigned to the new members will be checked
- by other routine, so we don't need to check them here */
- MEMBER *tail = par->array->tail;
- /* change the data status to prevent infinite recursive loop
- due to references to the same parameter during the check */
- par->data = 2;
- /* check values assigned to array members in the data section
- until the marked member has been reached */
- for (info->memb = par->array->head; info->memb != NULL;
- info->memb = info->memb->next)
- { if (eval_within_domain(mpl, par->domain, info->memb->tuple,
- info, eval_num_func))
- out_of_domain(mpl, par->name, info->memb->tuple);
- if (info->memb == tail) break;
- }
- /* the check has been finished */
- }
- /* evaluate member, which has given n-tuple */
- info->memb = NULL;
- if (eval_within_domain(mpl, info->par->domain, info->tuple, info,
- eval_num_func))
- out_of_domain(mpl, par->name, info->tuple);
- /* bring evaluated value to the calling program */
- return info->value;
- }
- /*----------------------------------------------------------------------
- -- check_value_sym - check symbolic value assigned to parameter member.
- --
- -- This routine checks if symbolic value being assigned to some member
- -- of specified symbolic model parameter satisfies to all restrictions.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- void check_value_sym
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple, /* not changed */
- SYMBOL *value /* not changed */
- )
- { CONDITION *cond;
- WITHIN *in;
- int eqno;
- /* the value must satisfy to all specified conditions */
- for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next,
- eqno++)
- { SYMBOL *bound;
- char buf[255+1];
- xassert(cond->code != NULL);
- bound = eval_symbolic(mpl, cond->code);
- switch (cond->rho)
- {
- #if 1 /* 13/VIII-2008 */
- case O_LT:
- if (!(compare_symbols(mpl, value, bound) < 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not < %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- case O_LE:
- if (!(compare_symbols(mpl, value, bound) <= 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not <= %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- #endif
- case O_EQ:
- if (!(compare_symbols(mpl, value, bound) == 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not = %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- #if 1 /* 13/VIII-2008 */
- case O_GE:
- if (!(compare_symbols(mpl, value, bound) >= 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not >= %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- case O_GT:
- if (!(compare_symbols(mpl, value, bound) > 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not > %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- #endif
- case O_NE:
- if (!(compare_symbols(mpl, value, bound) != 0))
- { strcpy(buf, format_symbol(mpl, bound));
- xassert(strlen(buf) < sizeof(buf));
- mpl_error(mpl, "%s%s = %s not <> %s",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), buf, eqno);
- }
- break;
- default:
- xassert(cond != cond);
- }
- delete_symbol(mpl, bound);
- }
- /* the value must be in all specified supersets */
- for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++)
- { TUPLE *dummy;
- xassert(in->code != NULL);
- xassert(in->code->dim == 1);
- dummy = expand_tuple(mpl, create_tuple(mpl), copy_symbol(mpl,
- value));
- if (!is_member(mpl, in->code, dummy))
- mpl_error(mpl, "%s%s = %s not in specified set; see (%d)",
- par->name, format_tuple(mpl, '[', tuple),
- format_symbol(mpl, value), eqno);
- delete_tuple(mpl, dummy);
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- take_member_sym - obtain symb. value assigned to parameter member.
- --
- -- This routine obtains a symbolic value assigned to member of specified
- -- symbolic model parameter and returns it on exit.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- SYMBOL *take_member_sym /* returns value, not reference */
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- SYMBOL *value;
- /* find member in the parameter array */
- memb = find_member(mpl, par->array, tuple);
- if (memb != NULL)
- { /* member exists, so just take its value */
- value = copy_symbol(mpl, memb->value.sym);
- }
- else if (par->assign != NULL)
- { /* compute value using assignment expression */
- value = eval_symbolic(mpl, par->assign);
- add: /* check that the value satisfies to all restrictions, assign
- it to new member, and add the member to the array */
- check_value_sym(mpl, par, tuple, value);
- memb = add_member(mpl, par->array, copy_tuple(mpl, tuple));
- memb->value.sym = copy_symbol(mpl, value);
- }
- else if (par->option != NULL)
- { /* compute default value */
- value = eval_symbolic(mpl, par->option);
- goto add;
- }
- else if (par->defval != NULL)
- { /* take default value provided in the data section */
- value = copy_symbol(mpl, par->defval);
- goto add;
- }
- else
- { /* no value is provided */
- mpl_error(mpl, "no value for %s%s", par->name, format_tuple(mpl,
- '[', tuple));
- }
- return value;
- }
- /*----------------------------------------------------------------------
- -- eval_member_sym - evaluate symb. value assigned to parameter member.
- --
- -- This routine evaluates a symbolic value assigned to given member of
- -- specified symbolic model parameter and returns it on exit. */
- struct eval_sym_info
- { /* working info used by the routine eval_member_sym */
- PARAMETER *par;
- /* model parameter */
- TUPLE *tuple;
- /* n-tuple, which defines parameter member */
- MEMBER *memb;
- /* normally this pointer is NULL; the routine uses this pointer
- to check data provided in the data section, in which case it
- points to a member currently checked; this check is performed
- automatically only once when a reference to any member occurs
- for the first time */
- SYMBOL *value;
- /* evaluated symbolic value */
- };
- static void eval_sym_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine to work within domain scope */
- struct eval_sym_info *info = _info;
- if (info->memb != NULL)
- { /* checking call; check symbolic value being assigned */
- check_value_sym(mpl, info->par, info->memb->tuple,
- info->memb->value.sym);
- }
- else
- { /* normal call; evaluate member, which has given n-tuple */
- info->value = take_member_sym(mpl, info->par, info->tuple);
- }
- return;
- }
- SYMBOL *eval_member_sym /* returns value, not reference */
- ( MPL *mpl,
- PARAMETER *par, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { /* this routine evaluates symbolic parameter member */
- struct eval_sym_info _info, *info = &_info;
- xassert(par->type == A_SYMBOLIC);
- xassert(par->dim == tuple_dimen(mpl, tuple));
- info->par = par;
- info->tuple = tuple;
- if (par->data == 1)
- { /* check data, which are provided in the data section, but not
- checked yet */
- /* save pointer to the last array member; note that during the
- check new members may be added beyond the last member due to
- references to the same parameter from default expression as
- well as from expressions that define restricting conditions;
- however, values assigned to the new members will be checked
- by other routine, so we don't need to check them here */
- MEMBER *tail = par->array->tail;
- /* change the data status to prevent infinite recursive loop
- due to references to the same parameter during the check */
- par->data = 2;
- /* check values assigned to array members in the data section
- until the marked member has been reached */
- for (info->memb = par->array->head; info->memb != NULL;
- info->memb = info->memb->next)
- { if (eval_within_domain(mpl, par->domain, info->memb->tuple,
- info, eval_sym_func))
- out_of_domain(mpl, par->name, info->memb->tuple);
- if (info->memb == tail) break;
- }
- /* the check has been finished */
- }
- /* evaluate member, which has given n-tuple */
- info->memb = NULL;
- if (eval_within_domain(mpl, info->par->domain, info->tuple, info,
- eval_sym_func))
- out_of_domain(mpl, par->name, info->tuple);
- /* bring evaluated value to the calling program */
- return info->value;
- }
- /*----------------------------------------------------------------------
- -- eval_whole_par - evaluate model parameter over entire domain.
- --
- -- This routine evaluates all members of specified model parameter over
- -- entire domain. */
- static int whole_par_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- PARAMETER *par = (PARAMETER *)info;
- TUPLE *tuple = get_domain_tuple(mpl, par->domain);
- switch (par->type)
- { case A_NUMERIC:
- case A_INTEGER:
- case A_BINARY:
- eval_member_num(mpl, par, tuple);
- break;
- case A_SYMBOLIC:
- delete_symbol(mpl, eval_member_sym(mpl, par, tuple));
- break;
- default:
- xassert(par != par);
- }
- delete_tuple(mpl, tuple);
- return 0;
- }
- void eval_whole_par(MPL *mpl, PARAMETER *par)
- { loop_within_domain(mpl, par->domain, par, whole_par_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_parameter - clean model parameter.
- --
- -- This routine cleans specified model parameter that assumes deleting
- -- all stuff dynamically allocated during the generation phase. */
- void clean_parameter(MPL *mpl, PARAMETER *par)
- { CONDITION *cond;
- WITHIN *in;
- MEMBER *memb;
- /* clean subscript domain */
- clean_domain(mpl, par->domain);
- /* clean pseudo-code for computing restricting conditions */
- for (cond = par->cond; cond != NULL; cond = cond->next)
- clean_code(mpl, cond->code);
- /* clean pseudo-code for computing restricting supersets */
- for (in = par->in; in != NULL; in = in->next)
- clean_code(mpl, in->code);
- /* clean pseudo-code for computing assigned value */
- clean_code(mpl, par->assign);
- /* clean pseudo-code for computing default value */
- clean_code(mpl, par->option);
- /* reset data status flag */
- par->data = 0;
- /* delete default symbolic value */
- if (par->defval != NULL)
- delete_symbol(mpl, par->defval), par->defval = NULL;
- /* delete content array */
- for (memb = par->array->head; memb != NULL; memb = memb->next)
- delete_value(mpl, par->array->type, &memb->value);
- delete_array(mpl, par->array), par->array = NULL;
- return;
- }
- /**********************************************************************/
- /* * * MODEL VARIABLES * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- take_member_var - obtain reference to elemental variable.
- --
- -- This routine obtains a reference to elemental variable assigned to
- -- given member of specified model variable and returns it on exit. If
- -- necessary, new elemental variable is created.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- ELEMVAR *take_member_var /* returns reference */
- ( MPL *mpl,
- VARIABLE *var, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- ELEMVAR *refer;
- /* find member in the variable array */
- memb = find_member(mpl, var->array, tuple);
- if (memb != NULL)
- { /* member exists, so just take the reference */
- refer = memb->value.var;
- }
- else
- { /* member is referenced for the first time and therefore does
- not exist; create new elemental variable, assign it to new
- member, and add the member to the variable array */
- memb = add_member(mpl, var->array, copy_tuple(mpl, tuple));
- refer = (memb->value.var =
- dmp_get_atom(mpl->elemvars, sizeof(ELEMVAR)));
- refer->j = 0;
- refer->var = var;
- refer->memb = memb;
- /* compute lower bound */
- if (var->lbnd == NULL)
- refer->lbnd = 0.0;
- else
- refer->lbnd = eval_numeric(mpl, var->lbnd);
- /* compute upper bound */
- if (var->ubnd == NULL)
- refer->ubnd = 0.0;
- else if (var->ubnd == var->lbnd)
- refer->ubnd = refer->lbnd;
- else
- refer->ubnd = eval_numeric(mpl, var->ubnd);
- /* nullify working quantity */
- refer->temp = 0.0;
- #if 1 /* 15/V-2010 */
- /* solution has not been obtained by the solver yet */
- refer->stat = 0;
- refer->prim = refer->dual = 0.0;
- #endif
- }
- return refer;
- }
- /*----------------------------------------------------------------------
- -- eval_member_var - evaluate reference to elemental variable.
- --
- -- This routine evaluates a reference to elemental variable assigned to
- -- member of specified model variable and returns it on exit. */
- struct eval_var_info
- { /* working info used by the routine eval_member_var */
- VARIABLE *var;
- /* model variable */
- TUPLE *tuple;
- /* n-tuple, which defines variable member */
- ELEMVAR *refer;
- /* evaluated reference to elemental variable */
- };
- static void eval_var_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine to work within domain scope */
- struct eval_var_info *info = _info;
- info->refer = take_member_var(mpl, info->var, info->tuple);
- return;
- }
- ELEMVAR *eval_member_var /* returns reference */
- ( MPL *mpl,
- VARIABLE *var, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { /* this routine evaluates variable member */
- struct eval_var_info _info, *info = &_info;
- xassert(var->dim == tuple_dimen(mpl, tuple));
- info->var = var;
- info->tuple = tuple;
- /* evaluate member, which has given n-tuple */
- if (eval_within_domain(mpl, info->var->domain, info->tuple, info,
- eval_var_func))
- out_of_domain(mpl, var->name, info->tuple);
- /* bring evaluated reference to the calling program */
- return info->refer;
- }
- /*----------------------------------------------------------------------
- -- eval_whole_var - evaluate model variable over entire domain.
- --
- -- This routine evaluates all members of specified model variable over
- -- entire domain. */
- static int whole_var_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- VARIABLE *var = (VARIABLE *)info;
- TUPLE *tuple = get_domain_tuple(mpl, var->domain);
- eval_member_var(mpl, var, tuple);
- delete_tuple(mpl, tuple);
- return 0;
- }
- void eval_whole_var(MPL *mpl, VARIABLE *var)
- { loop_within_domain(mpl, var->domain, var, whole_var_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_variable - clean model variable.
- --
- -- This routine cleans specified model variable that assumes deleting
- -- all stuff dynamically allocated during the generation phase. */
- void clean_variable(MPL *mpl, VARIABLE *var)
- { MEMBER *memb;
- /* clean subscript domain */
- clean_domain(mpl, var->domain);
- /* clean code for computing lower bound */
- clean_code(mpl, var->lbnd);
- /* clean code for computing upper bound */
- if (var->ubnd != var->lbnd) clean_code(mpl, var->ubnd);
- /* delete content array */
- for (memb = var->array->head; memb != NULL; memb = memb->next)
- dmp_free_atom(mpl->elemvars, memb->value.var, sizeof(ELEMVAR));
- delete_array(mpl, var->array), var->array = NULL;
- return;
- }
- /**********************************************************************/
- /* * * MODEL CONSTRAINTS AND OBJECTIVES * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- take_member_con - obtain reference to elemental constraint.
- --
- -- This routine obtains a reference to elemental constraint assigned
- -- to given member of specified model constraint and returns it on exit.
- -- If necessary, new elemental constraint is created.
- --
- -- NOTE: This routine must not be called out of domain scope. */
- ELEMCON *take_member_con /* returns reference */
- ( MPL *mpl,
- CONSTRAINT *con, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { MEMBER *memb;
- ELEMCON *refer;
- /* find member in the constraint array */
- memb = find_member(mpl, con->array, tuple);
- if (memb != NULL)
- { /* member exists, so just take the reference */
- refer = memb->value.con;
- }
- else
- { /* member is referenced for the first time and therefore does
- not exist; create new elemental constraint, assign it to new
- member, and add the member to the constraint array */
- memb = add_member(mpl, con->array, copy_tuple(mpl, tuple));
- refer = (memb->value.con =
- dmp_get_atom(mpl->elemcons, sizeof(ELEMCON)));
- refer->i = 0;
- refer->con = con;
- refer->memb = memb;
- /* compute linear form */
- xassert(con->code != NULL);
- refer->form = eval_formula(mpl, con->code);
- /* compute lower and upper bounds */
- if (con->lbnd == NULL && con->ubnd == NULL)
- { /* objective has no bounds */
- double temp;
- xassert(con->type == A_MINIMIZE || con->type == A_MAXIMIZE);
- /* carry the constant term to the right-hand side */
- refer->form = remove_constant(mpl, refer->form, &temp);
- refer->lbnd = refer->ubnd = - temp;
- }
- else if (con->lbnd != NULL && con->ubnd == NULL)
- { /* constraint a * x + b >= c * y + d is transformed to the
- standard form a * x - c * y >= d - b */
- double temp;
- xassert(con->type == A_CONSTRAINT);
- refer->form = linear_comb(mpl,
- +1.0, refer->form,
- -1.0, eval_formula(mpl, con->lbnd));
- refer->form = remove_constant(mpl, refer->form, &temp);
- refer->lbnd = - temp;
- refer->ubnd = 0.0;
- }
- else if (con->lbnd == NULL && con->ubnd != NULL)
- { /* constraint a * x + b <= c * y + d is transformed to the
- standard form a * x - c * y <= d - b */
- double temp;
- xassert(con->type == A_CONSTRAINT);
- refer->form = linear_comb(mpl,
- +1.0, refer->form,
- -1.0, eval_formula(mpl, con->ubnd));
- refer->form = remove_constant(mpl, refer->form, &temp);
- refer->lbnd = 0.0;
- refer->ubnd = - temp;
- }
- else if (con->lbnd == con->ubnd)
- { /* constraint a * x + b = c * y + d is transformed to the
- standard form a * x - c * y = d - b */
- double temp;
- xassert(con->type == A_CONSTRAINT);
- refer->form = linear_comb(mpl,
- +1.0, refer->form,
- -1.0, eval_formula(mpl, con->lbnd));
- refer->form = remove_constant(mpl, refer->form, &temp);
- refer->lbnd = refer->ubnd = - temp;
- }
- else
- { /* ranged constraint c <= a * x + b <= d is transformed to
- the standard form c - b <= a * x <= d - b */
- double temp, temp1, temp2;
- xassert(con->type == A_CONSTRAINT);
- refer->form = remove_constant(mpl, refer->form, &temp);
- xassert(remove_constant(mpl, eval_formula(mpl, con->lbnd),
- &temp1) == NULL);
- xassert(remove_constant(mpl, eval_formula(mpl, con->ubnd),
- &temp2) == NULL);
- refer->lbnd = fp_sub(mpl, temp1, temp);
- refer->ubnd = fp_sub(mpl, temp2, temp);
- }
- #if 1 /* 15/V-2010 */
- /* solution has not been obtained by the solver yet */
- refer->stat = 0;
- refer->prim = refer->dual = 0.0;
- #endif
- }
- return refer;
- }
- /*----------------------------------------------------------------------
- -- eval_member_con - evaluate reference to elemental constraint.
- --
- -- This routine evaluates a reference to elemental constraint assigned
- -- to member of specified model constraint and returns it on exit. */
- struct eval_con_info
- { /* working info used by the routine eval_member_con */
- CONSTRAINT *con;
- /* model constraint */
- TUPLE *tuple;
- /* n-tuple, which defines constraint member */
- ELEMCON *refer;
- /* evaluated reference to elemental constraint */
- };
- static void eval_con_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine to work within domain scope */
- struct eval_con_info *info = _info;
- info->refer = take_member_con(mpl, info->con, info->tuple);
- return;
- }
- ELEMCON *eval_member_con /* returns reference */
- ( MPL *mpl,
- CONSTRAINT *con, /* not changed */
- TUPLE *tuple /* not changed */
- )
- { /* this routine evaluates constraint member */
- struct eval_con_info _info, *info = &_info;
- xassert(con->dim == tuple_dimen(mpl, tuple));
- info->con = con;
- info->tuple = tuple;
- /* evaluate member, which has given n-tuple */
- if (eval_within_domain(mpl, info->con->domain, info->tuple, info,
- eval_con_func))
- out_of_domain(mpl, con->name, info->tuple);
- /* bring evaluated reference to the calling program */
- return info->refer;
- }
- /*----------------------------------------------------------------------
- -- eval_whole_con - evaluate model constraint over entire domain.
- --
- -- This routine evaluates all members of specified model constraint over
- -- entire domain. */
- static int whole_con_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- CONSTRAINT *con = (CONSTRAINT *)info;
- TUPLE *tuple = get_domain_tuple(mpl, con->domain);
- eval_member_con(mpl, con, tuple);
- delete_tuple(mpl, tuple);
- return 0;
- }
- void eval_whole_con(MPL *mpl, CONSTRAINT *con)
- { loop_within_domain(mpl, con->domain, con, whole_con_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_constraint - clean model constraint.
- --
- -- This routine cleans specified model constraint that assumes deleting
- -- all stuff dynamically allocated during the generation phase. */
- void clean_constraint(MPL *mpl, CONSTRAINT *con)
- { MEMBER *memb;
- /* clean subscript domain */
- clean_domain(mpl, con->domain);
- /* clean code for computing main linear form */
- clean_code(mpl, con->code);
- /* clean code for computing lower bound */
- clean_code(mpl, con->lbnd);
- /* clean code for computing upper bound */
- if (con->ubnd != con->lbnd) clean_code(mpl, con->ubnd);
- /* delete content array */
- for (memb = con->array->head; memb != NULL; memb = memb->next)
- { delete_formula(mpl, memb->value.con->form);
- dmp_free_atom(mpl->elemcons, memb->value.con, sizeof(ELEMCON));
- }
- delete_array(mpl, con->array), con->array = NULL;
- return;
- }
- /**********************************************************************/
- /* * * PSEUDO-CODE * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- eval_numeric - evaluate pseudo-code to determine numeric value.
- --
- -- This routine evaluates specified pseudo-code to determine resultant
- -- numeric value, which is returned on exit. */
- struct iter_num_info
- { /* working info used by the routine iter_num_func */
- CODE *code;
- /* pseudo-code for iterated operation to be performed */
- double value;
- /* resultant value */
- };
- static int iter_num_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine used to perform iterated operation
- on numeric "integrand" within domain scope */
- struct iter_num_info *info = _info;
- double temp;
- temp = eval_numeric(mpl, info->code->arg.loop.x);
- switch (info->code->op)
- { case O_SUM:
- /* summation over domain */
- info->value = fp_add(mpl, info->value, temp);
- break;
- case O_PROD:
- /* multiplication over domain */
- info->value = fp_mul(mpl, info->value, temp);
- break;
- case O_MINIMUM:
- /* minimum over domain */
- if (info->value > temp) info->value = temp;
- break;
- case O_MAXIMUM:
- /* maximum over domain */
- if (info->value < temp) info->value = temp;
- break;
- default:
- xassert(info != info);
- }
- return 0;
- }
- double eval_numeric(MPL *mpl, CODE *code)
- { double value;
- xassert(code != NULL);
- xassert(code->type == A_NUMERIC);
- xassert(code->dim == 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = code->value.num;
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_NUMBER:
- /* take floating-point number */
- value = code->arg.num;
- break;
- case O_MEMNUM:
- /* take member of numeric parameter */
- { TUPLE *tuple;
- ARG_LIST *e;
- tuple = create_tuple(mpl);
- for (e = code->arg.par.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- value = eval_member_num(mpl, code->arg.par.par, tuple);
- delete_tuple(mpl, tuple);
- }
- break;
- case O_MEMVAR:
- /* take computed value of elemental variable */
- { TUPLE *tuple;
- ARG_LIST *e;
- #if 1 /* 15/V-2010 */
- ELEMVAR *var;
- #endif
- tuple = create_tuple(mpl);
- for (e = code->arg.var.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- #if 0 /* 15/V-2010 */
- value = eval_member_var(mpl, code->arg.var.var, tuple)
- ->value;
- #else
- var = eval_member_var(mpl, code->arg.var.var, tuple);
- switch (code->arg.var.suff)
- { case DOT_LB:
- if (var->var->lbnd == NULL)
- value = -DBL_MAX;
- else
- value = var->lbnd;
- break;
- case DOT_UB:
- if (var->var->ubnd == NULL)
- value = +DBL_MAX;
- else
- value = var->ubnd;
- break;
- case DOT_STATUS:
- value = var->stat;
- break;
- case DOT_VAL:
- value = var->prim;
- break;
- case DOT_DUAL:
- value = var->dual;
- break;
- default:
- xassert(code != code);
- }
- #endif
- delete_tuple(mpl, tuple);
- }
- break;
- #if 1 /* 15/V-2010 */
- case O_MEMCON:
- /* take computed value of elemental constraint */
- { TUPLE *tuple;
- ARG_LIST *e;
- ELEMCON *con;
- tuple = create_tuple(mpl);
- for (e = code->arg.con.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- con = eval_member_con(mpl, code->arg.con.con, tuple);
- switch (code->arg.con.suff)
- { case DOT_LB:
- if (con->con->lbnd == NULL)
- value = -DBL_MAX;
- else
- value = con->lbnd;
- break;
- case DOT_UB:
- if (con->con->ubnd == NULL)
- value = +DBL_MAX;
- else
- value = con->ubnd;
- break;
- case DOT_STATUS:
- value = con->stat;
- break;
- case DOT_VAL:
- value = con->prim;
- break;
- case DOT_DUAL:
- value = con->dual;
- break;
- default:
- xassert(code != code);
- }
- delete_tuple(mpl, tuple);
- }
- break;
- #endif
- case O_IRAND224:
- /* pseudo-random in [0, 2^24-1] */
- value = fp_irand224(mpl);
- break;
- case O_UNIFORM01:
- /* pseudo-random in [0, 1) */
- value = fp_uniform01(mpl);
- break;
- case O_NORMAL01:
- /* gaussian random, mu = 0, sigma = 1 */
- value = fp_normal01(mpl);
- break;
- case O_GMTIME:
- /* current calendar time */
- value = fn_gmtime(mpl);
- break;
- case O_CVTNUM:
- /* conversion to numeric */
- { SYMBOL *sym;
- sym = eval_symbolic(mpl, code->arg.arg.x);
- #if 0 /* 23/XI-2008 */
- if (sym->str != NULL)
- mpl_error(mpl, "cannot convert %s to floating-point numbe"
- "r", format_symbol(mpl, sym));
- value = sym->num;
- #else
- if (sym->str == NULL)
- value = sym->num;
- else
- { if (str2num(sym->str, &value))
- mpl_error(mpl, "cannot convert %s to floating-point nu"
- "mber", format_symbol(mpl, sym));
- }
- #endif
- delete_symbol(mpl, sym);
- }
- break;
- case O_PLUS:
- /* unary plus */
- value = + eval_numeric(mpl, code->arg.arg.x);
- break;
- case O_MINUS:
- /* unary minus */
- value = - eval_numeric(mpl, code->arg.arg.x);
- break;
- case O_ABS:
- /* absolute value */
- value = fabs(eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_CEIL:
- /* round upward ("ceiling of x") */
- value = ceil(eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_FLOOR:
- /* round downward ("floor of x") */
- value = floor(eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_EXP:
- /* base-e exponential */
- value = fp_exp(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_LOG:
- /* natural logarithm */
- value = fp_log(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_LOG10:
- /* common (decimal) logarithm */
- value = fp_log10(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_SQRT:
- /* square root */
- value = fp_sqrt(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_SIN:
- /* trigonometric sine */
- value = fp_sin(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_COS:
- /* trigonometric cosine */
- value = fp_cos(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_ATAN:
- /* trigonometric arctangent (one argument) */
- value = fp_atan(mpl, eval_numeric(mpl, code->arg.arg.x));
- break;
- case O_ATAN2:
- /* trigonometric arctangent (two arguments) */
- value = fp_atan2(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_ROUND:
- /* round to nearest integer */
- value = fp_round(mpl,
- eval_numeric(mpl, code->arg.arg.x), 0.0);
- break;
- case O_ROUND2:
- /* round to n fractional digits */
- value = fp_round(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_TRUNC:
- /* truncate to nearest integer */
- value = fp_trunc(mpl,
- eval_numeric(mpl, code->arg.arg.x), 0.0);
- break;
- case O_TRUNC2:
- /* truncate to n fractional digits */
- value = fp_trunc(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_ADD:
- /* addition */
- value = fp_add(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_SUB:
- /* subtraction */
- value = fp_sub(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_LESS:
- /* non-negative subtraction */
- value = fp_less(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_MUL:
- /* multiplication */
- value = fp_mul(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_DIV:
- /* division */
- value = fp_div(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_IDIV:
- /* quotient of exact division */
- value = fp_idiv(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_MOD:
- /* remainder of exact division */
- value = fp_mod(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_POWER:
- /* exponentiation (raise to power) */
- value = fp_power(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_UNIFORM:
- /* pseudo-random in [a, b) */
- value = fp_uniform(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_NORMAL:
- /* gaussian random, given mu and sigma */
- value = fp_normal(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y));
- break;
- case O_CARD:
- { ELEMSET *set;
- set = eval_elemset(mpl, code->arg.arg.x);
- value = set->size;
- delete_array(mpl, set);
- }
- break;
- case O_LENGTH:
- { SYMBOL *sym;
- char str[MAX_LENGTH+1];
- sym = eval_symbolic(mpl, code->arg.arg.x);
- if (sym->str == NULL)
- sprintf(str, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, str);
- delete_symbol(mpl, sym);
- value = strlen(str);
- }
- break;
- case O_STR2TIME:
- { SYMBOL *sym;
- char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1];
- sym = eval_symbolic(mpl, code->arg.arg.x);
- if (sym->str == NULL)
- sprintf(str, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, str);
- delete_symbol(mpl, sym);
- sym = eval_symbolic(mpl, code->arg.arg.y);
- if (sym->str == NULL)
- sprintf(fmt, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, fmt);
- delete_symbol(mpl, sym);
- value = fn_str2time(mpl, str, fmt);
- }
- break;
- case O_FORK:
- /* if-then-else */
- if (eval_logical(mpl, code->arg.arg.x))
- value = eval_numeric(mpl, code->arg.arg.y);
- else if (code->arg.arg.z == NULL)
- value = 0.0;
- else
- value = eval_numeric(mpl, code->arg.arg.z);
- break;
- case O_MIN:
- /* minimal value (n-ary) */
- { ARG_LIST *e;
- double temp;
- value = +DBL_MAX;
- for (e = code->arg.list; e != NULL; e = e->next)
- { temp = eval_numeric(mpl, e->x);
- if (value > temp) value = temp;
- }
- }
- break;
- case O_MAX:
- /* maximal value (n-ary) */
- { ARG_LIST *e;
- double temp;
- value = -DBL_MAX;
- for (e = code->arg.list; e != NULL; e = e->next)
- { temp = eval_numeric(mpl, e->x);
- if (value < temp) value = temp;
- }
- }
- break;
- case O_SUM:
- /* summation over domain */
- { struct iter_num_info _info, *info = &_info;
- info->code = code;
- info->value = 0.0;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_num_func);
- value = info->value;
- }
- break;
- case O_PROD:
- /* multiplication over domain */
- { struct iter_num_info _info, *info = &_info;
- info->code = code;
- info->value = 1.0;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_num_func);
- value = info->value;
- }
- break;
- case O_MINIMUM:
- /* minimum over domain */
- { struct iter_num_info _info, *info = &_info;
- info->code = code;
- info->value = +DBL_MAX;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_num_func);
- if (info->value == +DBL_MAX)
- mpl_error(mpl, "min{} over empty set; result undefined");
- value = info->value;
- }
- break;
- case O_MAXIMUM:
- /* maximum over domain */
- { struct iter_num_info _info, *info = &_info;
- info->code = code;
- info->value = -DBL_MAX;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_num_func);
- if (info->value == -DBL_MAX)
- mpl_error(mpl, "max{} over empty set; result undefined");
- value = info->value;
- }
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.num = value;
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- eval_symbolic - evaluate pseudo-code to determine symbolic value.
- --
- -- This routine evaluates specified pseudo-code to determine resultant
- -- symbolic value, which is returned on exit. */
- SYMBOL *eval_symbolic(MPL *mpl, CODE *code)
- { SYMBOL *value;
- xassert(code != NULL);
- xassert(code->type == A_SYMBOLIC);
- xassert(code->dim == 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = copy_symbol(mpl, code->value.sym);
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_STRING:
- /* take character string */
- value = create_symbol_str(mpl, create_string(mpl,
- code->arg.str));
- break;
- case O_INDEX:
- /* take dummy index */
- xassert(code->arg.index.slot->value != NULL);
- value = copy_symbol(mpl, code->arg.index.slot->value);
- break;
- case O_MEMSYM:
- /* take member of symbolic parameter */
- { TUPLE *tuple;
- ARG_LIST *e;
- tuple = create_tuple(mpl);
- for (e = code->arg.par.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- value = eval_member_sym(mpl, code->arg.par.par, tuple);
- delete_tuple(mpl, tuple);
- }
- break;
- case O_CVTSYM:
- /* conversion to symbolic */
- value = create_symbol_num(mpl, eval_numeric(mpl,
- code->arg.arg.x));
- break;
- case O_CONCAT:
- /* concatenation */
- value = concat_symbols(mpl,
- eval_symbolic(mpl, code->arg.arg.x),
- eval_symbolic(mpl, code->arg.arg.y));
- break;
- case O_FORK:
- /* if-then-else */
- if (eval_logical(mpl, code->arg.arg.x))
- value = eval_symbolic(mpl, code->arg.arg.y);
- else if (code->arg.arg.z == NULL)
- value = create_symbol_num(mpl, 0.0);
- else
- value = eval_symbolic(mpl, code->arg.arg.z);
- break;
- case O_SUBSTR:
- case O_SUBSTR3:
- { double pos, len;
- char str[MAX_LENGTH+1];
- value = eval_symbolic(mpl, code->arg.arg.x);
- if (value->str == NULL)
- sprintf(str, "%.*g", DBL_DIG, value->num);
- else
- fetch_string(mpl, value->str, str);
- delete_symbol(mpl, value);
- if (code->op == O_SUBSTR)
- { pos = eval_numeric(mpl, code->arg.arg.y);
- if (pos != floor(pos))
- mpl_error(mpl, "substr('...', %.*g); non-integer secon"
- "d argument", DBL_DIG, pos);
- if (pos < 1 || pos > strlen(str) + 1)
- mpl_error(mpl, "substr('...', %.*g); substring out of "
- "range", DBL_DIG, pos);
- }
- else
- { pos = eval_numeric(mpl, code->arg.arg.y);
- len = eval_numeric(mpl, code->arg.arg.z);
- if (pos != floor(pos) || len != floor(len))
- mpl_error(mpl, "substr('...', %.*g, %.*g); non-integer"
- " second and/or third argument", DBL_DIG, pos,
- DBL_DIG, len);
- if (pos < 1 || len < 0 || pos + len > strlen(str) + 1)
- mpl_error(mpl, "substr('...', %.*g, %.*g); substring o"
- "ut of range", DBL_DIG, pos, DBL_DIG, len);
- str[(int)pos + (int)len - 1] = '\0';
- }
- value = create_symbol_str(mpl, create_string(mpl, str +
- (int)pos - 1));
- }
- break;
- case O_TIME2STR:
- { double num;
- SYMBOL *sym;
- char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1];
- num = eval_numeric(mpl, code->arg.arg.x);
- sym = eval_symbolic(mpl, code->arg.arg.y);
- if (sym->str == NULL)
- sprintf(fmt, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, fmt);
- delete_symbol(mpl, sym);
- fn_time2str(mpl, str, num, fmt);
- value = create_symbol_str(mpl, create_string(mpl, str));
- }
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.sym = copy_symbol(mpl, value);
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- eval_logical - evaluate pseudo-code to determine logical value.
- --
- -- This routine evaluates specified pseudo-code to determine resultant
- -- logical value, which is returned on exit. */
- struct iter_log_info
- { /* working info used by the routine iter_log_func */
- CODE *code;
- /* pseudo-code for iterated operation to be performed */
- int value;
- /* resultant value */
- };
- static int iter_log_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine used to perform iterated operation
- on logical "integrand" within domain scope */
- struct iter_log_info *info = _info;
- int ret = 0;
- switch (info->code->op)
- { case O_FORALL:
- /* conjunction over domain */
- info->value &= eval_logical(mpl, info->code->arg.loop.x);
- if (!info->value) ret = 1;
- break;
- case O_EXISTS:
- /* disjunction over domain */
- info->value |= eval_logical(mpl, info->code->arg.loop.x);
- if (info->value) ret = 1;
- break;
- default:
- xassert(info != info);
- }
- return ret;
- }
- int eval_logical(MPL *mpl, CODE *code)
- { int value;
- xassert(code->type == A_LOGICAL);
- xassert(code->dim == 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = code->value.bit;
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_CVTLOG:
- /* conversion to logical */
- value = (eval_numeric(mpl, code->arg.arg.x) != 0.0);
- break;
- case O_NOT:
- /* negation (logical "not") */
- value = !eval_logical(mpl, code->arg.arg.x);
- break;
- case O_LT:
- /* comparison on 'less than' */
- #if 0 /* 02/VIII-2008 */
- value = (eval_numeric(mpl, code->arg.arg.x) <
- eval_numeric(mpl, code->arg.arg.y));
- #else
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) <
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) < 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- #endif
- break;
- case O_LE:
- /* comparison on 'not greater than' */
- #if 0 /* 02/VIII-2008 */
- value = (eval_numeric(mpl, code->arg.arg.x) <=
- eval_numeric(mpl, code->arg.arg.y));
- #else
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) <=
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) <= 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- #endif
- break;
- case O_EQ:
- /* comparison on 'equal to' */
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) ==
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) == 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- break;
- case O_GE:
- /* comparison on 'not less than' */
- #if 0 /* 02/VIII-2008 */
- value = (eval_numeric(mpl, code->arg.arg.x) >=
- eval_numeric(mpl, code->arg.arg.y));
- #else
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) >=
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) >= 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- #endif
- break;
- case O_GT:
- /* comparison on 'greater than' */
- #if 0 /* 02/VIII-2008 */
- value = (eval_numeric(mpl, code->arg.arg.x) >
- eval_numeric(mpl, code->arg.arg.y));
- #else
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) >
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) > 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- #endif
- break;
- case O_NE:
- /* comparison on 'not equal to' */
- xassert(code->arg.arg.x != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- value = (eval_numeric(mpl, code->arg.arg.x) !=
- eval_numeric(mpl, code->arg.arg.y));
- else
- { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
- SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
- value = (compare_symbols(mpl, sym1, sym2) != 0);
- delete_symbol(mpl, sym1);
- delete_symbol(mpl, sym2);
- }
- break;
- case O_AND:
- /* conjunction (logical "and") */
- value = eval_logical(mpl, code->arg.arg.x) &&
- eval_logical(mpl, code->arg.arg.y);
- break;
- case O_OR:
- /* disjunction (logical "or") */
- value = eval_logical(mpl, code->arg.arg.x) ||
- eval_logical(mpl, code->arg.arg.y);
- break;
- case O_IN:
- /* test on 'x in Y' */
- { TUPLE *tuple;
- tuple = eval_tuple(mpl, code->arg.arg.x);
- value = is_member(mpl, code->arg.arg.y, tuple);
- delete_tuple(mpl, tuple);
- }
- break;
- case O_NOTIN:
- /* test on 'x not in Y' */
- { TUPLE *tuple;
- tuple = eval_tuple(mpl, code->arg.arg.x);
- value = !is_member(mpl, code->arg.arg.y, tuple);
- delete_tuple(mpl, tuple);
- }
- break;
- case O_WITHIN:
- /* test on 'X within Y' */
- { ELEMSET *set;
- MEMBER *memb;
- set = eval_elemset(mpl, code->arg.arg.x);
- value = 1;
- for (memb = set->head; memb != NULL; memb = memb->next)
- { if (!is_member(mpl, code->arg.arg.y, memb->tuple))
- { value = 0;
- break;
- }
- }
- delete_elemset(mpl, set);
- }
- break;
- case O_NOTWITHIN:
- /* test on 'X not within Y' */
- { ELEMSET *set;
- MEMBER *memb;
- set = eval_elemset(mpl, code->arg.arg.x);
- value = 1;
- for (memb = set->head; memb != NULL; memb = memb->next)
- { if (is_member(mpl, code->arg.arg.y, memb->tuple))
- { value = 0;
- break;
- }
- }
- delete_elemset(mpl, set);
- }
- break;
- case O_FORALL:
- /* conjunction (A-quantification) */
- { struct iter_log_info _info, *info = &_info;
- info->code = code;
- info->value = 1;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_log_func);
- value = info->value;
- }
- break;
- case O_EXISTS:
- /* disjunction (E-quantification) */
- { struct iter_log_info _info, *info = &_info;
- info->code = code;
- info->value = 0;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_log_func);
- value = info->value;
- }
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.bit = value;
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- eval_tuple - evaluate pseudo-code to construct n-tuple.
- --
- -- This routine evaluates specified pseudo-code to construct resultant
- -- n-tuple, which is returned on exit. */
- TUPLE *eval_tuple(MPL *mpl, CODE *code)
- { TUPLE *value;
- xassert(code != NULL);
- xassert(code->type == A_TUPLE);
- xassert(code->dim > 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = copy_tuple(mpl, code->value.tuple);
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_TUPLE:
- /* make n-tuple */
- { ARG_LIST *e;
- value = create_tuple(mpl);
- for (e = code->arg.list; e != NULL; e = e->next)
- value = expand_tuple(mpl, value, eval_symbolic(mpl,
- e->x));
- }
- break;
- case O_CVTTUP:
- /* convert to 1-tuple */
- value = expand_tuple(mpl, create_tuple(mpl),
- eval_symbolic(mpl, code->arg.arg.x));
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.tuple = copy_tuple(mpl, value);
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- eval_elemset - evaluate pseudo-code to construct elemental set.
- --
- -- This routine evaluates specified pseudo-code to construct resultant
- -- elemental set, which is returned on exit. */
- struct iter_set_info
- { /* working info used by the routine iter_set_func */
- CODE *code;
- /* pseudo-code for iterated operation to be performed */
- ELEMSET *value;
- /* resultant value */
- };
- static int iter_set_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine used to perform iterated operation
- on n-tuple "integrand" within domain scope */
- struct iter_set_info *info = _info;
- TUPLE *tuple;
- switch (info->code->op)
- { case O_SETOF:
- /* compute next n-tuple and add it to the set; in this case
- duplicate n-tuples are silently ignored */
- tuple = eval_tuple(mpl, info->code->arg.loop.x);
- if (find_tuple(mpl, info->value, tuple) == NULL)
- add_tuple(mpl, info->value, tuple);
- else
- delete_tuple(mpl, tuple);
- break;
- case O_BUILD:
- /* construct next n-tuple using current values assigned to
- *free* dummy indices as its components and add it to the
- set; in this case duplicate n-tuples cannot appear */
- add_tuple(mpl, info->value, get_domain_tuple(mpl,
- info->code->arg.loop.domain));
- break;
- default:
- xassert(info != info);
- }
- return 0;
- }
- ELEMSET *eval_elemset(MPL *mpl, CODE *code)
- { ELEMSET *value;
- xassert(code != NULL);
- xassert(code->type == A_ELEMSET);
- xassert(code->dim > 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = copy_elemset(mpl, code->value.set);
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_MEMSET:
- /* take member of set */
- { TUPLE *tuple;
- ARG_LIST *e;
- tuple = create_tuple(mpl);
- for (e = code->arg.set.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- value = copy_elemset(mpl,
- eval_member_set(mpl, code->arg.set.set, tuple));
- delete_tuple(mpl, tuple);
- }
- break;
- case O_MAKE:
- /* make elemental set of n-tuples */
- { ARG_LIST *e;
- value = create_elemset(mpl, code->dim);
- for (e = code->arg.list; e != NULL; e = e->next)
- check_then_add(mpl, value, eval_tuple(mpl, e->x));
- }
- break;
- case O_UNION:
- /* union of two elemental sets */
- value = set_union(mpl,
- eval_elemset(mpl, code->arg.arg.x),
- eval_elemset(mpl, code->arg.arg.y));
- break;
- case O_DIFF:
- /* difference between two elemental sets */
- value = set_diff(mpl,
- eval_elemset(mpl, code->arg.arg.x),
- eval_elemset(mpl, code->arg.arg.y));
- break;
- case O_SYMDIFF:
- /* symmetric difference between two elemental sets */
- value = set_symdiff(mpl,
- eval_elemset(mpl, code->arg.arg.x),
- eval_elemset(mpl, code->arg.arg.y));
- break;
- case O_INTER:
- /* intersection of two elemental sets */
- value = set_inter(mpl,
- eval_elemset(mpl, code->arg.arg.x),
- eval_elemset(mpl, code->arg.arg.y));
- break;
- case O_CROSS:
- /* cross (Cartesian) product of two elemental sets */
- value = set_cross(mpl,
- eval_elemset(mpl, code->arg.arg.x),
- eval_elemset(mpl, code->arg.arg.y));
- break;
- case O_DOTS:
- /* build "arithmetic" elemental set */
- value = create_arelset(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_numeric(mpl, code->arg.arg.y),
- code->arg.arg.z == NULL ? 1.0 : eval_numeric(mpl,
- code->arg.arg.z));
- break;
- case O_FORK:
- /* if-then-else */
- if (eval_logical(mpl, code->arg.arg.x))
- value = eval_elemset(mpl, code->arg.arg.y);
- else
- value = eval_elemset(mpl, code->arg.arg.z);
- break;
- case O_SETOF:
- /* compute elemental set */
- { struct iter_set_info _info, *info = &_info;
- info->code = code;
- info->value = create_elemset(mpl, code->dim);
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_set_func);
- value = info->value;
- }
- break;
- case O_BUILD:
- /* build elemental set identical to domain set */
- { struct iter_set_info _info, *info = &_info;
- info->code = code;
- info->value = create_elemset(mpl, code->dim);
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_set_func);
- value = info->value;
- }
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.set = copy_elemset(mpl, value);
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- is_member - check if n-tuple is in set specified by pseudo-code.
- --
- -- This routine checks if given n-tuple is a member of elemental set
- -- specified in the form of pseudo-code (i.e. by expression).
- --
- -- The n-tuple may have more components that dimension of the elemental
- -- set, in which case the extra components are ignored. */
- static void null_func(MPL *mpl, void *info)
- { /* this is dummy routine used to enter the domain scope */
- xassert(mpl == mpl);
- xassert(info == NULL);
- return;
- }
- int is_member(MPL *mpl, CODE *code, TUPLE *tuple)
- { int value;
- xassert(code != NULL);
- xassert(code->type == A_ELEMSET);
- xassert(code->dim > 0);
- xassert(tuple != NULL);
- switch (code->op)
- { case O_MEMSET:
- /* check if given n-tuple is member of elemental set, which
- is assigned to member of model set */
- { ARG_LIST *e;
- TUPLE *temp;
- ELEMSET *set;
- /* evaluate reference to elemental set */
- temp = create_tuple(mpl);
- for (e = code->arg.set.list; e != NULL; e = e->next)
- temp = expand_tuple(mpl, temp, eval_symbolic(mpl,
- e->x));
- set = eval_member_set(mpl, code->arg.set.set, temp);
- delete_tuple(mpl, temp);
- /* check if the n-tuple is contained in the set array */
- temp = build_subtuple(mpl, tuple, set->dim);
- value = (find_tuple(mpl, set, temp) != NULL);
- delete_tuple(mpl, temp);
- }
- break;
- case O_MAKE:
- /* check if given n-tuple is member of literal set */
- { ARG_LIST *e;
- TUPLE *temp, *that;
- value = 0;
- temp = build_subtuple(mpl, tuple, code->dim);
- for (e = code->arg.list; e != NULL; e = e->next)
- { that = eval_tuple(mpl, e->x);
- value = (compare_tuples(mpl, temp, that) == 0);
- delete_tuple(mpl, that);
- if (value) break;
- }
- delete_tuple(mpl, temp);
- }
- break;
- case O_UNION:
- value = is_member(mpl, code->arg.arg.x, tuple) ||
- is_member(mpl, code->arg.arg.y, tuple);
- break;
- case O_DIFF:
- value = is_member(mpl, code->arg.arg.x, tuple) &&
- !is_member(mpl, code->arg.arg.y, tuple);
- break;
- case O_SYMDIFF:
- { int in1 = is_member(mpl, code->arg.arg.x, tuple);
- int in2 = is_member(mpl, code->arg.arg.y, tuple);
- value = (in1 && !in2) || (!in1 && in2);
- }
- break;
- case O_INTER:
- value = is_member(mpl, code->arg.arg.x, tuple) &&
- is_member(mpl, code->arg.arg.y, tuple);
- break;
- case O_CROSS:
- { int j;
- value = is_member(mpl, code->arg.arg.x, tuple);
- if (value)
- { for (j = 1; j <= code->arg.arg.x->dim; j++)
- { xassert(tuple != NULL);
- tuple = tuple->next;
- }
- value = is_member(mpl, code->arg.arg.y, tuple);
- }
- }
- break;
- case O_DOTS:
- /* check if given 1-tuple is member of "arithmetic" set */
- { int j;
- double x, t0, tf, dt;
- xassert(code->dim == 1);
- /* compute "parameters" of the "arithmetic" set */
- t0 = eval_numeric(mpl, code->arg.arg.x);
- tf = eval_numeric(mpl, code->arg.arg.y);
- if (code->arg.arg.z == NULL)
- dt = 1.0;
- else
- dt = eval_numeric(mpl, code->arg.arg.z);
- /* make sure the parameters are correct */
- arelset_size(mpl, t0, tf, dt);
- /* if component of 1-tuple is symbolic, not numeric, the
- 1-tuple cannot be member of "arithmetic" set */
- xassert(tuple->sym != NULL);
- if (tuple->sym->str != NULL)
- { value = 0;
- break;
- }
- /* determine numeric value of the component */
- x = tuple->sym->num;
- /* if the component value is out of the set range, the
- 1-tuple is not in the set */
- if (dt > 0.0 && !(t0 <= x && x <= tf) ||
- dt < 0.0 && !(tf <= x && x <= t0))
- { value = 0;
- break;
- }
- /* estimate ordinal number of the 1-tuple in the set */
- j = (int)(((x - t0) / dt) + 0.5) + 1;
- /* perform the main check */
- value = (arelset_member(mpl, t0, tf, dt, j) == x);
- }
- break;
- case O_FORK:
- /* check if given n-tuple is member of conditional set */
- if (eval_logical(mpl, code->arg.arg.x))
- value = is_member(mpl, code->arg.arg.y, tuple);
- else
- value = is_member(mpl, code->arg.arg.z, tuple);
- break;
- case O_SETOF:
- /* check if given n-tuple is member of computed set */
- /* it is not clear how to efficiently perform the check not
- computing the entire elemental set :+( */
- mpl_error(mpl, "implementation restriction; in/within setof{} n"
- "ot allowed");
- break;
- case O_BUILD:
- /* check if given n-tuple is member of domain set */
- { TUPLE *temp;
- temp = build_subtuple(mpl, tuple, code->dim);
- /* try to enter the domain scope; if it is successful,
- the n-tuple is in the domain set */
- value = (eval_within_domain(mpl, code->arg.loop.domain,
- temp, NULL, null_func) == 0);
- delete_tuple(mpl, temp);
- }
- break;
- default:
- xassert(code != code);
- }
- return value;
- }
- /*----------------------------------------------------------------------
- -- eval_formula - evaluate pseudo-code to construct linear form.
- --
- -- This routine evaluates specified pseudo-code to construct resultant
- -- linear form, which is returned on exit. */
- struct iter_form_info
- { /* working info used by the routine iter_form_func */
- CODE *code;
- /* pseudo-code for iterated operation to be performed */
- FORMULA *value;
- /* resultant value */
- FORMULA *tail;
- /* pointer to the last term */
- };
- static int iter_form_func(MPL *mpl, void *_info)
- { /* this is auxiliary routine used to perform iterated operation
- on linear form "integrand" within domain scope */
- struct iter_form_info *info = _info;
- switch (info->code->op)
- { case O_SUM:
- /* summation over domain */
- #if 0
- info->value =
- linear_comb(mpl,
- +1.0, info->value,
- +1.0, eval_formula(mpl, info->code->arg.loop.x));
- #else
- /* the routine linear_comb needs to look through all terms
- of both linear forms to reduce identical terms, so using
- it here is not a good idea (for example, evaluation of
- sum{i in 1..n} x[i] required quadratic time); the better
- idea is to gather all terms of the integrand in one list
- and reduce identical terms only once after all terms of
- the resultant linear form have been evaluated */
- { FORMULA *form, *term;
- form = eval_formula(mpl, info->code->arg.loop.x);
- if (info->value == NULL)
- { xassert(info->tail == NULL);
- info->value = form;
- }
- else
- { xassert(info->tail != NULL);
- info->tail->next = form;
- }
- for (term = form; term != NULL; term = term->next)
- info->tail = term;
- }
- #endif
- break;
- default:
- xassert(info != info);
- }
- return 0;
- }
- FORMULA *eval_formula(MPL *mpl, CODE *code)
- { FORMULA *value;
- xassert(code != NULL);
- xassert(code->type == A_FORMULA);
- xassert(code->dim == 0);
- /* if the operation has a side effect, invalidate and delete the
- resultant value */
- if (code->vflag && code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* if resultant value is valid, no evaluation is needed */
- if (code->valid)
- { value = copy_formula(mpl, code->value.form);
- goto done;
- }
- /* evaluate pseudo-code recursively */
- switch (code->op)
- { case O_MEMVAR:
- /* take member of variable */
- { TUPLE *tuple;
- ARG_LIST *e;
- tuple = create_tuple(mpl);
- for (e = code->arg.var.list; e != NULL; e = e->next)
- tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
- e->x));
- #if 1 /* 15/V-2010 */
- xassert(code->arg.var.suff == DOT_NONE);
- #endif
- value = single_variable(mpl,
- eval_member_var(mpl, code->arg.var.var, tuple));
- delete_tuple(mpl, tuple);
- }
- break;
- case O_CVTLFM:
- /* convert to linear form */
- value = constant_term(mpl, eval_numeric(mpl,
- code->arg.arg.x));
- break;
- case O_PLUS:
- /* unary plus */
- value = linear_comb(mpl,
- 0.0, constant_term(mpl, 0.0),
- +1.0, eval_formula(mpl, code->arg.arg.x));
- break;
- case O_MINUS:
- /* unary minus */
- value = linear_comb(mpl,
- 0.0, constant_term(mpl, 0.0),
- -1.0, eval_formula(mpl, code->arg.arg.x));
- break;
- case O_ADD:
- /* addition */
- value = linear_comb(mpl,
- +1.0, eval_formula(mpl, code->arg.arg.x),
- +1.0, eval_formula(mpl, code->arg.arg.y));
- break;
- case O_SUB:
- /* subtraction */
- value = linear_comb(mpl,
- +1.0, eval_formula(mpl, code->arg.arg.x),
- -1.0, eval_formula(mpl, code->arg.arg.y));
- break;
- case O_MUL:
- /* multiplication */
- xassert(code->arg.arg.x != NULL);
- xassert(code->arg.arg.y != NULL);
- if (code->arg.arg.x->type == A_NUMERIC)
- { xassert(code->arg.arg.y->type == A_FORMULA);
- value = linear_comb(mpl,
- eval_numeric(mpl, code->arg.arg.x),
- eval_formula(mpl, code->arg.arg.y),
- 0.0, constant_term(mpl, 0.0));
- }
- else
- { xassert(code->arg.arg.x->type == A_FORMULA);
- xassert(code->arg.arg.y->type == A_NUMERIC);
- value = linear_comb(mpl,
- eval_numeric(mpl, code->arg.arg.y),
- eval_formula(mpl, code->arg.arg.x),
- 0.0, constant_term(mpl, 0.0));
- }
- break;
- case O_DIV:
- /* division */
- value = linear_comb(mpl,
- fp_div(mpl, 1.0, eval_numeric(mpl, code->arg.arg.y)),
- eval_formula(mpl, code->arg.arg.x),
- 0.0, constant_term(mpl, 0.0));
- break;
- case O_FORK:
- /* if-then-else */
- if (eval_logical(mpl, code->arg.arg.x))
- value = eval_formula(mpl, code->arg.arg.y);
- else if (code->arg.arg.z == NULL)
- value = constant_term(mpl, 0.0);
- else
- value = eval_formula(mpl, code->arg.arg.z);
- break;
- case O_SUM:
- /* summation over domain */
- { struct iter_form_info _info, *info = &_info;
- info->code = code;
- info->value = constant_term(mpl, 0.0);
- info->tail = NULL;
- loop_within_domain(mpl, code->arg.loop.domain, info,
- iter_form_func);
- value = reduce_terms(mpl, info->value);
- }
- break;
- default:
- xassert(code != code);
- }
- /* save resultant value */
- xassert(!code->valid);
- code->valid = 1;
- code->value.form = copy_formula(mpl, value);
- done: return value;
- }
- /*----------------------------------------------------------------------
- -- clean_code - clean pseudo-code.
- --
- -- This routine recursively cleans specified pseudo-code that assumes
- -- deleting all temporary resultant values. */
- void clean_code(MPL *mpl, CODE *code)
- { ARG_LIST *e;
- /* if no pseudo-code is specified, do nothing */
- if (code == NULL) goto done;
- /* if resultant value is valid (exists), delete it */
- if (code->valid)
- { code->valid = 0;
- delete_value(mpl, code->type, &code->value);
- }
- /* recursively clean pseudo-code for operands */
- switch (code->op)
- { case O_NUMBER:
- case O_STRING:
- case O_INDEX:
- break;
- case O_MEMNUM:
- case O_MEMSYM:
- for (e = code->arg.par.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- case O_MEMSET:
- for (e = code->arg.set.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- case O_MEMVAR:
- for (e = code->arg.var.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- #if 1 /* 15/V-2010 */
- case O_MEMCON:
- for (e = code->arg.con.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- #endif
- case O_TUPLE:
- case O_MAKE:
- for (e = code->arg.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- case O_SLICE:
- xassert(code != code);
- case O_IRAND224:
- case O_UNIFORM01:
- case O_NORMAL01:
- case O_GMTIME:
- break;
- case O_CVTNUM:
- case O_CVTSYM:
- case O_CVTLOG:
- case O_CVTTUP:
- case O_CVTLFM:
- case O_PLUS:
- case O_MINUS:
- case O_NOT:
- case O_ABS:
- case O_CEIL:
- case O_FLOOR:
- case O_EXP:
- case O_LOG:
- case O_LOG10:
- case O_SQRT:
- case O_SIN:
- case O_COS:
- case O_ATAN:
- case O_ROUND:
- case O_TRUNC:
- case O_CARD:
- case O_LENGTH:
- /* unary operation */
- clean_code(mpl, code->arg.arg.x);
- break;
- case O_ADD:
- case O_SUB:
- case O_LESS:
- case O_MUL:
- case O_DIV:
- case O_IDIV:
- case O_MOD:
- case O_POWER:
- case O_ATAN2:
- case O_ROUND2:
- case O_TRUNC2:
- case O_UNIFORM:
- case O_NORMAL:
- case O_CONCAT:
- case O_LT:
- case O_LE:
- case O_EQ:
- case O_GE:
- case O_GT:
- case O_NE:
- case O_AND:
- case O_OR:
- case O_UNION:
- case O_DIFF:
- case O_SYMDIFF:
- case O_INTER:
- case O_CROSS:
- case O_IN:
- case O_NOTIN:
- case O_WITHIN:
- case O_NOTWITHIN:
- case O_SUBSTR:
- case O_STR2TIME:
- case O_TIME2STR:
- /* binary operation */
- clean_code(mpl, code->arg.arg.x);
- clean_code(mpl, code->arg.arg.y);
- break;
- case O_DOTS:
- case O_FORK:
- case O_SUBSTR3:
- /* ternary operation */
- clean_code(mpl, code->arg.arg.x);
- clean_code(mpl, code->arg.arg.y);
- clean_code(mpl, code->arg.arg.z);
- break;
- case O_MIN:
- case O_MAX:
- /* n-ary operation */
- for (e = code->arg.list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- break;
- case O_SUM:
- case O_PROD:
- case O_MINIMUM:
- case O_MAXIMUM:
- case O_FORALL:
- case O_EXISTS:
- case O_SETOF:
- case O_BUILD:
- /* iterated operation */
- clean_domain(mpl, code->arg.loop.domain);
- clean_code(mpl, code->arg.loop.x);
- break;
- default:
- xassert(code->op != code->op);
- }
- done: return;
- }
- #if 1 /* 11/II-2008 */
- /**********************************************************************/
- /* * * DATA TABLES * * */
- /**********************************************************************/
- int mpl_tab_num_args(TABDCA *dca)
- { /* returns the number of arguments */
- return dca->na;
- }
- const char *mpl_tab_get_arg(TABDCA *dca, int k)
- { /* returns pointer to k-th argument */
- xassert(1 <= k && k <= dca->na);
- return dca->arg[k];
- }
- int mpl_tab_num_flds(TABDCA *dca)
- { /* returns the number of fields */
- return dca->nf;
- }
- const char *mpl_tab_get_name(TABDCA *dca, int k)
- { /* returns pointer to name of k-th field */
- xassert(1 <= k && k <= dca->nf);
- return dca->name[k];
- }
- int mpl_tab_get_type(TABDCA *dca, int k)
- { /* returns type of k-th field */
- xassert(1 <= k && k <= dca->nf);
- return dca->type[k];
- }
- double mpl_tab_get_num(TABDCA *dca, int k)
- { /* returns numeric value of k-th field */
- xassert(1 <= k && k <= dca->nf);
- xassert(dca->type[k] == 'N');
- return dca->num[k];
- }
- const char *mpl_tab_get_str(TABDCA *dca, int k)
- { /* returns pointer to string value of k-th field */
- xassert(1 <= k && k <= dca->nf);
- xassert(dca->type[k] == 'S');
- xassert(dca->str[k] != NULL);
- return dca->str[k];
- }
- void mpl_tab_set_num(TABDCA *dca, int k, double num)
- { /* assign numeric value to k-th field */
- xassert(1 <= k && k <= dca->nf);
- xassert(dca->type[k] == '?');
- dca->type[k] = 'N';
- dca->num[k] = num;
- return;
- }
- void mpl_tab_set_str(TABDCA *dca, int k, const char *str)
- { /* assign string value to k-th field */
- xassert(1 <= k && k <= dca->nf);
- xassert(dca->type[k] == '?');
- xassert(strlen(str) <= MAX_LENGTH);
- xassert(dca->str[k] != NULL);
- dca->type[k] = 'S';
- strcpy(dca->str[k], str);
- return;
- }
- static int write_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- TABLE *tab = info;
- TABDCA *dca = mpl->dca;
- TABOUT *out;
- SYMBOL *sym;
- int k;
- char buf[MAX_LENGTH+1];
- /* evaluate field values */
- k = 0;
- for (out = tab->u.out.list; out != NULL; out = out->next)
- { k++;
- switch (out->code->type)
- { case A_NUMERIC:
- dca->type[k] = 'N';
- dca->num[k] = eval_numeric(mpl, out->code);
- dca->str[k][0] = '\0';
- break;
- case A_SYMBOLIC:
- sym = eval_symbolic(mpl, out->code);
- if (sym->str == NULL)
- { dca->type[k] = 'N';
- dca->num[k] = sym->num;
- dca->str[k][0] = '\0';
- }
- else
- { dca->type[k] = 'S';
- dca->num[k] = 0.0;
- fetch_string(mpl, sym->str, buf);
- strcpy(dca->str[k], buf);
- }
- delete_symbol(mpl, sym);
- break;
- default:
- xassert(out != out);
- }
- }
- /* write record to output table */
- mpl_tab_drv_write(mpl);
- return 0;
- }
- void execute_table(MPL *mpl, TABLE *tab)
- { /* execute table statement */
- TABARG *arg;
- TABFLD *fld;
- TABIN *in;
- TABOUT *out;
- TABDCA *dca;
- SET *set;
- int k;
- char buf[MAX_LENGTH+1];
- /* allocate table driver communication area */
- xassert(mpl->dca == NULL);
- mpl->dca = dca = xmalloc(sizeof(TABDCA));
- dca->id = 0;
- dca->link = NULL;
- dca->na = 0;
- dca->arg = NULL;
- dca->nf = 0;
- dca->name = NULL;
- dca->type = NULL;
- dca->num = NULL;
- dca->str = NULL;
- /* allocate arguments */
- xassert(dca->na == 0);
- for (arg = tab->arg; arg != NULL; arg = arg->next)
- dca->na++;
- dca->arg = xcalloc(1+dca->na, sizeof(char *));
- #if 1 /* 28/IX-2008 */
- for (k = 1; k <= dca->na; k++) dca->arg[k] = NULL;
- #endif
- /* evaluate argument values */
- k = 0;
- for (arg = tab->arg; arg != NULL; arg = arg->next)
- { SYMBOL *sym;
- k++;
- xassert(arg->code->type == A_SYMBOLIC);
- sym = eval_symbolic(mpl, arg->code);
- if (sym->str == NULL)
- sprintf(buf, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, buf);
- delete_symbol(mpl, sym);
- dca->arg[k] = xmalloc(strlen(buf)+1);
- strcpy(dca->arg[k], buf);
- }
- /* perform table input/output */
- switch (tab->type)
- { case A_INPUT: goto read_table;
- case A_OUTPUT: goto write_table;
- default: xassert(tab != tab);
- }
- read_table:
- /* read data from input table */
- /* add the only member to the control set and assign it empty
- elemental set */
- set = tab->u.in.set;
- if (set != NULL)
- { if (set->data)
- mpl_error(mpl, "%s already provided with data", set->name);
- xassert(set->array->head == NULL);
- add_member(mpl, set->array, NULL)->value.set =
- create_elemset(mpl, set->dimen);
- set->data = 1;
- }
- /* check parameters specified in the input list */
- for (in = tab->u.in.list; in != NULL; in = in->next)
- { if (in->par->data)
- mpl_error(mpl, "%s already provided with data", in->par->name);
- in->par->data = 1;
- }
- /* allocate and initialize fields */
- xassert(dca->nf == 0);
- for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
- dca->nf++;
- for (in = tab->u.in.list; in != NULL; in = in->next)
- dca->nf++;
- dca->name = xcalloc(1+dca->nf, sizeof(char *));
- dca->type = xcalloc(1+dca->nf, sizeof(int));
- dca->num = xcalloc(1+dca->nf, sizeof(double));
- dca->str = xcalloc(1+dca->nf, sizeof(char *));
- k = 0;
- for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
- { k++;
- dca->name[k] = fld->name;
- dca->type[k] = '?';
- dca->num[k] = 0.0;
- dca->str[k] = xmalloc(MAX_LENGTH+1);
- dca->str[k][0] = '\0';
- }
- for (in = tab->u.in.list; in != NULL; in = in->next)
- { k++;
- dca->name[k] = in->name;
- dca->type[k] = '?';
- dca->num[k] = 0.0;
- dca->str[k] = xmalloc(MAX_LENGTH+1);
- dca->str[k][0] = '\0';
- }
- /* open input table */
- mpl_tab_drv_open(mpl, 'R');
- /* read and process records */
- for (;;)
- { TUPLE *tup;
- /* reset field types */
- for (k = 1; k <= dca->nf; k++)
- dca->type[k] = '?';
- /* read next record */
- if (mpl_tab_drv_read(mpl)) break;
- /* all fields must be set by the driver */
- for (k = 1; k <= dca->nf; k++)
- { if (dca->type[k] == '?')
- mpl_error(mpl, "field %s missing in input table",
- dca->name[k]);
- }
- /* construct n-tuple */
- tup = create_tuple(mpl);
- k = 0;
- for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
- { k++;
- xassert(k <= dca->nf);
- switch (dca->type[k])
- { case 'N':
- tup = expand_tuple(mpl, tup, create_symbol_num(mpl,
- dca->num[k]));
- break;
- case 'S':
- xassert(strlen(dca->str[k]) <= MAX_LENGTH);
- tup = expand_tuple(mpl, tup, create_symbol_str(mpl,
- create_string(mpl, dca->str[k])));
- break;
- default:
- xassert(dca != dca);
- }
- }
- /* add n-tuple just read to the control set */
- if (tab->u.in.set != NULL)
- check_then_add(mpl, tab->u.in.set->array->head->value.set,
- copy_tuple(mpl, tup));
- /* assign values to the parameters in the input list */
- for (in = tab->u.in.list; in != NULL; in = in->next)
- { MEMBER *memb;
- k++;
- xassert(k <= dca->nf);
- /* there must be no member with the same n-tuple */
- if (find_member(mpl, in->par->array, tup) != NULL)
- mpl_error(mpl, "%s%s already defined", in->par->name,
- format_tuple(mpl, '[', tup));
- /* create new parameter member with given n-tuple */
- memb = add_member(mpl, in->par->array, copy_tuple(mpl, tup))
- ;
- /* assign value to the parameter member */
- switch (in->par->type)
- { case A_NUMERIC:
- case A_INTEGER:
- case A_BINARY:
- if (dca->type[k] != 'N')
- mpl_error(mpl, "%s requires numeric data",
- in->par->name);
- memb->value.num = dca->num[k];
- break;
- case A_SYMBOLIC:
- switch (dca->type[k])
- { case 'N':
- memb->value.sym = create_symbol_num(mpl,
- dca->num[k]);
- break;
- case 'S':
- xassert(strlen(dca->str[k]) <= MAX_LENGTH);
- memb->value.sym = create_symbol_str(mpl,
- create_string(mpl,dca->str[k]));
- break;
- default:
- xassert(dca != dca);
- }
- break;
- default:
- xassert(in != in);
- }
- }
- /* n-tuple is no more needed */
- delete_tuple(mpl, tup);
- }
- /* close input table */
- mpl_tab_drv_close(mpl);
- goto done;
- write_table:
- /* write data to output table */
- /* allocate and initialize fields */
- xassert(dca->nf == 0);
- for (out = tab->u.out.list; out != NULL; out = out->next)
- dca->nf++;
- dca->name = xcalloc(1+dca->nf, sizeof(char *));
- dca->type = xcalloc(1+dca->nf, sizeof(int));
- dca->num = xcalloc(1+dca->nf, sizeof(double));
- dca->str = xcalloc(1+dca->nf, sizeof(char *));
- k = 0;
- for (out = tab->u.out.list; out != NULL; out = out->next)
- { k++;
- dca->name[k] = out->name;
- dca->type[k] = '?';
- dca->num[k] = 0.0;
- dca->str[k] = xmalloc(MAX_LENGTH+1);
- dca->str[k][0] = '\0';
- }
- /* open output table */
- mpl_tab_drv_open(mpl, 'W');
- /* evaluate fields and write records */
- loop_within_domain(mpl, tab->u.out.domain, tab, write_func);
- /* close output table */
- mpl_tab_drv_close(mpl);
- done: /* free table driver communication area */
- free_dca(mpl);
- return;
- }
- void free_dca(MPL *mpl)
- { /* free table driver communucation area */
- TABDCA *dca = mpl->dca;
- int k;
- if (dca != NULL)
- { if (dca->link != NULL)
- mpl_tab_drv_close(mpl);
- if (dca->arg != NULL)
- { for (k = 1; k <= dca->na; k++)
- #if 1 /* 28/IX-2008 */
- if (dca->arg[k] != NULL)
- #endif
- xfree(dca->arg[k]);
- xfree(dca->arg);
- }
- if (dca->name != NULL) xfree(dca->name);
- if (dca->type != NULL) xfree(dca->type);
- if (dca->num != NULL) xfree(dca->num);
- if (dca->str != NULL)
- { for (k = 1; k <= dca->nf; k++)
- xfree(dca->str[k]);
- xfree(dca->str);
- }
- xfree(dca), mpl->dca = NULL;
- }
- return;
- }
- void clean_table(MPL *mpl, TABLE *tab)
- { /* clean table statement */
- TABARG *arg;
- TABOUT *out;
- /* clean string list */
- for (arg = tab->arg; arg != NULL; arg = arg->next)
- clean_code(mpl, arg->code);
- switch (tab->type)
- { case A_INPUT:
- break;
- case A_OUTPUT:
- /* clean subscript domain */
- clean_domain(mpl, tab->u.out.domain);
- /* clean output list */
- for (out = tab->u.out.list; out != NULL; out = out->next)
- clean_code(mpl, out->code);
- break;
- default:
- xassert(tab != tab);
- }
- return;
- }
- #endif
- /**********************************************************************/
- /* * * MODEL STATEMENTS * * */
- /**********************************************************************/
- /*----------------------------------------------------------------------
- -- execute_check - execute check statement.
- --
- -- This routine executes specified check statement. */
- static int check_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- CHECK *chk = (CHECK *)info;
- if (!eval_logical(mpl, chk->code))
- mpl_error(mpl, "check%s failed", format_tuple(mpl, '[',
- get_domain_tuple(mpl, chk->domain)));
- return 0;
- }
- void execute_check(MPL *mpl, CHECK *chk)
- { loop_within_domain(mpl, chk->domain, chk, check_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_check - clean check statement.
- --
- -- This routine cleans specified check statement that assumes deleting
- -- all stuff dynamically allocated on generating/postsolving phase. */
- void clean_check(MPL *mpl, CHECK *chk)
- { /* clean subscript domain */
- clean_domain(mpl, chk->domain);
- /* clean pseudo-code for computing predicate */
- clean_code(mpl, chk->code);
- return;
- }
- /*----------------------------------------------------------------------
- -- execute_display - execute display statement.
- --
- -- This routine executes specified display statement. */
- static void display_set(MPL *mpl, SET *set, MEMBER *memb)
- { /* display member of model set */
- ELEMSET *s = memb->value.set;
- MEMBER *m;
- write_text(mpl, "%s%s%s\n", set->name,
- format_tuple(mpl, '[', memb->tuple),
- s->head == NULL ? " is empty" : ":");
- for (m = s->head; m != NULL; m = m->next)
- write_text(mpl, " %s\n", format_tuple(mpl, '(', m->tuple));
- return;
- }
- static void display_par(MPL *mpl, PARAMETER *par, MEMBER *memb)
- { /* display member of model parameter */
- switch (par->type)
- { case A_NUMERIC:
- case A_INTEGER:
- case A_BINARY:
- write_text(mpl, "%s%s = %.*g\n", par->name,
- format_tuple(mpl, '[', memb->tuple),
- DBL_DIG, memb->value.num);
- break;
- case A_SYMBOLIC:
- write_text(mpl, "%s%s = %s\n", par->name,
- format_tuple(mpl, '[', memb->tuple),
- format_symbol(mpl, memb->value.sym));
- break;
- default:
- xassert(par != par);
- }
- return;
- }
- #if 1 /* 15/V-2010 */
- static void display_var(MPL *mpl, VARIABLE *var, MEMBER *memb,
- int suff)
- { /* display member of model variable */
- if (suff == DOT_NONE || suff == DOT_VAL)
- write_text(mpl, "%s%s.val = %.*g\n", var->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.var->prim);
- else if (suff == DOT_LB)
- write_text(mpl, "%s%s.lb = %.*g\n", var->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.var->var->lbnd == NULL ? -DBL_MAX :
- memb->value.var->lbnd);
- else if (suff == DOT_UB)
- write_text(mpl, "%s%s.ub = %.*g\n", var->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.var->var->ubnd == NULL ? +DBL_MAX :
- memb->value.var->ubnd);
- else if (suff == DOT_STATUS)
- write_text(mpl, "%s%s.status = %d\n", var->name, format_tuple
- (mpl, '[', memb->tuple), memb->value.var->stat);
- else if (suff == DOT_DUAL)
- write_text(mpl, "%s%s.dual = %.*g\n", var->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.var->dual);
- else
- xassert(suff != suff);
- return;
- }
- #endif
- #if 1 /* 15/V-2010 */
- static void display_con(MPL *mpl, CONSTRAINT *con, MEMBER *memb,
- int suff)
- { /* display member of model constraint */
- if (suff == DOT_NONE || suff == DOT_VAL)
- write_text(mpl, "%s%s.val = %.*g\n", con->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.con->prim);
- else if (suff == DOT_LB)
- write_text(mpl, "%s%s.lb = %.*g\n", con->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.con->con->lbnd == NULL ? -DBL_MAX :
- memb->value.con->lbnd);
- else if (suff == DOT_UB)
- write_text(mpl, "%s%s.ub = %.*g\n", con->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.con->con->ubnd == NULL ? +DBL_MAX :
- memb->value.con->ubnd);
- else if (suff == DOT_STATUS)
- write_text(mpl, "%s%s.status = %d\n", con->name, format_tuple
- (mpl, '[', memb->tuple), memb->value.con->stat);
- else if (suff == DOT_DUAL)
- write_text(mpl, "%s%s.dual = %.*g\n", con->name,
- format_tuple(mpl, '[', memb->tuple), DBL_DIG,
- memb->value.con->dual);
- else
- xassert(suff != suff);
- return;
- }
- #endif
- static void display_memb(MPL *mpl, CODE *code)
- { /* display member specified by pseudo-code */
- MEMBER memb;
- ARG_LIST *e;
- xassert(code->op == O_MEMNUM || code->op == O_MEMSYM
- || code->op == O_MEMSET || code->op == O_MEMVAR
- || code->op == O_MEMCON);
- memb.tuple = create_tuple(mpl);
- for (e = code->arg.par.list; e != NULL; e = e->next)
- memb.tuple = expand_tuple(mpl, memb.tuple, eval_symbolic(mpl,
- e->x));
- switch (code->op)
- { case O_MEMNUM:
- memb.value.num = eval_member_num(mpl, code->arg.par.par,
- memb.tuple);
- display_par(mpl, code->arg.par.par, &memb);
- break;
- case O_MEMSYM:
- memb.value.sym = eval_member_sym(mpl, code->arg.par.par,
- memb.tuple);
- display_par(mpl, code->arg.par.par, &memb);
- delete_symbol(mpl, memb.value.sym);
- break;
- case O_MEMSET:
- memb.value.set = eval_member_set(mpl, code->arg.set.set,
- memb.tuple);
- display_set(mpl, code->arg.set.set, &memb);
- break;
- case O_MEMVAR:
- memb.value.var = eval_member_var(mpl, code->arg.var.var,
- memb.tuple);
- display_var
- (mpl, code->arg.var.var, &memb, code->arg.var.suff);
- break;
- case O_MEMCON:
- memb.value.con = eval_member_con(mpl, code->arg.con.con,
- memb.tuple);
- display_con
- (mpl, code->arg.con.con, &memb, code->arg.con.suff);
- break;
- default:
- xassert(code != code);
- }
- delete_tuple(mpl, memb.tuple);
- return;
- }
- static void display_code(MPL *mpl, CODE *code)
- { /* display value of expression */
- switch (code->type)
- { case A_NUMERIC:
- /* numeric value */
- { double num;
- num = eval_numeric(mpl, code);
- write_text(mpl, "%.*g\n", DBL_DIG, num);
- }
- break;
- case A_SYMBOLIC:
- /* symbolic value */
- { SYMBOL *sym;
- sym = eval_symbolic(mpl, code);
- write_text(mpl, "%s\n", format_symbol(mpl, sym));
- delete_symbol(mpl, sym);
- }
- break;
- case A_LOGICAL:
- /* logical value */
- { int bit;
- bit = eval_logical(mpl, code);
- write_text(mpl, "%s\n", bit ? "true" : "false");
- }
- break;
- case A_TUPLE:
- /* n-tuple */
- { TUPLE *tuple;
- tuple = eval_tuple(mpl, code);
- write_text(mpl, "%s\n", format_tuple(mpl, '(', tuple));
- delete_tuple(mpl, tuple);
- }
- break;
- case A_ELEMSET:
- /* elemental set */
- { ELEMSET *set;
- MEMBER *memb;
- set = eval_elemset(mpl, code);
- if (set->head == 0)
- write_text(mpl, "set is empty\n");
- for (memb = set->head; memb != NULL; memb = memb->next)
- write_text(mpl, " %s\n", format_tuple(mpl, '(',
- memb->tuple));
- delete_elemset(mpl, set);
- }
- break;
- case A_FORMULA:
- /* linear form */
- { FORMULA *form, *term;
- form = eval_formula(mpl, code);
- if (form == NULL)
- write_text(mpl, "linear form is empty\n");
- for (term = form; term != NULL; term = term->next)
- { if (term->var == NULL)
- write_text(mpl, " %.*g\n", term->coef);
- else
- write_text(mpl, " %.*g %s%s\n", DBL_DIG,
- term->coef, term->var->var->name,
- format_tuple(mpl, '[', term->var->memb->tuple));
- }
- delete_formula(mpl, form);
- }
- break;
- default:
- xassert(code != code);
- }
- return;
- }
- static int display_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- DISPLAY *dpy = (DISPLAY *)info;
- DISPLAY1 *entry;
- for (entry = dpy->list; entry != NULL; entry = entry->next)
- { if (entry->type == A_INDEX)
- { /* dummy index */
- DOMAIN_SLOT *slot = entry->u.slot;
- write_text(mpl, "%s = %s\n", slot->name,
- format_symbol(mpl, slot->value));
- }
- else if (entry->type == A_SET)
- { /* model set */
- SET *set = entry->u.set;
- MEMBER *memb;
- if (set->assign != NULL)
- { /* the set has assignment expression; evaluate all its
- members over entire domain */
- eval_whole_set(mpl, set);
- }
- else
- { /* the set has no assignment expression; refer to its
- any existing member ignoring resultant value to check
- the data provided the data section */
- #if 1 /* 12/XII-2008 */
- if (set->gadget != NULL && set->data == 0)
- { /* initialize the set with data from a plain set */
- saturate_set(mpl, set);
- }
- #endif
- if (set->array->head != NULL)
- eval_member_set(mpl, set, set->array->head->tuple);
- }
- /* display all members of the set array */
- if (set->array->head == NULL)
- write_text(mpl, "%s has empty content\n", set->name);
- for (memb = set->array->head; memb != NULL; memb =
- memb->next) display_set(mpl, set, memb);
- }
- else if (entry->type == A_PARAMETER)
- { /* model parameter */
- PARAMETER *par = entry->u.par;
- MEMBER *memb;
- if (par->assign != NULL)
- { /* the parameter has an assignment expression; evaluate
- all its member over entire domain */
- eval_whole_par(mpl, par);
- }
- else
- { /* the parameter has no assignment expression; refer to
- its any existing member ignoring resultant value to
- check the data provided in the data section */
- if (par->array->head != NULL)
- { if (par->type != A_SYMBOLIC)
- eval_member_num(mpl, par, par->array->head->tuple);
- else
- delete_symbol(mpl, eval_member_sym(mpl, par,
- par->array->head->tuple));
- }
- }
- /* display all members of the parameter array */
- if (par->array->head == NULL)
- write_text(mpl, "%s has empty content\n", par->name);
- for (memb = par->array->head; memb != NULL; memb =
- memb->next) display_par(mpl, par, memb);
- }
- else if (entry->type == A_VARIABLE)
- { /* model variable */
- VARIABLE *var = entry->u.var;
- MEMBER *memb;
- xassert(mpl->flag_p);
- /* display all members of the variable array */
- if (var->array->head == NULL)
- write_text(mpl, "%s has empty content\n", var->name);
- for (memb = var->array->head; memb != NULL; memb =
- memb->next) display_var(mpl, var, memb, DOT_NONE);
- }
- else if (entry->type == A_CONSTRAINT)
- { /* model constraint */
- CONSTRAINT *con = entry->u.con;
- MEMBER *memb;
- xassert(mpl->flag_p);
- /* display all members of the constraint array */
- if (con->array->head == NULL)
- write_text(mpl, "%s has empty content\n", con->name);
- for (memb = con->array->head; memb != NULL; memb =
- memb->next) display_con(mpl, con, memb, DOT_NONE);
- }
- else if (entry->type == A_EXPRESSION)
- { /* expression */
- CODE *code = entry->u.code;
- if (code->op == O_MEMNUM || code->op == O_MEMSYM ||
- code->op == O_MEMSET || code->op == O_MEMVAR ||
- code->op == O_MEMCON)
- display_memb(mpl, code);
- else
- display_code(mpl, code);
- }
- else
- xassert(entry != entry);
- }
- return 0;
- }
- void execute_display(MPL *mpl, DISPLAY *dpy)
- { loop_within_domain(mpl, dpy->domain, dpy, display_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_display - clean display statement.
- --
- -- This routine cleans specified display statement that assumes deleting
- -- all stuff dynamically allocated on generating/postsolving phase. */
- void clean_display(MPL *mpl, DISPLAY *dpy)
- { DISPLAY1 *d;
- #if 0 /* 15/V-2010 */
- ARG_LIST *e;
- #endif
- /* clean subscript domain */
- clean_domain(mpl, dpy->domain);
- /* clean display list */
- for (d = dpy->list; d != NULL; d = d->next)
- { /* clean pseudo-code for computing expression */
- if (d->type == A_EXPRESSION)
- clean_code(mpl, d->u.code);
- #if 0 /* 15/V-2010 */
- /* clean pseudo-code for computing subscripts */
- for (e = d->list; e != NULL; e = e->next)
- clean_code(mpl, e->x);
- #endif
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- execute_printf - execute printf statement.
- --
- -- This routine executes specified printf statement. */
- #if 1 /* 14/VII-2006 */
- static void print_char(MPL *mpl, int c)
- { if (mpl->prt_fp == NULL)
- write_char(mpl, c);
- else
- xfputc(c, mpl->prt_fp);
- return;
- }
- static void print_text(MPL *mpl, char *fmt, ...)
- { va_list arg;
- char buf[OUTBUF_SIZE], *c;
- va_start(arg, fmt);
- vsprintf(buf, fmt, arg);
- xassert(strlen(buf) < sizeof(buf));
- va_end(arg);
- for (c = buf; *c != '\0'; c++) print_char(mpl, *c);
- return;
- }
- #endif
- static int printf_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- PRINTF *prt = (PRINTF *)info;
- PRINTF1 *entry;
- SYMBOL *sym;
- char fmt[MAX_LENGTH+1], *c, *from, save;
- /* evaluate format control string */
- sym = eval_symbolic(mpl, prt->fmt);
- if (sym->str == NULL)
- sprintf(fmt, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, fmt);
- delete_symbol(mpl, sym);
- /* scan format control string and perform formatting output */
- entry = prt->list;
- for (c = fmt; *c != '\0'; c++)
- { if (*c == '%')
- { /* scan format specifier */
- from = c++;
- if (*c == '%')
- { print_char(mpl, '%');
- continue;
- }
- if (entry == NULL) break;
- /* scan optional flags */
- while (*c == '-' || *c == '+' || *c == ' ' || *c == '#' ||
- *c == '0') c++;
- /* scan optional minimum field width */
- while (isdigit((unsigned char)*c)) c++;
- /* scan optional precision */
- if (*c == '.')
- { c++;
- while (isdigit((unsigned char)*c)) c++;
- }
- /* scan conversion specifier and perform formatting */
- save = *(c+1), *(c+1) = '\0';
- if (*c == 'd' || *c == 'i' || *c == 'e' || *c == 'E' ||
- *c == 'f' || *c == 'F' || *c == 'g' || *c == 'G')
- { /* the specifier requires numeric value */
- double value;
- xassert(entry != NULL);
- switch (entry->code->type)
- { case A_NUMERIC:
- value = eval_numeric(mpl, entry->code);
- break;
- case A_SYMBOLIC:
- sym = eval_symbolic(mpl, entry->code);
- if (sym->str != NULL)
- mpl_error(mpl, "cannot convert %s to floating-point"
- " number", format_symbol(mpl, sym));
- value = sym->num;
- delete_symbol(mpl, sym);
- break;
- case A_LOGICAL:
- if (eval_logical(mpl, entry->code))
- value = 1.0;
- else
- value = 0.0;
- break;
- default:
- xassert(entry != entry);
- }
- if (*c == 'd' || *c == 'i')
- { double int_max = (double)INT_MAX;
- if (!(-int_max <= value && value <= +int_max))
- mpl_error(mpl, "cannot convert %.*g to integer",
- DBL_DIG, value);
- print_text(mpl, from, (int)floor(value + 0.5));
- }
- else
- print_text(mpl, from, value);
- }
- else if (*c == 's')
- { /* the specifier requires symbolic value */
- char value[MAX_LENGTH+1];
- switch (entry->code->type)
- { case A_NUMERIC:
- sprintf(value, "%.*g", DBL_DIG, eval_numeric(mpl,
- entry->code));
- break;
- case A_LOGICAL:
- if (eval_logical(mpl, entry->code))
- strcpy(value, "T");
- else
- strcpy(value, "F");
- break;
- case A_SYMBOLIC:
- sym = eval_symbolic(mpl, entry->code);
- if (sym->str == NULL)
- sprintf(value, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, value);
- delete_symbol(mpl, sym);
- break;
- default:
- xassert(entry != entry);
- }
- print_text(mpl, from, value);
- }
- else
- mpl_error(mpl, "format specifier missing or invalid");
- *(c+1) = save;
- entry = entry->next;
- }
- else if (*c == '\\')
- { /* write some control character */
- c++;
- if (*c == 't')
- print_char(mpl, '\t');
- else if (*c == 'n')
- print_char(mpl, '\n');
- else
- print_char(mpl, *c);
- }
- else
- { /* write character without formatting */
- print_char(mpl, *c);
- }
- }
- return 0;
- }
- #if 0 /* 14/VII-2006 */
- void execute_printf(MPL *mpl, PRINTF *prt)
- { loop_within_domain(mpl, prt->domain, prt, printf_func);
- return;
- }
- #else
- void execute_printf(MPL *mpl, PRINTF *prt)
- { if (prt->fname == NULL)
- { /* switch to the standard output */
- if (mpl->prt_fp != NULL)
- { xfclose(mpl->prt_fp), mpl->prt_fp = NULL;
- xfree(mpl->prt_file), mpl->prt_file = NULL;
- }
- }
- else
- { /* evaluate file name string */
- SYMBOL *sym;
- char fname[MAX_LENGTH+1];
- sym = eval_symbolic(mpl, prt->fname);
- if (sym->str == NULL)
- sprintf(fname, "%.*g", DBL_DIG, sym->num);
- else
- fetch_string(mpl, sym->str, fname);
- delete_symbol(mpl, sym);
- /* close the current print file, if necessary */
- if (mpl->prt_fp != NULL &&
- (!prt->app || strcmp(mpl->prt_file, fname) != 0))
- { xfclose(mpl->prt_fp), mpl->prt_fp = NULL;
- xfree(mpl->prt_file), mpl->prt_file = NULL;
- }
- /* open the specified print file, if necessary */
- if (mpl->prt_fp == NULL)
- { mpl->prt_fp = xfopen(fname, prt->app ? "a" : "w");
- if (mpl->prt_fp == NULL)
- mpl_error(mpl, "unable to open `%s' for writing - %s",
- fname, xerrmsg());
- mpl->prt_file = xmalloc(strlen(fname)+1);
- strcpy(mpl->prt_file, fname);
- }
- }
- loop_within_domain(mpl, prt->domain, prt, printf_func);
- if (mpl->prt_fp != NULL)
- { xfflush(mpl->prt_fp);
- if (xferror(mpl->prt_fp))
- mpl_error(mpl, "writing error to `%s' - %s", mpl->prt_file,
- xerrmsg());
- }
- return;
- }
- #endif
- /*----------------------------------------------------------------------
- -- clean_printf - clean printf statement.
- --
- -- This routine cleans specified printf statement that assumes deleting
- -- all stuff dynamically allocated on generating/postsolving phase. */
- void clean_printf(MPL *mpl, PRINTF *prt)
- { PRINTF1 *p;
- /* clean subscript domain */
- clean_domain(mpl, prt->domain);
- /* clean pseudo-code for computing format string */
- clean_code(mpl, prt->fmt);
- /* clean printf list */
- for (p = prt->list; p != NULL; p = p->next)
- { /* clean pseudo-code for computing value to be printed */
- clean_code(mpl, p->code);
- }
- #if 1 /* 14/VII-2006 */
- /* clean pseudo-code for computing file name string */
- clean_code(mpl, prt->fname);
- #endif
- return;
- }
- /*----------------------------------------------------------------------
- -- execute_for - execute for statement.
- --
- -- This routine executes specified for statement. */
- static int for_func(MPL *mpl, void *info)
- { /* this is auxiliary routine to work within domain scope */
- FOR *fur = (FOR *)info;
- STATEMENT *stmt, *save;
- save = mpl->stmt;
- for (stmt = fur->list; stmt != NULL; stmt = stmt->next)
- execute_statement(mpl, stmt);
- mpl->stmt = save;
- return 0;
- }
- void execute_for(MPL *mpl, FOR *fur)
- { loop_within_domain(mpl, fur->domain, fur, for_func);
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_for - clean for statement.
- --
- -- This routine cleans specified for statement that assumes deleting all
- -- stuff dynamically allocated on generating/postsolving phase. */
- void clean_for(MPL *mpl, FOR *fur)
- { STATEMENT *stmt;
- /* clean subscript domain */
- clean_domain(mpl, fur->domain);
- /* clean all sub-statements */
- for (stmt = fur->list; stmt != NULL; stmt = stmt->next)
- clean_statement(mpl, stmt);
- return;
- }
- /*----------------------------------------------------------------------
- -- execute_statement - execute specified model statement.
- --
- -- This routine executes specified model statement. */
- void execute_statement(MPL *mpl, STATEMENT *stmt)
- { mpl->stmt = stmt;
- switch (stmt->type)
- { case A_SET:
- case A_PARAMETER:
- case A_VARIABLE:
- break;
- case A_CONSTRAINT:
- xprintf("Generating %s...\n", stmt->u.con->name);
- eval_whole_con(mpl, stmt->u.con);
- break;
- case A_TABLE:
- switch (stmt->u.tab->type)
- { case A_INPUT:
- xprintf("Reading %s...\n", stmt->u.tab->name);
- break;
- case A_OUTPUT:
- xprintf("Writing %s...\n", stmt->u.tab->name);
- break;
- default:
- xassert(stmt != stmt);
- }
- execute_table(mpl, stmt->u.tab);
- break;
- case A_SOLVE:
- break;
- case A_CHECK:
- xprintf("Checking (line %d)...\n", stmt->line);
- execute_check(mpl, stmt->u.chk);
- break;
- case A_DISPLAY:
- write_text(mpl, "Display statement at line %d\n",
- stmt->line);
- execute_display(mpl, stmt->u.dpy);
- break;
- case A_PRINTF:
- execute_printf(mpl, stmt->u.prt);
- break;
- case A_FOR:
- execute_for(mpl, stmt->u.fur);
- break;
- default:
- xassert(stmt != stmt);
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- clean_statement - clean specified model statement.
- --
- -- This routine cleans specified model statement that assumes deleting
- -- all stuff dynamically allocated on generating/postsolving phase. */
- void clean_statement(MPL *mpl, STATEMENT *stmt)
- { switch(stmt->type)
- { case A_SET:
- clean_set(mpl, stmt->u.set); break;
- case A_PARAMETER:
- clean_parameter(mpl, stmt->u.par); break;
- case A_VARIABLE:
- clean_variable(mpl, stmt->u.var); break;
- case A_CONSTRAINT:
- clean_constraint(mpl, stmt->u.con); break;
- #if 1 /* 11/II-2008 */
- case A_TABLE:
- clean_table(mpl, stmt->u.tab); break;
- #endif
- case A_SOLVE:
- break;
- case A_CHECK:
- clean_check(mpl, stmt->u.chk); break;
- case A_DISPLAY:
- clean_display(mpl, stmt->u.dpy); break;
- case A_PRINTF:
- clean_printf(mpl, stmt->u.prt); break;
- case A_FOR:
- clean_for(mpl, stmt->u.fur); break;
- default:
- xassert(stmt != stmt);
- }
- return;
- }
- /* eof */
|