123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- /* glpmat.h (linear algebra routines) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #ifndef GLPMAT_H
- #define GLPMAT_H
- /***********************************************************************
- * FULL-VECTOR STORAGE
- *
- * For a sparse vector x having n elements, ne of which are non-zero,
- * the full-vector storage format uses two arrays x_ind and x_vec, which
- * are set up as follows:
- *
- * x_ind is an integer array of length [1+ne]. Location x_ind[0] is
- * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
- * non-zero elements in vector x.
- *
- * x_vec is a floating-point array of length [1+n]. Location x_vec[0]
- * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric
- * values of ALL elements in vector x, including its zero elements.
- *
- * Let, for example, the following sparse vector x be given:
- *
- * (0, 1, 0, 0, 2, 3, 0, 4)
- *
- * Then the arrays are:
- *
- * x_ind = { X; 2, 5, 6, 8 }
- *
- * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 }
- *
- * COMPRESSED-VECTOR STORAGE
- *
- * For a sparse vector x having n elements, ne of which are non-zero,
- * the compressed-vector storage format uses two arrays x_ind and x_vec,
- * which are set up as follows:
- *
- * x_ind is an integer array of length [1+ne]. Location x_ind[0] is
- * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
- * non-zero elements in vector x.
- *
- * x_vec is a floating-point array of length [1+ne]. Location x_vec[0]
- * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric
- * values of corresponding non-zero elements in vector x.
- *
- * Let, for example, the following sparse vector x be given:
- *
- * (0, 1, 0, 0, 2, 3, 0, 4)
- *
- * Then the arrays are:
- *
- * x_ind = { X; 2, 5, 6, 8 }
- *
- * x_vec = { X; 1, 2, 3, 4 }
- *
- * STORAGE-BY-ROWS
- *
- * For a sparse matrix A, which has m rows, n columns, and ne non-zero
- * elements the storage-by-rows format uses three arrays A_ptr, A_ind,
- * and A_val, which are set up as follows:
- *
- * A_ptr is an integer array of length [1+m+1] also called "row pointer
- * array". It contains the relative starting positions of each row of A
- * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m,
- * indicates where row i begins in the arrays A_ind and A_val. If all
- * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location
- * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location
- * A_ptr[m+1] must contain ne+1 that indicates the position after the
- * last element in the arrays A_ind and A_val.
- *
- * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not
- * used, and locations A_ind[1], ..., A_ind[ne] contain column indices
- * of (non-zero) elements in matrix A.
- *
- * A_val is a floating-point array of length [1+ne]. Location A_val[0]
- * is not used, and locations A_val[1], ..., A_val[ne] contain numeric
- * values of non-zero elements in matrix A.
- *
- * Non-zero elements of matrix A are stored contiguously, and the rows
- * of matrix A are stored consecutively from 1 to m in the arrays A_ind
- * and A_val. The elements in each row of A may be stored in any order
- * in A_ind and A_val. Note that elements with duplicate column indices
- * are not allowed.
- *
- * Let, for example, the following sparse matrix A be given:
- *
- * | 11 . 13 . . . |
- * | 21 22 . 24 . . |
- * | . 32 33 . . . |
- * | . . 43 44 . 46 |
- * | . . . . . . |
- * | 61 62 . . . 66 |
- *
- * Then the arrays are:
- *
- * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 }
- *
- * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 }
- *
- * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 }
- *
- * PERMUTATION MATRICES
- *
- * Let P be a permutation matrix of the order n. It is represented as
- * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1,
- * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used.
- *
- * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then
- * P_per[i'] = i and P_per[n+i] = i'.
- *
- * References:
- *
- * 1. Gustavson F.G. Some basic techniques for solving sparse systems of
- * linear equations. In Rose and Willoughby (1972), pp. 41-52.
- *
- * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard.
- * University of Tennessee (2001). */
- #define check_fvs _glp_mat_check_fvs
- int check_fvs(int n, int nnz, int ind[], double vec[]);
- /* check sparse vector in full-vector storage format */
- #define check_pattern _glp_mat_check_pattern
- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
- /* check pattern of sparse matrix */
- #define transpose _glp_mat_transpose
- void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
- int AT_ptr[], int AT_ind[], double AT_val[]);
- /* transpose sparse matrix */
- #define adat_symbolic _glp_mat_adat_symbolic
- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
- int S_ptr[]);
- /* compute S = P*A*D*A'*P' (symbolic phase) */
- #define adat_numeric _glp_mat_adat_numeric
- void adat_numeric(int m, int n, int P_per[],
- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
- int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
- /* compute S = P*A*D*A'*P' (numeric phase) */
- #define min_degree _glp_mat_min_degree
- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
- /* minimum degree ordering */
- #define amd_order1 _glp_mat_amd_order1
- void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]);
- /* approximate minimum degree ordering (AMD) */
- #define symamd_ord _glp_mat_symamd_ord
- void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]);
- /* approximate minimum degree ordering (SYMAMD) */
- #define chol_symbolic _glp_mat_chol_symbolic
- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
- /* compute Cholesky factorization (symbolic phase) */
- #define chol_numeric _glp_mat_chol_numeric
- int chol_numeric(int n,
- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
- int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
- /* compute Cholesky factorization (numeric phase) */
- #define u_solve _glp_mat_u_solve
- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- double U_diag[], double x[]);
- /* solve upper triangular system U*x = b */
- #define ut_solve _glp_mat_ut_solve
- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- double U_diag[], double x[]);
- /* solve lower triangular system U'*x = b */
- #endif
- /* eof */
|