123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925 |
- /* glpmat.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpmat.h"
- #include "glpqmd.h"
- #include "amd.h"
- #include "colamd.h"
- /*----------------------------------------------------------------------
- -- check_fvs - check sparse vector in full-vector storage format.
- --
- -- SYNOPSIS
- --
- -- #include "glpmat.h"
- -- int check_fvs(int n, int nnz, int ind[], double vec[]);
- --
- -- DESCRIPTION
- --
- -- The routine check_fvs checks if a given vector of dimension n in
- -- full-vector storage format has correct representation.
- --
- -- RETURNS
- --
- -- The routine returns one of the following codes:
- --
- -- 0 - the vector is correct;
- -- 1 - the number of elements (n) is negative;
- -- 2 - the number of non-zero elements (nnz) is negative;
- -- 3 - some element index is out of range;
- -- 4 - some element index is duplicate;
- -- 5 - some non-zero element is out of pattern. */
- int check_fvs(int n, int nnz, int ind[], double vec[])
- { int i, t, ret, *flag = NULL;
- /* check the number of elements */
- if (n < 0)
- { ret = 1;
- goto done;
- }
- /* check the number of non-zero elements */
- if (nnz < 0)
- { ret = 2;
- goto done;
- }
- /* check vector indices */
- flag = xcalloc(1+n, sizeof(int));
- for (i = 1; i <= n; i++) flag[i] = 0;
- for (t = 1; t <= nnz; t++)
- { i = ind[t];
- if (!(1 <= i && i <= n))
- { ret = 3;
- goto done;
- }
- if (flag[i])
- { ret = 4;
- goto done;
- }
- flag[i] = 1;
- }
- /* check vector elements */
- for (i = 1; i <= n; i++)
- { if (!flag[i] && vec[i] != 0.0)
- { ret = 5;
- goto done;
- }
- }
- /* the vector is ok */
- ret = 0;
- done: if (flag != NULL) xfree(flag);
- return ret;
- }
- /*----------------------------------------------------------------------
- -- check_pattern - check pattern of sparse matrix.
- --
- -- SYNOPSIS
- --
- -- #include "glpmat.h"
- -- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
- --
- -- DESCRIPTION
- --
- -- The routine check_pattern checks the pattern of a given mxn matrix
- -- in storage-by-rows format.
- --
- -- RETURNS
- --
- -- The routine returns one of the following codes:
- --
- -- 0 - the pattern is correct;
- -- 1 - the number of rows (m) is negative;
- -- 2 - the number of columns (n) is negative;
- -- 3 - A_ptr[1] is not 1;
- -- 4 - some column index is out of range;
- -- 5 - some column indices are duplicate. */
- int check_pattern(int m, int n, int A_ptr[], int A_ind[])
- { int i, j, ptr, ret, *flag = NULL;
- /* check the number of rows */
- if (m < 0)
- { ret = 1;
- goto done;
- }
- /* check the number of columns */
- if (n < 0)
- { ret = 2;
- goto done;
- }
- /* check location A_ptr[1] */
- if (A_ptr[1] != 1)
- { ret = 3;
- goto done;
- }
- /* check row patterns */
- flag = xcalloc(1+n, sizeof(int));
- for (j = 1; j <= n; j++) flag[j] = 0;
- for (i = 1; i <= m; i++)
- { /* check pattern of row i */
- for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
- { j = A_ind[ptr];
- /* check column index */
- if (!(1 <= j && j <= n))
- { ret = 4;
- goto done;
- }
- /* check for duplication */
- if (flag[j])
- { ret = 5;
- goto done;
- }
- flag[j] = 1;
- }
- /* clear flags */
- for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
- { j = A_ind[ptr];
- flag[j] = 0;
- }
- }
- /* the pattern is ok */
- ret = 0;
- done: if (flag != NULL) xfree(flag);
- return ret;
- }
- /*----------------------------------------------------------------------
- -- transpose - transpose sparse matrix.
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- void transpose(int m, int n, int A_ptr[], int A_ind[],
- -- double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
- --
- -- *Description*
- --
- -- For a given mxn sparse matrix A the routine transpose builds a nxm
- -- sparse matrix A' which is a matrix transposed to A.
- --
- -- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
- -- be transposed in storage-by-rows format. The parameter A_val can be
- -- NULL, in which case numeric values are not copied. The arrays A_ptr,
- -- A_ind, and A_val are not changed on exit.
- --
- -- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
- -- but their content is ignored. On exit the routine stores a resultant
- -- nxm matrix A' in these arrays in storage-by-rows format. Note that
- -- if the parameter A_val is NULL, the array AT_val is not used.
- --
- -- The routine transpose has a side effect that elements in rows of the
- -- resultant matrix A' follow in ascending their column indices. */
- void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
- int AT_ptr[], int AT_ind[], double AT_val[])
- { int i, j, t, beg, end, pos, len;
- /* determine row lengths of resultant matrix */
- for (j = 1; j <= n; j++) AT_ptr[j] = 0;
- for (i = 1; i <= m; i++)
- { beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
- }
- /* set up row pointers of resultant matrix */
- pos = 1;
- for (j = 1; j <= n; j++)
- len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
- AT_ptr[n+1] = pos;
- /* build resultant matrix */
- for (i = m; i >= 1; i--)
- { beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++)
- { pos = --AT_ptr[A_ind[t]];
- AT_ind[pos] = i;
- if (A_val != NULL) AT_val[pos] = A_val[t];
- }
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
- -- int A_ind[], int S_ptr[]);
- --
- -- *Description*
- --
- -- The routine adat_symbolic implements the symbolic phase to compute
- -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
- -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
- -- transposed to A, P' is an inverse of P.
- --
- -- The parameter m is the number of rows in A and the order of P.
- --
- -- The parameter n is the number of columns in A and the order of D.
- --
- -- The array P_per specifies permutation matrix P. It is not changed on
- -- exit.
- --
- -- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
- -- not changed on exit.
- --
- -- On exit the routine stores the pattern of upper triangular part of
- -- matrix S without diagonal elements in the arrays S_ptr and S_ind in
- -- storage-by-rows format. The array S_ptr should be allocated on entry,
- -- however, its content is ignored. The array S_ind is allocated by the
- -- routine itself which returns a pointer to it.
- --
- -- *Returns*
- --
- -- The routine returns a pointer to the array S_ind. */
- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
- int S_ptr[])
- { int i, j, t, ii, jj, tt, k, size, len;
- int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
- /* build the pattern of A', which is a matrix transposed to A, to
- efficiently access A in column-wise manner */
- AT_ptr = xcalloc(1+n+1, sizeof(int));
- AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
- transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
- /* allocate the array S_ind */
- size = A_ptr[m+1] - 1;
- if (size < m) size = m;
- S_ind = xcalloc(1+size, sizeof(int));
- /* allocate and initialize working arrays */
- ind = xcalloc(1+m, sizeof(int));
- map = xcalloc(1+m, sizeof(int));
- for (jj = 1; jj <= m; jj++) map[jj] = 0;
- /* compute pattern of S; note that symbolically S = B*B', where
- B = P*A, B' is matrix transposed to B */
- S_ptr[1] = 1;
- for (ii = 1; ii <= m; ii++)
- { /* compute pattern of ii-th row of S */
- len = 0;
- i = P_per[ii]; /* i-th row of A = ii-th row of B */
- for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
- { k = A_ind[t];
- /* walk through k-th column of A */
- for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
- { j = AT_ind[tt];
- jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
- /* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
- if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
- }
- }
- /* now (ind) is pattern of ii-th row of S */
- S_ptr[ii+1] = S_ptr[ii] + len;
- /* at least (S_ptr[ii+1] - 1) locations should be available in
- the array S_ind */
- if (S_ptr[ii+1] - 1 > size)
- { temp = S_ind;
- size += size;
- S_ind = xcalloc(1+size, sizeof(int));
- memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
- xfree(temp);
- }
- xassert(S_ptr[ii+1] - 1 <= size);
- /* (ii-th row of S) := (ind) */
- memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
- /* clear the row pattern map */
- for (t = 1; t <= len; t++) map[ind[t]] = 0;
- }
- /* free working arrays */
- xfree(AT_ptr);
- xfree(AT_ind);
- xfree(ind);
- xfree(map);
- /* reallocate the array S_ind to free unused locations */
- temp = S_ind;
- size = S_ptr[m+1] - 1;
- S_ind = xcalloc(1+size, sizeof(int));
- memcpy(&S_ind[1], &temp[1], size * sizeof(int));
- xfree(temp);
- return S_ind;
- }
- /*----------------------------------------------------------------------
- -- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- void adat_numeric(int m, int n, int P_per[],
- -- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
- -- int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
- --
- -- *Description*
- --
- -- The routine adat_numeric implements the numeric phase to compute
- -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
- -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
- -- transposed to A, P' is an inverse of P.
- --
- -- The parameter m is the number of rows in A and the order of P.
- --
- -- The parameter n is the number of columns in A and the order of D.
- --
- -- The matrix P is specified in the array P_per, which is not changed
- -- on exit.
- --
- -- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
- -- storage-by-rows format. These arrays are not changed on exit.
- --
- -- Diagonal elements of the matrix D are specified in the array D_diag,
- -- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
- -- The array D_diag is not changed on exit.
- --
- -- The pattern of the upper triangular part of the matrix S without
- -- diagonal elements (previously computed by the routine adat_symbolic)
- -- is specified in the arrays S_ptr and S_ind, which are not changed on
- -- exit. Numeric values of non-diagonal elements of S are stored in
- -- corresponding locations of the array S_val, and values of diagonal
- -- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
- void adat_numeric(int m, int n, int P_per[],
- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
- int S_ptr[], int S_ind[], double S_val[], double S_diag[])
- { int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
- double sum, *work;
- work = xcalloc(1+n, sizeof(double));
- for (j = 1; j <= n; j++) work[j] = 0.0;
- /* compute S = B*D*B', where B = P*A, B' is a matrix transposed
- to B */
- for (ii = 1; ii <= m; ii++)
- { i = P_per[ii]; /* i-th row of A = ii-th row of B */
- /* (work) := (i-th row of A) */
- beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++)
- work[A_ind[t]] = A_val[t];
- /* compute ii-th row of S */
- beg = S_ptr[ii], end = S_ptr[ii+1];
- for (t = beg; t < end; t++)
- { jj = S_ind[t];
- j = P_per[jj]; /* j-th row of A = jj-th row of B */
- /* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
- sum = 0.0;
- beg1 = A_ptr[j], end1 = A_ptr[j+1];
- for (tt = beg1; tt < end1; tt++)
- { k = A_ind[tt];
- sum += work[k] * D_diag[k] * A_val[tt];
- }
- S_val[t] = sum;
- }
- /* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
- sum = 0.0;
- beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++)
- { k = A_ind[t];
- sum += A_val[t] * D_diag[k] * A_val[t];
- work[k] = 0.0;
- }
- S_diag[ii] = sum;
- }
- xfree(work);
- return;
- }
- /*----------------------------------------------------------------------
- -- min_degree - minimum degree ordering.
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
- --
- -- *Description*
- --
- -- The routine min_degree uses the minimum degree ordering algorithm
- -- to find a permutation matrix P for a given sparse symmetric positive
- -- matrix A which minimizes the number of non-zeros in upper triangular
- -- factor U for Cholesky factorization P*A*P' = U'*U.
- --
- -- The parameter n is the order of matrices A and P.
- --
- -- The pattern of the given matrix A is specified on entry in the arrays
- -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
- -- part without diagonal elements (which all are assumed to be non-zero)
- -- should be specified as if A were upper triangular. The arrays A_ptr
- -- and A_ind are not changed on exit.
- --
- -- The permutation matrix P is stored by the routine in the array P_per
- -- on exit.
- --
- -- *Algorithm*
- --
- -- The routine min_degree is based on some subroutines from the package
- -- SPARSPAK (see comments in the module glpqmd). */
- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
- { int i, j, ne, t, pos, len;
- int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
- *qlink, nofsub;
- /* determine number of non-zeros in complete pattern */
- ne = A_ptr[n+1] - 1;
- ne += ne;
- /* allocate working arrays */
- xadj = xcalloc(1+n+1, sizeof(int));
- adjncy = xcalloc(1+ne, sizeof(int));
- deg = xcalloc(1+n, sizeof(int));
- marker = xcalloc(1+n, sizeof(int));
- rchset = xcalloc(1+n, sizeof(int));
- nbrhd = xcalloc(1+n, sizeof(int));
- qsize = xcalloc(1+n, sizeof(int));
- qlink = xcalloc(1+n, sizeof(int));
- /* determine row lengths in complete pattern */
- for (i = 1; i <= n; i++) xadj[i] = 0;
- for (i = 1; i <= n; i++)
- { for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
- { j = A_ind[t];
- xassert(i < j && j <= n);
- xadj[i]++, xadj[j]++;
- }
- }
- /* set up row pointers for complete pattern */
- pos = 1;
- for (i = 1; i <= n; i++)
- len = xadj[i], pos += len, xadj[i] = pos;
- xadj[n+1] = pos;
- xassert(pos - 1 == ne);
- /* construct complete pattern */
- for (i = 1; i <= n; i++)
- { for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
- { j = A_ind[t];
- adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
- }
- }
- /* call the main minimimum degree ordering routine */
- genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
- nbrhd, qsize, qlink, &nofsub);
- /* make sure that permutation matrix P is correct */
- for (i = 1; i <= n; i++)
- { j = P_per[i];
- xassert(1 <= j && j <= n);
- xassert(P_per[n+j] == i);
- }
- /* free working arrays */
- xfree(xadj);
- xfree(adjncy);
- xfree(deg);
- xfree(marker);
- xfree(rchset);
- xfree(nbrhd);
- xfree(qsize);
- xfree(qlink);
- return;
- }
- /**********************************************************************/
- void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
- { /* approximate minimum degree ordering (AMD) */
- int k, ret;
- double Control[AMD_CONTROL], Info[AMD_INFO];
- /* get the default parameters */
- amd_defaults(Control);
- #if 0
- /* and print them */
- amd_control(Control);
- #endif
- /* make all indices 0-based */
- for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
- for (k = 1; k <= n+1; k++) A_ptr[k]--;
- /* call the ordering routine */
- ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
- ;
- #if 0
- amd_info(Info);
- #endif
- xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
- /* retsore 1-based indices */
- for (k = 1; k <= n+1; k++) A_ptr[k]++;
- for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
- /* patch up permutation matrix */
- memset(&P_per[n+1], 0, n * sizeof(int));
- for (k = 1; k <= n; k++)
- { P_per[k]++;
- xassert(1 <= P_per[k] && P_per[k] <= n);
- xassert(P_per[n+P_per[k]] == 0);
- P_per[n+P_per[k]] = k;
- }
- return;
- }
- /**********************************************************************/
- static void *allocate(size_t n, size_t size)
- { void *ptr;
- ptr = xcalloc(n, size);
- memset(ptr, 0, n * size);
- return ptr;
- }
- static void release(void *ptr)
- { xfree(ptr);
- return;
- }
- void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
- { /* approximate minimum degree ordering (SYMAMD) */
- int k, ok;
- int stats[COLAMD_STATS];
- /* make all indices 0-based */
- for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
- for (k = 1; k <= n+1; k++) A_ptr[k]--;
- /* call the ordering routine */
- ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
- allocate, release);
- #if 0
- symamd_report(stats);
- #endif
- xassert(ok);
- /* restore 1-based indices */
- for (k = 1; k <= n+1; k++) A_ptr[k]++;
- for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
- /* patch up permutation matrix */
- memset(&P_per[n+1], 0, n * sizeof(int));
- for (k = 1; k <= n; k++)
- { P_per[k]++;
- xassert(1 <= P_per[k] && P_per[k] <= n);
- xassert(P_per[n+P_per[k]] == 0);
- P_per[n+P_per[k]] = k;
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- chol_symbolic - compute Cholesky factorization (symbolic phase).
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
- --
- -- *Description*
- --
- -- The routine chol_symbolic implements the symbolic phase of Cholesky
- -- factorization A = U'*U, where A is a given sparse symmetric positive
- -- definite matrix, U is a resultant upper triangular factor, U' is a
- -- matrix transposed to U.
- --
- -- The parameter n is the order of matrices A and U.
- --
- -- The pattern of the given matrix A is specified on entry in the arrays
- -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
- -- part without diagonal elements (which all are assumed to be non-zero)
- -- should be specified as if A were upper triangular. The arrays A_ptr
- -- and A_ind are not changed on exit.
- --
- -- The pattern of the matrix U without diagonal elements (which all are
- -- assumed to be non-zero) is stored on exit from the routine in the
- -- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
- -- should be allocated on entry, however, its content is ignored. The
- -- array U_ind is allocated by the routine which returns a pointer to it
- -- on exit.
- --
- -- *Returns*
- --
- -- The routine returns a pointer to the array U_ind.
- --
- -- *Method*
- --
- -- The routine chol_symbolic computes the pattern of the matrix U in a
- -- row-wise manner. No pivoting is used.
- --
- -- It is known that to compute the pattern of row k of the matrix U we
- -- need to merge the pattern of row k of the matrix A and the patterns
- -- of each row i of U, where u[i,k] is non-zero (these rows are already
- -- computed and placed above row k).
- --
- -- However, to reduce the number of rows to be merged the routine uses
- -- an advanced algorithm proposed in:
- --
- -- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
- -- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
- --
- -- The authors of the cited paper show that we have the same result if
- -- we merge row k of the matrix A and such rows of the matrix U (among
- -- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
- -- placed in k-th column. This feature signficantly reduces the number
- -- of rows to be merged, especially on the final steps, where rows of
- -- the matrix U become quite dense.
- --
- -- To determine rows, which should be merged on k-th step, for a fixed
- -- time the routine uses linked lists of row numbers of the matrix U.
- -- Location head[k] contains the number of a first row, whose leftmost
- -- non-diagonal non-zero element is placed in column k, and location
- -- next[i] contains the number of a next row with the same property as
- -- row i. */
- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
- { int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
- *ind, *map, *temp;
- /* initially we assume that on computing the pattern of U fill-in
- will double the number of non-zeros in A */
- size = A_ptr[n+1] - 1;
- if (size < n) size = n;
- size += size;
- U_ind = xcalloc(1+size, sizeof(int));
- /* allocate and initialize working arrays */
- head = xcalloc(1+n, sizeof(int));
- for (i = 1; i <= n; i++) head[i] = 0;
- next = xcalloc(1+n, sizeof(int));
- ind = xcalloc(1+n, sizeof(int));
- map = xcalloc(1+n, sizeof(int));
- for (j = 1; j <= n; j++) map[j] = 0;
- /* compute the pattern of matrix U */
- U_ptr[1] = 1;
- for (k = 1; k <= n; k++)
- { /* compute the pattern of k-th row of U, which is the union of
- k-th row of A and those rows of U (among 1, ..., k-1) whose
- leftmost non-diagonal non-zero is placed in k-th column */
- /* (ind) := (k-th row of A) */
- len = A_ptr[k+1] - A_ptr[k];
- memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
- for (t = 1; t <= len; t++)
- { j = ind[t];
- xassert(k < j && j <= n);
- map[j] = 1;
- }
- /* walk through rows of U whose leftmost non-diagonal non-zero
- is placed in k-th column */
- for (i = head[k]; i != 0; i = next[i])
- { /* (ind) := (ind) union (i-th row of U) */
- beg = U_ptr[i], end = U_ptr[i+1];
- for (t = beg; t < end; t++)
- { j = U_ind[t];
- if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
- }
- }
- /* now (ind) is the pattern of k-th row of U */
- U_ptr[k+1] = U_ptr[k] + len;
- /* at least (U_ptr[k+1] - 1) locations should be available in
- the array U_ind */
- if (U_ptr[k+1] - 1 > size)
- { temp = U_ind;
- size += size;
- U_ind = xcalloc(1+size, sizeof(int));
- memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
- xfree(temp);
- }
- xassert(U_ptr[k+1] - 1 <= size);
- /* (k-th row of U) := (ind) */
- memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
- /* determine column index of leftmost non-diagonal non-zero in
- k-th row of U and clear the row pattern map */
- min_j = n + 1;
- for (t = 1; t <= len; t++)
- { j = ind[t], map[j] = 0;
- if (min_j > j) min_j = j;
- }
- /* include k-th row into corresponding linked list */
- if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
- }
- /* free working arrays */
- xfree(head);
- xfree(next);
- xfree(ind);
- xfree(map);
- /* reallocate the array U_ind to free unused locations */
- temp = U_ind;
- size = U_ptr[n+1] - 1;
- U_ind = xcalloc(1+size, sizeof(int));
- memcpy(&U_ind[1], &temp[1], size * sizeof(int));
- xfree(temp);
- return U_ind;
- }
- /*----------------------------------------------------------------------
- -- chol_numeric - compute Cholesky factorization (numeric phase).
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- int chol_numeric(int n,
- -- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
- -- int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
- --
- -- *Description*
- --
- -- The routine chol_symbolic implements the numeric phase of Cholesky
- -- factorization A = U'*U, where A is a given sparse symmetric positive
- -- definite matrix, U is a resultant upper triangular factor, U' is a
- -- matrix transposed to U.
- --
- -- The parameter n is the order of matrices A and U.
- --
- -- Upper triangular part of the matrix A without diagonal elements is
- -- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
- -- format. Diagonal elements of A are specified in the array A_diag,
- -- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
- -- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
- --
- -- The pattern of the matrix U without diagonal elements (previously
- -- computed with the routine chol_symbolic) is specified in the arrays
- -- U_ptr and U_ind, which are not changed on exit. Numeric values of
- -- non-diagonal elements of U are stored in corresponding locations of
- -- the array U_val, and values of diagonal elements of U are stored in
- -- locations U_diag[1], ..., U_diag[n].
- --
- -- *Returns*
- --
- -- The routine returns the number of non-positive diagonal elements of
- -- the matrix U which have been replaced by a huge positive number (see
- -- the method description below). Zero return code means the matrix A
- -- has been successfully factorized.
- --
- -- *Method*
- --
- -- The routine chol_numeric computes the matrix U in a row-wise manner
- -- using standard gaussian elimination technique. No pivoting is used.
- --
- -- Initially the routine sets U = A, and before k-th elimination step
- -- the matrix U is the following:
- --
- -- 1 k n
- -- 1 x x x x x x x x x x
- -- . x x x x x x x x x
- -- . . x x x x x x x x
- -- . . . x x x x x x x
- -- k . . . . * * * * * *
- -- . . . . * * * * * *
- -- . . . . * * * * * *
- -- . . . . * * * * * *
- -- . . . . * * * * * *
- -- n . . . . * * * * * *
- --
- -- where 'x' are elements of already computed rows, '*' are elements of
- -- the active submatrix. (Note that the lower triangular part of the
- -- active submatrix being symmetric is not stored and diagonal elements
- -- are stored separately in the array U_diag.)
- --
- -- The matrix A is assumed to be positive definite. However, if it is
- -- close to semi-definite, on some elimination step a pivot u[k,k] may
- -- happen to be non-positive due to round-off errors. In this case the
- -- routine uses a technique proposed in:
- --
- -- S.J.Wright. The Cholesky factorization in interior-point and barrier
- -- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
- -- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
- --
- -- The routine just replaces non-positive u[k,k] by a huge positive
- -- number. This involves non-diagonal elements in k-th row of U to be
- -- close to zero that, in turn, involves k-th component of a solution
- -- vector to be close to zero. Note, however, that this technique works
- -- only if the system A*x = b is consistent. */
- int chol_numeric(int n,
- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
- int U_ptr[], int U_ind[], double U_val[], double U_diag[])
- { int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
- double ukk, uki, *work;
- work = xcalloc(1+n, sizeof(double));
- for (j = 1; j <= n; j++) work[j] = 0.0;
- /* U := (upper triangle of A) */
- /* note that the upper traingle of A is a subset of U */
- for (i = 1; i <= n; i++)
- { beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++)
- j = A_ind[t], work[j] = A_val[t];
- beg = U_ptr[i], end = U_ptr[i+1];
- for (t = beg; t < end; t++)
- j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
- U_diag[i] = A_diag[i];
- }
- /* main elimination loop */
- for (k = 1; k <= n; k++)
- { /* transform k-th row of U */
- ukk = U_diag[k];
- if (ukk > 0.0)
- U_diag[k] = ukk = sqrt(ukk);
- else
- U_diag[k] = ukk = DBL_MAX, count++;
- /* (work) := (transformed k-th row) */
- beg = U_ptr[k], end = U_ptr[k+1];
- for (t = beg; t < end; t++)
- work[U_ind[t]] = (U_val[t] /= ukk);
- /* transform other rows of U */
- for (t = beg; t < end; t++)
- { i = U_ind[t];
- xassert(i > k);
- /* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
- uki = work[i];
- beg1 = U_ptr[i], end1 = U_ptr[i+1];
- for (t1 = beg1; t1 < end1; t1++)
- U_val[t1] -= uki * work[U_ind[t1]];
- U_diag[i] -= uki * uki;
- }
- /* (work) := 0 */
- for (t = beg; t < end; t++)
- work[U_ind[t]] = 0.0;
- }
- xfree(work);
- return count;
- }
- /*----------------------------------------------------------------------
- -- u_solve - solve upper triangular system U*x = b.
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- -- double U_diag[], double x[]);
- --
- -- *Description*
- --
- -- The routine u_solve solves an linear system U*x = b, where U is an
- -- upper triangular matrix.
- --
- -- The parameter n is the order of matrix U.
- --
- -- The matrix U without diagonal elements is specified in the arrays
- -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
- -- of U are specified in the array U_diag, where U_diag[0] is not used,
- -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
- -- changed on exit.
- --
- -- The right-hand side vector b is specified on entry in the array x,
- -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
- -- the routine stores computed components of the vector of unknowns x
- -- in the array x in the same manner. */
- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- double U_diag[], double x[])
- { int i, t, beg, end;
- double temp;
- for (i = n; i >= 1; i--)
- { temp = x[i];
- beg = U_ptr[i], end = U_ptr[i+1];
- for (t = beg; t < end; t++)
- temp -= U_val[t] * x[U_ind[t]];
- xassert(U_diag[i] != 0.0);
- x[i] = temp / U_diag[i];
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- ut_solve - solve lower triangular system U'*x = b.
- --
- -- *Synopsis*
- --
- -- #include "glpmat.h"
- -- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- -- double U_diag[], double x[]);
- --
- -- *Description*
- --
- -- The routine ut_solve solves an linear system U'*x = b, where U is a
- -- matrix transposed to an upper triangular matrix.
- --
- -- The parameter n is the order of matrix U.
- --
- -- The matrix U without diagonal elements is specified in the arrays
- -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
- -- of U are specified in the array U_diag, where U_diag[0] is not used,
- -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
- -- changed on exit.
- --
- -- The right-hand side vector b is specified on entry in the array x,
- -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
- -- the routine stores computed components of the vector of unknowns x
- -- in the array x in the same manner. */
- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
- double U_diag[], double x[])
- { int i, t, beg, end;
- double temp;
- for (i = 1; i <= n; i++)
- { xassert(U_diag[i] != 0.0);
- temp = (x[i] /= U_diag[i]);
- if (temp == 0.0) continue;
- beg = U_ptr[i], end = U_ptr[i+1];
- for (t = beg; t < end; t++)
- x[U_ind[t]] -= U_val[t] * temp;
- }
- return;
- }
- /* eof */
|