123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029 |
- /* glplux.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glplux.h"
- #define xfault xerror
- #define dmp_create_poolx(size) dmp_create_pool()
- /*----------------------------------------------------------------------
- // lux_create - create LU-factorization.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // LUX *lux_create(int n);
- //
- // DESCRIPTION
- //
- // The routine lux_create creates LU-factorization data structure for
- // a matrix of the order n. Initially the factorization corresponds to
- // the unity matrix (F = V = P = Q = I, so A = I).
- //
- // RETURNS
- //
- // The routine returns a pointer to the created LU-factorization data
- // structure, which represents the unity matrix of the order n. */
- LUX *lux_create(int n)
- { LUX *lux;
- int k;
- if (n < 1)
- xfault("lux_create: n = %d; invalid parameter\n", n);
- lux = xmalloc(sizeof(LUX));
- lux->n = n;
- lux->pool = dmp_create_poolx(sizeof(LUXELM));
- lux->F_row = xcalloc(1+n, sizeof(LUXELM *));
- lux->F_col = xcalloc(1+n, sizeof(LUXELM *));
- lux->V_piv = xcalloc(1+n, sizeof(mpq_t));
- lux->V_row = xcalloc(1+n, sizeof(LUXELM *));
- lux->V_col = xcalloc(1+n, sizeof(LUXELM *));
- lux->P_row = xcalloc(1+n, sizeof(int));
- lux->P_col = xcalloc(1+n, sizeof(int));
- lux->Q_row = xcalloc(1+n, sizeof(int));
- lux->Q_col = xcalloc(1+n, sizeof(int));
- for (k = 1; k <= n; k++)
- { lux->F_row[k] = lux->F_col[k] = NULL;
- mpq_init(lux->V_piv[k]);
- mpq_set_si(lux->V_piv[k], 1, 1);
- lux->V_row[k] = lux->V_col[k] = NULL;
- lux->P_row[k] = lux->P_col[k] = k;
- lux->Q_row[k] = lux->Q_col[k] = k;
- }
- lux->rank = n;
- return lux;
- }
- /*----------------------------------------------------------------------
- // initialize - initialize LU-factorization data structures.
- //
- // This routine initializes data structures for subsequent computing
- // the LU-factorization of a given matrix A, which is specified by the
- // formal routine col. On exit V = A and F = P = Q = I, where I is the
- // unity matrix. */
- static void initialize(LUX *lux, int (*col)(void *info, int j,
- int ind[], mpq_t val[]), void *info, LUXWKA *wka)
- { int n = lux->n;
- DMP *pool = lux->pool;
- LUXELM **F_row = lux->F_row;
- LUXELM **F_col = lux->F_col;
- mpq_t *V_piv = lux->V_piv;
- LUXELM **V_row = lux->V_row;
- LUXELM **V_col = lux->V_col;
- int *P_row = lux->P_row;
- int *P_col = lux->P_col;
- int *Q_row = lux->Q_row;
- int *Q_col = lux->Q_col;
- int *R_len = wka->R_len;
- int *R_head = wka->R_head;
- int *R_prev = wka->R_prev;
- int *R_next = wka->R_next;
- int *C_len = wka->C_len;
- int *C_head = wka->C_head;
- int *C_prev = wka->C_prev;
- int *C_next = wka->C_next;
- LUXELM *fij, *vij;
- int i, j, k, len, *ind;
- mpq_t *val;
- /* F := I */
- for (i = 1; i <= n; i++)
- { while (F_row[i] != NULL)
- { fij = F_row[i], F_row[i] = fij->r_next;
- mpq_clear(fij->val);
- dmp_free_atom(pool, fij, sizeof(LUXELM));
- }
- }
- for (j = 1; j <= n; j++) F_col[j] = NULL;
- /* V := 0 */
- for (k = 1; k <= n; k++) mpq_set_si(V_piv[k], 0, 1);
- for (i = 1; i <= n; i++)
- { while (V_row[i] != NULL)
- { vij = V_row[i], V_row[i] = vij->r_next;
- mpq_clear(vij->val);
- dmp_free_atom(pool, vij, sizeof(LUXELM));
- }
- }
- for (j = 1; j <= n; j++) V_col[j] = NULL;
- /* V := A */
- ind = xcalloc(1+n, sizeof(int));
- val = xcalloc(1+n, sizeof(mpq_t));
- for (k = 1; k <= n; k++) mpq_init(val[k]);
- for (j = 1; j <= n; j++)
- { /* obtain j-th column of matrix A */
- len = col(info, j, ind, val);
- if (!(0 <= len && len <= n))
- xfault("lux_decomp: j = %d: len = %d; invalid column length"
- "\n", j, len);
- /* copy elements of j-th column to matrix V */
- for (k = 1; k <= len; k++)
- { /* get row index of a[i,j] */
- i = ind[k];
- if (!(1 <= i && i <= n))
- xfault("lux_decomp: j = %d: i = %d; row index out of ran"
- "ge\n", j, i);
- /* check for duplicate indices */
- if (V_row[i] != NULL && V_row[i]->j == j)
- xfault("lux_decomp: j = %d: i = %d; duplicate row indice"
- "s not allowed\n", j, i);
- /* check for zero value */
- if (mpq_sgn(val[k]) == 0)
- xfault("lux_decomp: j = %d: i = %d; zero elements not al"
- "lowed\n", j, i);
- /* add new element v[i,j] = a[i,j] to V */
- vij = dmp_get_atom(pool, sizeof(LUXELM));
- vij->i = i, vij->j = j;
- mpq_init(vij->val);
- mpq_set(vij->val, val[k]);
- vij->r_prev = NULL;
- vij->r_next = V_row[i];
- vij->c_prev = NULL;
- vij->c_next = V_col[j];
- if (vij->r_next != NULL) vij->r_next->r_prev = vij;
- if (vij->c_next != NULL) vij->c_next->c_prev = vij;
- V_row[i] = V_col[j] = vij;
- }
- }
- xfree(ind);
- for (k = 1; k <= n; k++) mpq_clear(val[k]);
- xfree(val);
- /* P := Q := I */
- for (k = 1; k <= n; k++)
- P_row[k] = P_col[k] = Q_row[k] = Q_col[k] = k;
- /* the rank of A and V is not determined yet */
- lux->rank = -1;
- /* initially the entire matrix V is active */
- /* determine its row lengths */
- for (i = 1; i <= n; i++)
- { len = 0;
- for (vij = V_row[i]; vij != NULL; vij = vij->r_next) len++;
- R_len[i] = len;
- }
- /* build linked lists of active rows */
- for (len = 0; len <= n; len++) R_head[len] = 0;
- for (i = 1; i <= n; i++)
- { len = R_len[i];
- R_prev[i] = 0;
- R_next[i] = R_head[len];
- if (R_next[i] != 0) R_prev[R_next[i]] = i;
- R_head[len] = i;
- }
- /* determine its column lengths */
- for (j = 1; j <= n; j++)
- { len = 0;
- for (vij = V_col[j]; vij != NULL; vij = vij->c_next) len++;
- C_len[j] = len;
- }
- /* build linked lists of active columns */
- for (len = 0; len <= n; len++) C_head[len] = 0;
- for (j = 1; j <= n; j++)
- { len = C_len[j];
- C_prev[j] = 0;
- C_next[j] = C_head[len];
- if (C_next[j] != 0) C_prev[C_next[j]] = j;
- C_head[len] = j;
- }
- return;
- }
- /*----------------------------------------------------------------------
- // find_pivot - choose a pivot element.
- //
- // This routine chooses a pivot element v[p,q] in the active submatrix
- // of matrix U = P*V*Q.
- //
- // It is assumed that on entry the matrix U has the following partially
- // triangularized form:
- //
- // 1 k n
- // 1 x x x x x x x x x x
- // . x x x x x x x x x
- // . . x x x x x x x x
- // . . . x x x x x x x
- // k . . . . * * * * * *
- // . . . . * * * * * *
- // . . . . * * * * * *
- // . . . . * * * * * *
- // . . . . * * * * * *
- // n . . . . * * * * * *
- //
- // where rows and columns k, k+1, ..., n belong to the active submatrix
- // (elements of the active submatrix are marked by '*').
- //
- // Since the matrix U = P*V*Q is not stored, the routine works with the
- // matrix V. It is assumed that the row-wise representation corresponds
- // to the matrix V, but the column-wise representation corresponds to
- // the active submatrix of the matrix V, i.e. elements of the matrix V,
- // which does not belong to the active submatrix, are missing from the
- // column linked lists. It is also assumed that each active row of the
- // matrix V is in the set R[len], where len is number of non-zeros in
- // the row, and each active column of the matrix V is in the set C[len],
- // where len is number of non-zeros in the column (in the latter case
- // only elements of the active submatrix are counted; such elements are
- // marked by '*' on the figure above).
- //
- // Due to exact arithmetic any non-zero element of the active submatrix
- // can be chosen as a pivot. However, to keep sparsity of the matrix V
- // the routine uses Markowitz strategy, trying to choose such element
- // v[p,q], which has smallest Markowitz cost (nr[p]-1) * (nc[q]-1),
- // where nr[p] and nc[q] are the number of non-zero elements, resp., in
- // p-th row and in q-th column of the active submatrix.
- //
- // In order to reduce the search, i.e. not to walk through all elements
- // of the active submatrix, the routine exploits a technique proposed by
- // I.Duff. This technique is based on using the sets R[len] and C[len]
- // of active rows and columns.
- //
- // On exit the routine returns a pointer to a pivot v[p,q] chosen, or
- // NULL, if the active submatrix is empty. */
- static LUXELM *find_pivot(LUX *lux, LUXWKA *wka)
- { int n = lux->n;
- LUXELM **V_row = lux->V_row;
- LUXELM **V_col = lux->V_col;
- int *R_len = wka->R_len;
- int *R_head = wka->R_head;
- int *R_next = wka->R_next;
- int *C_len = wka->C_len;
- int *C_head = wka->C_head;
- int *C_next = wka->C_next;
- LUXELM *piv, *some, *vij;
- int i, j, len, min_len, ncand, piv_lim = 5;
- double best, cost;
- /* nothing is chosen so far */
- piv = NULL, best = DBL_MAX, ncand = 0;
- /* if in the active submatrix there is a column that has the only
- non-zero (column singleton), choose it as a pivot */
- j = C_head[1];
- if (j != 0)
- { xassert(C_len[j] == 1);
- piv = V_col[j];
- xassert(piv != NULL && piv->c_next == NULL);
- goto done;
- }
- /* if in the active submatrix there is a row that has the only
- non-zero (row singleton), choose it as a pivot */
- i = R_head[1];
- if (i != 0)
- { xassert(R_len[i] == 1);
- piv = V_row[i];
- xassert(piv != NULL && piv->r_next == NULL);
- goto done;
- }
- /* there are no singletons in the active submatrix; walk through
- other non-empty rows and columns */
- for (len = 2; len <= n; len++)
- { /* consider active columns having len non-zeros */
- for (j = C_head[len]; j != 0; j = C_next[j])
- { /* j-th column has len non-zeros */
- /* find an element in the row of minimal length */
- some = NULL, min_len = INT_MAX;
- for (vij = V_col[j]; vij != NULL; vij = vij->c_next)
- { if (min_len > R_len[vij->i])
- some = vij, min_len = R_len[vij->i];
- /* if Markowitz cost of this element is not greater than
- (len-1)**2, it can be chosen right now; this heuristic
- reduces the search and works well in many cases */
- if (min_len <= len)
- { piv = some;
- goto done;
- }
- }
- /* j-th column has been scanned */
- /* the minimal element found is a next pivot candidate */
- xassert(some != NULL);
- ncand++;
- /* compute its Markowitz cost */
- cost = (double)(min_len - 1) * (double)(len - 1);
- /* choose between the current candidate and this element */
- if (cost < best) piv = some, best = cost;
- /* if piv_lim candidates have been considered, there is a
- doubt that a much better candidate exists; therefore it
- is the time to terminate the search */
- if (ncand == piv_lim) goto done;
- }
- /* now consider active rows having len non-zeros */
- for (i = R_head[len]; i != 0; i = R_next[i])
- { /* i-th row has len non-zeros */
- /* find an element in the column of minimal length */
- some = NULL, min_len = INT_MAX;
- for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
- { if (min_len > C_len[vij->j])
- some = vij, min_len = C_len[vij->j];
- /* if Markowitz cost of this element is not greater than
- (len-1)**2, it can be chosen right now; this heuristic
- reduces the search and works well in many cases */
- if (min_len <= len)
- { piv = some;
- goto done;
- }
- }
- /* i-th row has been scanned */
- /* the minimal element found is a next pivot candidate */
- xassert(some != NULL);
- ncand++;
- /* compute its Markowitz cost */
- cost = (double)(len - 1) * (double)(min_len - 1);
- /* choose between the current candidate and this element */
- if (cost < best) piv = some, best = cost;
- /* if piv_lim candidates have been considered, there is a
- doubt that a much better candidate exists; therefore it
- is the time to terminate the search */
- if (ncand == piv_lim) goto done;
- }
- }
- done: /* bring the pivot v[p,q] to the factorizing routine */
- return piv;
- }
- /*----------------------------------------------------------------------
- // eliminate - perform gaussian elimination.
- //
- // This routine performs elementary gaussian transformations in order
- // to eliminate subdiagonal elements in the k-th column of the matrix
- // U = P*V*Q using the pivot element u[k,k], where k is the number of
- // the current elimination step.
- //
- // The parameter piv specifies the pivot element v[p,q] = u[k,k].
- //
- // Each time when the routine applies the elementary transformation to
- // a non-pivot row of the matrix V, it stores the corresponding element
- // to the matrix F in order to keep the main equality A = F*V.
- //
- // The routine assumes that on entry the matrices L = P*F*inv(P) and
- // U = P*V*Q are the following:
- //
- // 1 k 1 k n
- // 1 1 . . . . . . . . . 1 x x x x x x x x x x
- // x 1 . . . . . . . . . x x x x x x x x x
- // x x 1 . . . . . . . . . x x x x x x x x
- // x x x 1 . . . . . . . . . x x x x x x x
- // k x x x x 1 . . . . . k . . . . * * * * * *
- // x x x x _ 1 . . . . . . . . # * * * * *
- // x x x x _ . 1 . . . . . . . # * * * * *
- // x x x x _ . . 1 . . . . . . # * * * * *
- // x x x x _ . . . 1 . . . . . # * * * * *
- // n x x x x _ . . . . 1 n . . . . # * * * * *
- //
- // matrix L matrix U
- //
- // where rows and columns of the matrix U with numbers k, k+1, ..., n
- // form the active submatrix (eliminated elements are marked by '#' and
- // other elements of the active submatrix are marked by '*'). Note that
- // each eliminated non-zero element u[i,k] of the matrix U gives the
- // corresponding element l[i,k] of the matrix L (marked by '_').
- //
- // Actually all operations are performed on the matrix V. Should note
- // that the row-wise representation corresponds to the matrix V, but the
- // column-wise representation corresponds to the active submatrix of the
- // matrix V, i.e. elements of the matrix V, which doesn't belong to the
- // active submatrix, are missing from the column linked lists.
- //
- // Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal
- // elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies
- // the following elementary gaussian transformations:
- //
- // (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V),
- //
- // where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier.
- //
- // Additionally, in order to keep the main equality A = F*V, each time
- // when the routine applies the transformation to i-th row of the matrix
- // V, it also adds f[i,p] as a new element to the matrix F.
- //
- // IMPORTANT: On entry the working arrays flag and work should contain
- // zeros. This status is provided by the routine on exit. */
- static void eliminate(LUX *lux, LUXWKA *wka, LUXELM *piv, int flag[],
- mpq_t work[])
- { DMP *pool = lux->pool;
- LUXELM **F_row = lux->F_row;
- LUXELM **F_col = lux->F_col;
- mpq_t *V_piv = lux->V_piv;
- LUXELM **V_row = lux->V_row;
- LUXELM **V_col = lux->V_col;
- int *R_len = wka->R_len;
- int *R_head = wka->R_head;
- int *R_prev = wka->R_prev;
- int *R_next = wka->R_next;
- int *C_len = wka->C_len;
- int *C_head = wka->C_head;
- int *C_prev = wka->C_prev;
- int *C_next = wka->C_next;
- LUXELM *fip, *vij, *vpj, *viq, *next;
- mpq_t temp;
- int i, j, p, q;
- mpq_init(temp);
- /* determine row and column indices of the pivot v[p,q] */
- xassert(piv != NULL);
- p = piv->i, q = piv->j;
- /* remove p-th (pivot) row from the active set; it will never
- return there */
- if (R_prev[p] == 0)
- R_head[R_len[p]] = R_next[p];
- else
- R_next[R_prev[p]] = R_next[p];
- if (R_next[p] == 0)
- ;
- else
- R_prev[R_next[p]] = R_prev[p];
- /* remove q-th (pivot) column from the active set; it will never
- return there */
- if (C_prev[q] == 0)
- C_head[C_len[q]] = C_next[q];
- else
- C_next[C_prev[q]] = C_next[q];
- if (C_next[q] == 0)
- ;
- else
- C_prev[C_next[q]] = C_prev[q];
- /* store the pivot value in a separate array */
- mpq_set(V_piv[p], piv->val);
- /* remove the pivot from p-th row */
- if (piv->r_prev == NULL)
- V_row[p] = piv->r_next;
- else
- piv->r_prev->r_next = piv->r_next;
- if (piv->r_next == NULL)
- ;
- else
- piv->r_next->r_prev = piv->r_prev;
- R_len[p]--;
- /* remove the pivot from q-th column */
- if (piv->c_prev == NULL)
- V_col[q] = piv->c_next;
- else
- piv->c_prev->c_next = piv->c_next;
- if (piv->c_next == NULL)
- ;
- else
- piv->c_next->c_prev = piv->c_prev;
- C_len[q]--;
- /* free the space occupied by the pivot */
- mpq_clear(piv->val);
- dmp_free_atom(pool, piv, sizeof(LUXELM));
- /* walk through p-th (pivot) row, which already does not contain
- the pivot v[p,q], and do the following... */
- for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
- { /* get column index of v[p,j] */
- j = vpj->j;
- /* store v[p,j] in the working array */
- flag[j] = 1;
- mpq_set(work[j], vpj->val);
- /* remove j-th column from the active set; it will return there
- later with a new length */
- if (C_prev[j] == 0)
- C_head[C_len[j]] = C_next[j];
- else
- C_next[C_prev[j]] = C_next[j];
- if (C_next[j] == 0)
- ;
- else
- C_prev[C_next[j]] = C_prev[j];
- /* v[p,j] leaves the active submatrix, so remove it from j-th
- column; however, v[p,j] is kept in p-th row */
- if (vpj->c_prev == NULL)
- V_col[j] = vpj->c_next;
- else
- vpj->c_prev->c_next = vpj->c_next;
- if (vpj->c_next == NULL)
- ;
- else
- vpj->c_next->c_prev = vpj->c_prev;
- C_len[j]--;
- }
- /* now walk through q-th (pivot) column, which already does not
- contain the pivot v[p,q], and perform gaussian elimination */
- while (V_col[q] != NULL)
- { /* element v[i,q] has to be eliminated */
- viq = V_col[q];
- /* get row index of v[i,q] */
- i = viq->i;
- /* remove i-th row from the active set; later it will return
- there with a new length */
- if (R_prev[i] == 0)
- R_head[R_len[i]] = R_next[i];
- else
- R_next[R_prev[i]] = R_next[i];
- if (R_next[i] == 0)
- ;
- else
- R_prev[R_next[i]] = R_prev[i];
- /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] and
- store it in the matrix F */
- fip = dmp_get_atom(pool, sizeof(LUXELM));
- fip->i = i, fip->j = p;
- mpq_init(fip->val);
- mpq_div(fip->val, viq->val, V_piv[p]);
- fip->r_prev = NULL;
- fip->r_next = F_row[i];
- fip->c_prev = NULL;
- fip->c_next = F_col[p];
- if (fip->r_next != NULL) fip->r_next->r_prev = fip;
- if (fip->c_next != NULL) fip->c_next->c_prev = fip;
- F_row[i] = F_col[p] = fip;
- /* v[i,q] has to be eliminated, so remove it from i-th row */
- if (viq->r_prev == NULL)
- V_row[i] = viq->r_next;
- else
- viq->r_prev->r_next = viq->r_next;
- if (viq->r_next == NULL)
- ;
- else
- viq->r_next->r_prev = viq->r_prev;
- R_len[i]--;
- /* and also from q-th column */
- V_col[q] = viq->c_next;
- C_len[q]--;
- /* free the space occupied by v[i,q] */
- mpq_clear(viq->val);
- dmp_free_atom(pool, viq, sizeof(LUXELM));
- /* perform gaussian transformation:
- (i-th row) := (i-th row) - f[i,p] * (p-th row)
- note that now p-th row, which is in the working array,
- does not contain the pivot v[p,q], and i-th row does not
- contain the element v[i,q] to be eliminated */
- /* walk through i-th row and transform existing non-zero
- elements */
- for (vij = V_row[i]; vij != NULL; vij = next)
- { next = vij->r_next;
- /* get column index of v[i,j] */
- j = vij->j;
- /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */
- if (flag[j])
- { /* v[p,j] != 0 */
- flag[j] = 0;
- mpq_mul(temp, fip->val, work[j]);
- mpq_sub(vij->val, vij->val, temp);
- if (mpq_sgn(vij->val) == 0)
- { /* new v[i,j] is zero, so remove it from the active
- submatrix */
- /* remove v[i,j] from i-th row */
- if (vij->r_prev == NULL)
- V_row[i] = vij->r_next;
- else
- vij->r_prev->r_next = vij->r_next;
- if (vij->r_next == NULL)
- ;
- else
- vij->r_next->r_prev = vij->r_prev;
- R_len[i]--;
- /* remove v[i,j] from j-th column */
- if (vij->c_prev == NULL)
- V_col[j] = vij->c_next;
- else
- vij->c_prev->c_next = vij->c_next;
- if (vij->c_next == NULL)
- ;
- else
- vij->c_next->c_prev = vij->c_prev;
- C_len[j]--;
- /* free the space occupied by v[i,j] */
- mpq_clear(vij->val);
- dmp_free_atom(pool, vij, sizeof(LUXELM));
- }
- }
- }
- /* now flag is the pattern of the set v[p,*] \ v[i,*] */
- /* walk through p-th (pivot) row and create new elements in
- i-th row, which appear due to fill-in */
- for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
- { j = vpj->j;
- if (flag[j])
- { /* create new non-zero v[i,j] = 0 - f[i,p] * v[p,j] and
- add it to i-th row and j-th column */
- vij = dmp_get_atom(pool, sizeof(LUXELM));
- vij->i = i, vij->j = j;
- mpq_init(vij->val);
- mpq_mul(vij->val, fip->val, work[j]);
- mpq_neg(vij->val, vij->val);
- vij->r_prev = NULL;
- vij->r_next = V_row[i];
- vij->c_prev = NULL;
- vij->c_next = V_col[j];
- if (vij->r_next != NULL) vij->r_next->r_prev = vij;
- if (vij->c_next != NULL) vij->c_next->c_prev = vij;
- V_row[i] = V_col[j] = vij;
- R_len[i]++, C_len[j]++;
- }
- else
- { /* there is no fill-in, because v[i,j] already exists in
- i-th row; restore the flag, which was reset before */
- flag[j] = 1;
- }
- }
- /* now i-th row has been completely transformed and can return
- to the active set with a new length */
- R_prev[i] = 0;
- R_next[i] = R_head[R_len[i]];
- if (R_next[i] != 0) R_prev[R_next[i]] = i;
- R_head[R_len[i]] = i;
- }
- /* at this point q-th (pivot) column must be empty */
- xassert(C_len[q] == 0);
- /* walk through p-th (pivot) row again and do the following... */
- for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
- { /* get column index of v[p,j] */
- j = vpj->j;
- /* erase v[p,j] from the working array */
- flag[j] = 0;
- mpq_set_si(work[j], 0, 1);
- /* now j-th column has been completely transformed, so it can
- return to the active list with a new length */
- C_prev[j] = 0;
- C_next[j] = C_head[C_len[j]];
- if (C_next[j] != 0) C_prev[C_next[j]] = j;
- C_head[C_len[j]] = j;
- }
- mpq_clear(temp);
- /* return to the factorizing routine */
- return;
- }
- /*----------------------------------------------------------------------
- // lux_decomp - compute LU-factorization.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[],
- // mpq_t val[]), void *info);
- //
- // DESCRIPTION
- //
- // The routine lux_decomp computes LU-factorization of a given square
- // matrix A.
- //
- // The parameter lux specifies LU-factorization data structure built by
- // means of the routine lux_create.
- //
- // The formal routine col specifies the original matrix A. In order to
- // obtain j-th column of the matrix A the routine lux_decomp calls the
- // routine col with the parameter j (1 <= j <= n, where n is the order
- // of A). In response the routine col should store row indices and
- // numerical values of non-zero elements of j-th column of A to the
- // locations ind[1], ..., ind[len] and val[1], ..., val[len], resp.,
- // where len is the number of non-zeros in j-th column, which should be
- // returned on exit. Neiter zero nor duplicate elements are allowed.
- //
- // The parameter info is a transit pointer passed to the formal routine
- // col; it can be used for various purposes.
- //
- // RETURNS
- //
- // The routine lux_decomp returns the singularity flag. Zero flag means
- // that the original matrix A is non-singular while non-zero flag means
- // that A is (exactly!) singular.
- //
- // Note that LU-factorization is valid in both cases, however, in case
- // of singularity some rows of the matrix V (including pivot elements)
- // will be empty.
- //
- // REPAIRING SINGULAR MATRIX
- //
- // If the routine lux_decomp returns non-zero flag, it provides all
- // necessary information that can be used for "repairing" the matrix A,
- // where "repairing" means replacing linearly dependent columns of the
- // matrix A by appropriate columns of the unity matrix. This feature is
- // needed when the routine lux_decomp is used for reinverting the basis
- // matrix within the simplex method procedure.
- //
- // On exit linearly dependent columns of the matrix U have the numbers
- // rank+1, rank+2, ..., n, where rank is the exact rank of the matrix A
- // stored by the routine to the member lux->rank. The correspondence
- // between columns of A and U is the same as between columns of V and U.
- // Thus, linearly dependent columns of the matrix A have the numbers
- // Q_col[rank+1], Q_col[rank+2], ..., Q_col[n], where Q_col is an array
- // representing the permutation matrix Q in column-like format. It is
- // understood that each j-th linearly dependent column of the matrix U
- // should be replaced by the unity vector, where all elements are zero
- // except the unity diagonal element u[j,j]. On the other hand j-th row
- // of the matrix U corresponds to the row of the matrix V (and therefore
- // of the matrix A) with the number P_row[j], where P_row is an array
- // representing the permutation matrix P in row-like format. Thus, each
- // j-th linearly dependent column of the matrix U should be replaced by
- // a column of the unity matrix with the number P_row[j].
- //
- // The code that repairs the matrix A may look like follows:
- //
- // for (j = rank+1; j <= n; j++)
- // { replace column Q_col[j] of the matrix A by column P_row[j] of
- // the unity matrix;
- // }
- //
- // where rank, P_row, and Q_col are members of the structure LUX. */
- int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[],
- mpq_t val[]), void *info)
- { int n = lux->n;
- LUXELM **V_row = lux->V_row;
- LUXELM **V_col = lux->V_col;
- int *P_row = lux->P_row;
- int *P_col = lux->P_col;
- int *Q_row = lux->Q_row;
- int *Q_col = lux->Q_col;
- LUXELM *piv, *vij;
- LUXWKA *wka;
- int i, j, k, p, q, t, *flag;
- mpq_t *work;
- /* allocate working area */
- wka = xmalloc(sizeof(LUXWKA));
- wka->R_len = xcalloc(1+n, sizeof(int));
- wka->R_head = xcalloc(1+n, sizeof(int));
- wka->R_prev = xcalloc(1+n, sizeof(int));
- wka->R_next = xcalloc(1+n, sizeof(int));
- wka->C_len = xcalloc(1+n, sizeof(int));
- wka->C_head = xcalloc(1+n, sizeof(int));
- wka->C_prev = xcalloc(1+n, sizeof(int));
- wka->C_next = xcalloc(1+n, sizeof(int));
- /* initialize LU-factorization data structures */
- initialize(lux, col, info, wka);
- /* allocate working arrays */
- flag = xcalloc(1+n, sizeof(int));
- work = xcalloc(1+n, sizeof(mpq_t));
- for (k = 1; k <= n; k++)
- { flag[k] = 0;
- mpq_init(work[k]);
- }
- /* main elimination loop */
- for (k = 1; k <= n; k++)
- { /* choose a pivot element v[p,q] */
- piv = find_pivot(lux, wka);
- if (piv == NULL)
- { /* no pivot can be chosen, because the active submatrix is
- empty */
- break;
- }
- /* determine row and column indices of the pivot element */
- p = piv->i, q = piv->j;
- /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th
- rows and k-th and j'-th columns of the matrix U = P*V*Q to
- move the element u[i',j'] to the position u[k,k] */
- i = P_col[p], j = Q_row[q];
- xassert(k <= i && i <= n && k <= j && j <= n);
- /* permute k-th and i-th rows of the matrix U */
- t = P_row[k];
- P_row[i] = t, P_col[t] = i;
- P_row[k] = p, P_col[p] = k;
- /* permute k-th and j-th columns of the matrix U */
- t = Q_col[k];
- Q_col[j] = t, Q_row[t] = j;
- Q_col[k] = q, Q_row[q] = k;
- /* eliminate subdiagonal elements of k-th column of the matrix
- U = P*V*Q using the pivot element u[k,k] = v[p,q] */
- eliminate(lux, wka, piv, flag, work);
- }
- /* determine the rank of A (and V) */
- lux->rank = k - 1;
- /* free working arrays */
- xfree(flag);
- for (k = 1; k <= n; k++) mpq_clear(work[k]);
- xfree(work);
- /* build column lists of the matrix V using its row lists */
- for (j = 1; j <= n; j++)
- xassert(V_col[j] == NULL);
- for (i = 1; i <= n; i++)
- { for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
- { j = vij->j;
- vij->c_prev = NULL;
- vij->c_next = V_col[j];
- if (vij->c_next != NULL) vij->c_next->c_prev = vij;
- V_col[j] = vij;
- }
- }
- /* free working area */
- xfree(wka->R_len);
- xfree(wka->R_head);
- xfree(wka->R_prev);
- xfree(wka->R_next);
- xfree(wka->C_len);
- xfree(wka->C_head);
- xfree(wka->C_prev);
- xfree(wka->C_next);
- xfree(wka);
- /* return to the calling program */
- return (lux->rank < n);
- }
- /*----------------------------------------------------------------------
- // lux_f_solve - solve system F*x = b or F'*x = b.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // void lux_f_solve(LUX *lux, int tr, mpq_t x[]);
- //
- // DESCRIPTION
- //
- // The routine lux_f_solve solves either the system F*x = b (if the
- // flag tr is zero) or the system F'*x = b (if the flag tr is non-zero),
- // where the matrix F is a component of LU-factorization specified by
- // the parameter lux, F' is a matrix transposed to F.
- //
- // On entry the array x should contain elements of the right-hand side
- // vector b in locations x[1], ..., x[n], where n is the order of the
- // matrix F. On exit this array will contain elements of the solution
- // vector x in the same locations. */
- void lux_f_solve(LUX *lux, int tr, mpq_t x[])
- { int n = lux->n;
- LUXELM **F_row = lux->F_row;
- LUXELM **F_col = lux->F_col;
- int *P_row = lux->P_row;
- LUXELM *fik, *fkj;
- int i, j, k;
- mpq_t temp;
- mpq_init(temp);
- if (!tr)
- { /* solve the system F*x = b */
- for (j = 1; j <= n; j++)
- { k = P_row[j];
- if (mpq_sgn(x[k]) != 0)
- { for (fik = F_col[k]; fik != NULL; fik = fik->c_next)
- { mpq_mul(temp, fik->val, x[k]);
- mpq_sub(x[fik->i], x[fik->i], temp);
- }
- }
- }
- }
- else
- { /* solve the system F'*x = b */
- for (i = n; i >= 1; i--)
- { k = P_row[i];
- if (mpq_sgn(x[k]) != 0)
- { for (fkj = F_row[k]; fkj != NULL; fkj = fkj->r_next)
- { mpq_mul(temp, fkj->val, x[k]);
- mpq_sub(x[fkj->j], x[fkj->j], temp);
- }
- }
- }
- }
- mpq_clear(temp);
- return;
- }
- /*----------------------------------------------------------------------
- // lux_v_solve - solve system V*x = b or V'*x = b.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // void lux_v_solve(LUX *lux, int tr, double x[]);
- //
- // DESCRIPTION
- //
- // The routine lux_v_solve solves either the system V*x = b (if the
- // flag tr is zero) or the system V'*x = b (if the flag tr is non-zero),
- // where the matrix V is a component of LU-factorization specified by
- // the parameter lux, V' is a matrix transposed to V.
- //
- // On entry the array x should contain elements of the right-hand side
- // vector b in locations x[1], ..., x[n], where n is the order of the
- // matrix V. On exit this array will contain elements of the solution
- // vector x in the same locations. */
- void lux_v_solve(LUX *lux, int tr, mpq_t x[])
- { int n = lux->n;
- mpq_t *V_piv = lux->V_piv;
- LUXELM **V_row = lux->V_row;
- LUXELM **V_col = lux->V_col;
- int *P_row = lux->P_row;
- int *Q_col = lux->Q_col;
- LUXELM *vij;
- int i, j, k;
- mpq_t *b, temp;
- b = xcalloc(1+n, sizeof(mpq_t));
- for (k = 1; k <= n; k++)
- mpq_init(b[k]), mpq_set(b[k], x[k]), mpq_set_si(x[k], 0, 1);
- mpq_init(temp);
- if (!tr)
- { /* solve the system V*x = b */
- for (k = n; k >= 1; k--)
- { i = P_row[k], j = Q_col[k];
- if (mpq_sgn(b[i]) != 0)
- { mpq_set(x[j], b[i]);
- mpq_div(x[j], x[j], V_piv[i]);
- for (vij = V_col[j]; vij != NULL; vij = vij->c_next)
- { mpq_mul(temp, vij->val, x[j]);
- mpq_sub(b[vij->i], b[vij->i], temp);
- }
- }
- }
- }
- else
- { /* solve the system V'*x = b */
- for (k = 1; k <= n; k++)
- { i = P_row[k], j = Q_col[k];
- if (mpq_sgn(b[j]) != 0)
- { mpq_set(x[i], b[j]);
- mpq_div(x[i], x[i], V_piv[i]);
- for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
- { mpq_mul(temp, vij->val, x[i]);
- mpq_sub(b[vij->j], b[vij->j], temp);
- }
- }
- }
- }
- for (k = 1; k <= n; k++) mpq_clear(b[k]);
- mpq_clear(temp);
- xfree(b);
- return;
- }
- /*----------------------------------------------------------------------
- // lux_solve - solve system A*x = b or A'*x = b.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // void lux_solve(LUX *lux, int tr, mpq_t x[]);
- //
- // DESCRIPTION
- //
- // The routine lux_solve solves either the system A*x = b (if the flag
- // tr is zero) or the system A'*x = b (if the flag tr is non-zero),
- // where the parameter lux specifies LU-factorization of the matrix A,
- // A' is a matrix transposed to A.
- //
- // On entry the array x should contain elements of the right-hand side
- // vector b in locations x[1], ..., x[n], where n is the order of the
- // matrix A. On exit this array will contain elements of the solution
- // vector x in the same locations. */
- void lux_solve(LUX *lux, int tr, mpq_t x[])
- { if (lux->rank < lux->n)
- xfault("lux_solve: LU-factorization has incomplete rank\n");
- if (!tr)
- { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */
- lux_f_solve(lux, 0, x);
- lux_v_solve(lux, 0, x);
- }
- else
- { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */
- lux_v_solve(lux, 1, x);
- lux_f_solve(lux, 1, x);
- }
- return;
- }
- /*----------------------------------------------------------------------
- // lux_delete - delete LU-factorization.
- //
- // SYNOPSIS
- //
- // #include "glplux.h"
- // void lux_delete(LUX *lux);
- //
- // DESCRIPTION
- //
- // The routine lux_delete deletes LU-factorization data structure,
- // which the parameter lux points to, freeing all the memory allocated
- // to this object. */
- void lux_delete(LUX *lux)
- { int n = lux->n;
- LUXELM *fij, *vij;
- int i;
- for (i = 1; i <= n; i++)
- { for (fij = lux->F_row[i]; fij != NULL; fij = fij->r_next)
- mpq_clear(fij->val);
- mpq_clear(lux->V_piv[i]);
- for (vij = lux->V_row[i]; vij != NULL; vij = vij->r_next)
- mpq_clear(vij->val);
- }
- dmp_delete_pool(lux->pool);
- xfree(lux->F_row);
- xfree(lux->F_col);
- xfree(lux->V_piv);
- xfree(lux->V_row);
- xfree(lux->V_col);
- xfree(lux->P_row);
- xfree(lux->P_col);
- xfree(lux->Q_row);
- xfree(lux->Q_col);
- xfree(lux);
- return;
- }
- /* eof */
|