123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- /* glpluf.h (LU-factorization) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #ifndef GLPLUF_H
- #define GLPLUF_H
- /***********************************************************************
- * The structure LUF defines LU-factorization of a square matrix A and
- * is the following quartet:
- *
- * [A] = (F, V, P, Q), (1)
- *
- * where F and V are such matrices that
- *
- * A = F * V, (2)
- *
- * and P and Q are such permutation matrices that the matrix
- *
- * L = P * F * inv(P) (3)
- *
- * is lower triangular with unity diagonal, and the matrix
- *
- * U = P * V * Q (4)
- *
- * is upper triangular. All the matrices have the order n.
- *
- * Matrices F and V are stored in row- and column-wise sparse format
- * as row and column linked lists of non-zero elements. Unity elements
- * on the main diagonal of matrix F are not stored. Pivot elements of
- * matrix V (which correspond to diagonal elements of matrix U) are
- * stored separately in an ordinary array.
- *
- * Permutation matrices P and Q are stored in ordinary arrays in both
- * row- and column-like formats.
- *
- * Matrices L and U are completely defined by matrices F, V, P, and Q
- * and therefore not stored explicitly.
- *
- * The factorization (1)-(4) is a version of LU-factorization. Indeed,
- * from (3) and (4) it follows that:
- *
- * F = inv(P) * L * P,
- *
- * U = inv(P) * U * inv(Q),
- *
- * and substitution into (2) leads to:
- *
- * A = F * V = inv(P) * L * U * inv(Q).
- *
- * For more details see the program documentation. */
- typedef struct LUF LUF;
- struct LUF
- { /* LU-factorization of a square matrix */
- int n_max;
- /* maximal value of n (increased automatically, if necessary) */
- int n;
- /* the order of matrices A, F, V, P, Q */
- int valid;
- /* the factorization is valid only if this flag is set */
- /*--------------------------------------------------------------*/
- /* matrix F in row-wise format */
- int *fr_ptr; /* int fr_ptr[1+n_max]; */
- /* fr_ptr[i], i = 1,...,n, is a pointer to the first element of
- i-th row in SVA */
- int *fr_len; /* int fr_len[1+n_max]; */
- /* fr_len[i], i = 1,...,n, is the number of elements in i-th row
- (except unity diagonal element) */
- /*--------------------------------------------------------------*/
- /* matrix F in column-wise format */
- int *fc_ptr; /* int fc_ptr[1+n_max]; */
- /* fc_ptr[j], j = 1,...,n, is a pointer to the first element of
- j-th column in SVA */
- int *fc_len; /* int fc_len[1+n_max]; */
- /* fc_len[j], j = 1,...,n, is the number of elements in j-th
- column (except unity diagonal element) */
- /*--------------------------------------------------------------*/
- /* matrix V in row-wise format */
- int *vr_ptr; /* int vr_ptr[1+n_max]; */
- /* vr_ptr[i], i = 1,...,n, is a pointer to the first element of
- i-th row in SVA */
- int *vr_len; /* int vr_len[1+n_max]; */
- /* vr_len[i], i = 1,...,n, is the number of elements in i-th row
- (except pivot element) */
- int *vr_cap; /* int vr_cap[1+n_max]; */
- /* vr_cap[i], i = 1,...,n, is the capacity of i-th row, i.e.
- maximal number of elements which can be stored in the row
- without relocating it, vr_cap[i] >= vr_len[i] */
- double *vr_piv; /* double vr_piv[1+n_max]; */
- /* vr_piv[p], p = 1,...,n, is the pivot element v[p,q] which
- corresponds to a diagonal element of matrix U = P*V*Q */
- /*--------------------------------------------------------------*/
- /* matrix V in column-wise format */
- int *vc_ptr; /* int vc_ptr[1+n_max]; */
- /* vc_ptr[j], j = 1,...,n, is a pointer to the first element of
- j-th column in SVA */
- int *vc_len; /* int vc_len[1+n_max]; */
- /* vc_len[j], j = 1,...,n, is the number of elements in j-th
- column (except pivot element) */
- int *vc_cap; /* int vc_cap[1+n_max]; */
- /* vc_cap[j], j = 1,...,n, is the capacity of j-th column, i.e.
- maximal number of elements which can be stored in the column
- without relocating it, vc_cap[j] >= vc_len[j] */
- /*--------------------------------------------------------------*/
- /* matrix P */
- int *pp_row; /* int pp_row[1+n_max]; */
- /* pp_row[i] = j means that P[i,j] = 1 */
- int *pp_col; /* int pp_col[1+n_max]; */
- /* pp_col[j] = i means that P[i,j] = 1 */
- /* if i-th row or column of matrix F is i'-th row or column of
- matrix L, or if i-th row of matrix V is i'-th row of matrix U,
- then pp_row[i'] = i and pp_col[i] = i' */
- /*--------------------------------------------------------------*/
- /* matrix Q */
- int *qq_row; /* int qq_row[1+n_max]; */
- /* qq_row[i] = j means that Q[i,j] = 1 */
- int *qq_col; /* int qq_col[1+n_max]; */
- /* qq_col[j] = i means that Q[i,j] = 1 */
- /* if j-th column of matrix V is j'-th column of matrix U, then
- qq_row[j] = j' and qq_col[j'] = j */
- /*--------------------------------------------------------------*/
- /* the Sparse Vector Area (SVA) is a set of locations used to
- store sparse vectors representing rows and columns of matrices
- F and V; each location is a doublet (ind, val), where ind is
- an index, and val is a numerical value of a sparse vector
- element; in the whole each sparse vector is a set of adjacent
- locations defined by a pointer to the first element and the
- number of elements; these pointer and number are stored in the
- corresponding matrix data structure (see above); the left part
- of SVA is used to store rows and columns of matrix V, and its
- right part is used to store rows and columns of matrix F; the
- middle part of SVA contains free (unused) locations */
- int sv_size;
- /* the size of SVA, in locations; all locations are numbered by
- integers 1, ..., n, and location 0 is not used; if necessary,
- the SVA size is automatically increased */
- int sv_beg, sv_end;
- /* SVA partitioning pointers:
- locations from 1 to sv_beg-1 belong to the left part
- locations from sv_beg to sv_end-1 belong to the middle part
- locations from sv_end to sv_size belong to the right part
- the size of the middle part is (sv_end - sv_beg) */
- int *sv_ind; /* sv_ind[1+sv_size]; */
- /* sv_ind[k], 1 <= k <= sv_size, is the index field of k-th
- location */
- double *sv_val; /* sv_val[1+sv_size]; */
- /* sv_val[k], 1 <= k <= sv_size, is the value field of k-th
- location */
- /*--------------------------------------------------------------*/
- /* in order to efficiently defragment the left part of SVA there
- is a doubly linked list of rows and columns of matrix V, where
- rows are numbered by 1, ..., n, while columns are numbered by
- n+1, ..., n+n, that allows uniquely identifying each row and
- column of V by only one integer; in this list rows and columns
- are ordered by ascending their pointers vr_ptr and vc_ptr */
- int sv_head;
- /* the number of leftmost row/column */
- int sv_tail;
- /* the number of rightmost row/column */
- int *sv_prev; /* int sv_prev[1+n_max+n_max]; */
- /* sv_prev[k], k = 1,...,n+n, is the number of a row/column which
- precedes k-th row/column */
- int *sv_next; /* int sv_next[1+n_max+n_max]; */
- /* sv_next[k], k = 1,...,n+n, is the number of a row/column which
- succedes k-th row/column */
- /*--------------------------------------------------------------*/
- /* working segment (used only during factorization) */
- double *vr_max; /* int vr_max[1+n_max]; */
- /* vr_max[i], 1 <= i <= n, is used only if i-th row of matrix V
- is active (i.e. belongs to the active submatrix), and is the
- largest magnitude of elements in i-th row; if vr_max[i] < 0,
- the largest magnitude is not known yet and should be computed
- by the pivoting routine */
- /*--------------------------------------------------------------*/
- /* in order to efficiently implement Markowitz strategy and Duff
- search technique there are two families {R[0], R[1], ..., R[n]}
- and {C[0], C[1], ..., C[n]}; member R[k] is the set of active
- rows of matrix V, which have k non-zeros, and member C[k] is
- the set of active columns of V, which have k non-zeros in the
- active submatrix (i.e. in the active rows); each set R[k] and
- C[k] is implemented as a separate doubly linked list */
- int *rs_head; /* int rs_head[1+n_max]; */
- /* rs_head[k], 0 <= k <= n, is the number of first active row,
- which has k non-zeros */
- int *rs_prev; /* int rs_prev[1+n_max]; */
- /* rs_prev[i], 1 <= i <= n, is the number of previous row, which
- has the same number of non-zeros as i-th row */
- int *rs_next; /* int rs_next[1+n_max]; */
- /* rs_next[i], 1 <= i <= n, is the number of next row, which has
- the same number of non-zeros as i-th row */
- int *cs_head; /* int cs_head[1+n_max]; */
- /* cs_head[k], 0 <= k <= n, is the number of first active column,
- which has k non-zeros (in the active rows) */
- int *cs_prev; /* int cs_prev[1+n_max]; */
- /* cs_prev[j], 1 <= j <= n, is the number of previous column,
- which has the same number of non-zeros (in the active rows) as
- j-th column */
- int *cs_next; /* int cs_next[1+n_max]; */
- /* cs_next[j], 1 <= j <= n, is the number of next column, which
- has the same number of non-zeros (in the active rows) as j-th
- column */
- /* (end of working segment) */
- /*--------------------------------------------------------------*/
- /* working arrays */
- int *flag; /* int flag[1+n_max]; */
- /* integer working array */
- double *work; /* double work[1+n_max]; */
- /* floating-point working array */
- /*--------------------------------------------------------------*/
- /* control parameters */
- int new_sva;
- /* new required size of the sparse vector area, in locations; set
- automatically by the factorizing routine */
- double piv_tol;
- /* threshold pivoting tolerance, 0 < piv_tol < 1; element v[i,j]
- of the active submatrix fits to be pivot if it satisfies to the
- stability criterion |v[i,j]| >= piv_tol * max |v[i,*]|, i.e. if
- it is not very small in the magnitude among other elements in
- the same row; decreasing this parameter gives better sparsity
- at the expense of numerical accuracy and vice versa */
- int piv_lim;
- /* maximal allowable number of pivot candidates to be considered;
- if piv_lim pivot candidates have been considered, the pivoting
- routine terminates the search with the best candidate found */
- int suhl;
- /* if this flag is set, the pivoting routine applies a heuristic
- proposed by Uwe Suhl: if a column of the active submatrix has
- no eligible pivot candidates (i.e. all its elements do not
- satisfy to the stability criterion), the routine excludes it
- from futher consideration until it becomes column singleton;
- in many cases this allows reducing the time needed for pivot
- searching */
- double eps_tol;
- /* epsilon tolerance; each element of the active submatrix, whose
- magnitude is less than eps_tol, is replaced by exact zero */
- double max_gro;
- /* maximal allowable growth of elements of matrix V during all
- the factorization process; if on some eliminaion step the ratio
- big_v / max_a (see below) becomes greater than max_gro, matrix
- A is considered as ill-conditioned (assuming that the pivoting
- tolerance piv_tol has an appropriate value) */
- /*--------------------------------------------------------------*/
- /* some statistics */
- int nnz_a;
- /* the number of non-zeros in matrix A */
- int nnz_f;
- /* the number of non-zeros in matrix F (except diagonal elements,
- which are not stored) */
- int nnz_v;
- /* the number of non-zeros in matrix V (except its pivot elements,
- which are stored in a separate array) */
- double max_a;
- /* the largest magnitude of elements of matrix A */
- double big_v;
- /* the largest magnitude of elements of matrix V appeared in the
- active submatrix during all the factorization process */
- int rank;
- /* estimated rank of matrix A */
- };
- /* return codes: */
- #define LUF_ESING 1 /* singular matrix */
- #define LUF_ECOND 2 /* ill-conditioned matrix */
- #define luf_create_it _glp_luf_create_it
- LUF *luf_create_it(void);
- /* create LU-factorization */
- #define luf_defrag_sva _glp_luf_defrag_sva
- void luf_defrag_sva(LUF *luf);
- /* defragment the sparse vector area */
- #define luf_enlarge_row _glp_luf_enlarge_row
- int luf_enlarge_row(LUF *luf, int i, int cap);
- /* enlarge row capacity */
- #define luf_enlarge_col _glp_luf_enlarge_col
- int luf_enlarge_col(LUF *luf, int j, int cap);
- /* enlarge column capacity */
- #define luf_factorize _glp_luf_factorize
- int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j,
- int ind[], double val[]), void *info);
- /* compute LU-factorization */
- #define luf_f_solve _glp_luf_f_solve
- void luf_f_solve(LUF *luf, int tr, double x[]);
- /* solve system F*x = b or F'*x = b */
- #define luf_v_solve _glp_luf_v_solve
- void luf_v_solve(LUF *luf, int tr, double x[]);
- /* solve system V*x = b or V'*x = b */
- #define luf_a_solve _glp_luf_a_solve
- void luf_a_solve(LUF *luf, int tr, double x[]);
- /* solve system A*x = b or A'*x = b */
- #define luf_delete_it _glp_luf_delete_it
- void luf_delete_it(LUF *luf);
- /* delete LU-factorization */
- #endif
- /* eof */
|