12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847 |
- /* glpluf.c (LU-factorization) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpenv.h"
- #include "glpluf.h"
- #define xfault xerror
- /* CAUTION: DO NOT CHANGE THE LIMIT BELOW */
- #define N_MAX 100000000 /* = 100*10^6 */
- /* maximal order of the original matrix */
- /***********************************************************************
- * NAME
- *
- * luf_create_it - create LU-factorization
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * LUF *luf_create_it(void);
- *
- * DESCRIPTION
- *
- * The routine luf_create_it creates a program object, which represents
- * LU-factorization of a square matrix.
- *
- * RETURNS
- *
- * The routine luf_create_it returns a pointer to the object created. */
- LUF *luf_create_it(void)
- { LUF *luf;
- luf = xmalloc(sizeof(LUF));
- luf->n_max = luf->n = 0;
- luf->valid = 0;
- luf->fr_ptr = luf->fr_len = NULL;
- luf->fc_ptr = luf->fc_len = NULL;
- luf->vr_ptr = luf->vr_len = luf->vr_cap = NULL;
- luf->vr_piv = NULL;
- luf->vc_ptr = luf->vc_len = luf->vc_cap = NULL;
- luf->pp_row = luf->pp_col = NULL;
- luf->qq_row = luf->qq_col = NULL;
- luf->sv_size = 0;
- luf->sv_beg = luf->sv_end = 0;
- luf->sv_ind = NULL;
- luf->sv_val = NULL;
- luf->sv_head = luf->sv_tail = 0;
- luf->sv_prev = luf->sv_next = NULL;
- luf->vr_max = NULL;
- luf->rs_head = luf->rs_prev = luf->rs_next = NULL;
- luf->cs_head = luf->cs_prev = luf->cs_next = NULL;
- luf->flag = NULL;
- luf->work = NULL;
- luf->new_sva = 0;
- luf->piv_tol = 0.10;
- luf->piv_lim = 4;
- luf->suhl = 1;
- luf->eps_tol = 1e-15;
- luf->max_gro = 1e+10;
- luf->nnz_a = luf->nnz_f = luf->nnz_v = 0;
- luf->max_a = luf->big_v = 0.0;
- luf->rank = 0;
- return luf;
- }
- /***********************************************************************
- * NAME
- *
- * luf_defrag_sva - defragment the sparse vector area
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * void luf_defrag_sva(LUF *luf);
- *
- * DESCRIPTION
- *
- * The routine luf_defrag_sva defragments the sparse vector area (SVA)
- * gathering all unused locations in one continuous extent. In order to
- * do that the routine moves all unused locations from the left part of
- * SVA (which contains rows and columns of the matrix V) to the middle
- * part (which contains free locations). This is attained by relocating
- * elements of rows and columns of the matrix V toward the beginning of
- * the left part.
- *
- * NOTE that this "garbage collection" involves changing row and column
- * pointers of the matrix V. */
- void luf_defrag_sva(LUF *luf)
- { int n = luf->n;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vr_cap = luf->vr_cap;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *vc_cap = luf->vc_cap;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_next = luf->sv_next;
- int sv_beg = 1;
- int i, j, k;
- /* skip rows and columns, which do not need to be relocated */
- for (k = luf->sv_head; k != 0; k = sv_next[k])
- { if (k <= n)
- { /* i-th row of the matrix V */
- i = k;
- if (vr_ptr[i] != sv_beg) break;
- vr_cap[i] = vr_len[i];
- sv_beg += vr_cap[i];
- }
- else
- { /* j-th column of the matrix V */
- j = k - n;
- if (vc_ptr[j] != sv_beg) break;
- vc_cap[j] = vc_len[j];
- sv_beg += vc_cap[j];
- }
- }
- /* relocate other rows and columns in order to gather all unused
- locations in one continuous extent */
- for (k = k; k != 0; k = sv_next[k])
- { if (k <= n)
- { /* i-th row of the matrix V */
- i = k;
- memmove(&sv_ind[sv_beg], &sv_ind[vr_ptr[i]],
- vr_len[i] * sizeof(int));
- memmove(&sv_val[sv_beg], &sv_val[vr_ptr[i]],
- vr_len[i] * sizeof(double));
- vr_ptr[i] = sv_beg;
- vr_cap[i] = vr_len[i];
- sv_beg += vr_cap[i];
- }
- else
- { /* j-th column of the matrix V */
- j = k - n;
- memmove(&sv_ind[sv_beg], &sv_ind[vc_ptr[j]],
- vc_len[j] * sizeof(int));
- memmove(&sv_val[sv_beg], &sv_val[vc_ptr[j]],
- vc_len[j] * sizeof(double));
- vc_ptr[j] = sv_beg;
- vc_cap[j] = vc_len[j];
- sv_beg += vc_cap[j];
- }
- }
- /* set new pointer to the beginning of the free part */
- luf->sv_beg = sv_beg;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * luf_enlarge_row - enlarge row capacity
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * int luf_enlarge_row(LUF *luf, int i, int cap);
- *
- * DESCRIPTION
- *
- * The routine luf_enlarge_row enlarges capacity of the i-th row of the
- * matrix V to cap locations (assuming that its current capacity is less
- * than cap). In order to do that the routine relocates elements of the
- * i-th row to the end of the left part of SVA (which contains rows and
- * columns of the matrix V) and then expands the left part by allocating
- * cap free locations from the free part. If there are less than cap
- * free locations, the routine defragments the sparse vector area.
- *
- * Due to "garbage collection" this operation may change row and column
- * pointers of the matrix V.
- *
- * RETURNS
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- int luf_enlarge_row(LUF *luf, int i, int cap)
- { int n = luf->n;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vr_cap = luf->vr_cap;
- int *vc_cap = luf->vc_cap;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_prev = luf->sv_prev;
- int *sv_next = luf->sv_next;
- int ret = 0;
- int cur, k, kk;
- xassert(1 <= i && i <= n);
- xassert(vr_cap[i] < cap);
- /* if there are less than cap free locations, defragment SVA */
- if (luf->sv_end - luf->sv_beg < cap)
- { luf_defrag_sva(luf);
- if (luf->sv_end - luf->sv_beg < cap)
- { ret = 1;
- goto done;
- }
- }
- /* save current capacity of the i-th row */
- cur = vr_cap[i];
- /* copy existing elements to the beginning of the free part */
- memmove(&sv_ind[luf->sv_beg], &sv_ind[vr_ptr[i]],
- vr_len[i] * sizeof(int));
- memmove(&sv_val[luf->sv_beg], &sv_val[vr_ptr[i]],
- vr_len[i] * sizeof(double));
- /* set new pointer and new capacity of the i-th row */
- vr_ptr[i] = luf->sv_beg;
- vr_cap[i] = cap;
- /* set new pointer to the beginning of the free part */
- luf->sv_beg += cap;
- /* now the i-th row starts in the rightmost location among other
- rows and columns of the matrix V, so its node should be moved
- to the end of the row/column linked list */
- k = i;
- /* remove the i-th row node from the linked list */
- if (sv_prev[k] == 0)
- luf->sv_head = sv_next[k];
- else
- { /* capacity of the previous row/column can be increased at the
- expense of old locations of the i-th row */
- kk = sv_prev[k];
- if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur;
- sv_next[sv_prev[k]] = sv_next[k];
- }
- if (sv_next[k] == 0)
- luf->sv_tail = sv_prev[k];
- else
- sv_prev[sv_next[k]] = sv_prev[k];
- /* insert the i-th row node to the end of the linked list */
- sv_prev[k] = luf->sv_tail;
- sv_next[k] = 0;
- if (sv_prev[k] == 0)
- luf->sv_head = k;
- else
- sv_next[sv_prev[k]] = k;
- luf->sv_tail = k;
- done: return ret;
- }
- /***********************************************************************
- * NAME
- *
- * luf_enlarge_col - enlarge column capacity
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * int luf_enlarge_col(LUF *luf, int j, int cap);
- *
- * DESCRIPTION
- *
- * The routine luf_enlarge_col enlarges capacity of the j-th column of
- * the matrix V to cap locations (assuming that its current capacity is
- * less than cap). In order to do that the routine relocates elements
- * of the j-th column to the end of the left part of SVA (which contains
- * rows and columns of the matrix V) and then expands the left part by
- * allocating cap free locations from the free part. If there are less
- * than cap free locations, the routine defragments the sparse vector
- * area.
- *
- * Due to "garbage collection" this operation may change row and column
- * pointers of the matrix V.
- *
- * RETURNS
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- int luf_enlarge_col(LUF *luf, int j, int cap)
- { int n = luf->n;
- int *vr_cap = luf->vr_cap;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *vc_cap = luf->vc_cap;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_prev = luf->sv_prev;
- int *sv_next = luf->sv_next;
- int ret = 0;
- int cur, k, kk;
- xassert(1 <= j && j <= n);
- xassert(vc_cap[j] < cap);
- /* if there are less than cap free locations, defragment SVA */
- if (luf->sv_end - luf->sv_beg < cap)
- { luf_defrag_sva(luf);
- if (luf->sv_end - luf->sv_beg < cap)
- { ret = 1;
- goto done;
- }
- }
- /* save current capacity of the j-th column */
- cur = vc_cap[j];
- /* copy existing elements to the beginning of the free part */
- memmove(&sv_ind[luf->sv_beg], &sv_ind[vc_ptr[j]],
- vc_len[j] * sizeof(int));
- memmove(&sv_val[luf->sv_beg], &sv_val[vc_ptr[j]],
- vc_len[j] * sizeof(double));
- /* set new pointer and new capacity of the j-th column */
- vc_ptr[j] = luf->sv_beg;
- vc_cap[j] = cap;
- /* set new pointer to the beginning of the free part */
- luf->sv_beg += cap;
- /* now the j-th column starts in the rightmost location among
- other rows and columns of the matrix V, so its node should be
- moved to the end of the row/column linked list */
- k = n + j;
- /* remove the j-th column node from the linked list */
- if (sv_prev[k] == 0)
- luf->sv_head = sv_next[k];
- else
- { /* capacity of the previous row/column can be increased at the
- expense of old locations of the j-th column */
- kk = sv_prev[k];
- if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur;
- sv_next[sv_prev[k]] = sv_next[k];
- }
- if (sv_next[k] == 0)
- luf->sv_tail = sv_prev[k];
- else
- sv_prev[sv_next[k]] = sv_prev[k];
- /* insert the j-th column node to the end of the linked list */
- sv_prev[k] = luf->sv_tail;
- sv_next[k] = 0;
- if (sv_prev[k] == 0)
- luf->sv_head = k;
- else
- sv_next[sv_prev[k]] = k;
- luf->sv_tail = k;
- done: return ret;
- }
- /***********************************************************************
- * reallocate - reallocate LU-factorization arrays
- *
- * This routine reallocates arrays, whose size depends of n, the order
- * of the matrix A to be factorized. */
- static void reallocate(LUF *luf, int n)
- { int n_max = luf->n_max;
- luf->n = n;
- if (n <= n_max) goto done;
- if (luf->fr_ptr != NULL) xfree(luf->fr_ptr);
- if (luf->fr_len != NULL) xfree(luf->fr_len);
- if (luf->fc_ptr != NULL) xfree(luf->fc_ptr);
- if (luf->fc_len != NULL) xfree(luf->fc_len);
- if (luf->vr_ptr != NULL) xfree(luf->vr_ptr);
- if (luf->vr_len != NULL) xfree(luf->vr_len);
- if (luf->vr_cap != NULL) xfree(luf->vr_cap);
- if (luf->vr_piv != NULL) xfree(luf->vr_piv);
- if (luf->vc_ptr != NULL) xfree(luf->vc_ptr);
- if (luf->vc_len != NULL) xfree(luf->vc_len);
- if (luf->vc_cap != NULL) xfree(luf->vc_cap);
- if (luf->pp_row != NULL) xfree(luf->pp_row);
- if (luf->pp_col != NULL) xfree(luf->pp_col);
- if (luf->qq_row != NULL) xfree(luf->qq_row);
- if (luf->qq_col != NULL) xfree(luf->qq_col);
- if (luf->sv_prev != NULL) xfree(luf->sv_prev);
- if (luf->sv_next != NULL) xfree(luf->sv_next);
- if (luf->vr_max != NULL) xfree(luf->vr_max);
- if (luf->rs_head != NULL) xfree(luf->rs_head);
- if (luf->rs_prev != NULL) xfree(luf->rs_prev);
- if (luf->rs_next != NULL) xfree(luf->rs_next);
- if (luf->cs_head != NULL) xfree(luf->cs_head);
- if (luf->cs_prev != NULL) xfree(luf->cs_prev);
- if (luf->cs_next != NULL) xfree(luf->cs_next);
- if (luf->flag != NULL) xfree(luf->flag);
- if (luf->work != NULL) xfree(luf->work);
- luf->n_max = n_max = n + 100;
- luf->fr_ptr = xcalloc(1+n_max, sizeof(int));
- luf->fr_len = xcalloc(1+n_max, sizeof(int));
- luf->fc_ptr = xcalloc(1+n_max, sizeof(int));
- luf->fc_len = xcalloc(1+n_max, sizeof(int));
- luf->vr_ptr = xcalloc(1+n_max, sizeof(int));
- luf->vr_len = xcalloc(1+n_max, sizeof(int));
- luf->vr_cap = xcalloc(1+n_max, sizeof(int));
- luf->vr_piv = xcalloc(1+n_max, sizeof(double));
- luf->vc_ptr = xcalloc(1+n_max, sizeof(int));
- luf->vc_len = xcalloc(1+n_max, sizeof(int));
- luf->vc_cap = xcalloc(1+n_max, sizeof(int));
- luf->pp_row = xcalloc(1+n_max, sizeof(int));
- luf->pp_col = xcalloc(1+n_max, sizeof(int));
- luf->qq_row = xcalloc(1+n_max, sizeof(int));
- luf->qq_col = xcalloc(1+n_max, sizeof(int));
- luf->sv_prev = xcalloc(1+n_max+n_max, sizeof(int));
- luf->sv_next = xcalloc(1+n_max+n_max, sizeof(int));
- luf->vr_max = xcalloc(1+n_max, sizeof(double));
- luf->rs_head = xcalloc(1+n_max, sizeof(int));
- luf->rs_prev = xcalloc(1+n_max, sizeof(int));
- luf->rs_next = xcalloc(1+n_max, sizeof(int));
- luf->cs_head = xcalloc(1+n_max, sizeof(int));
- luf->cs_prev = xcalloc(1+n_max, sizeof(int));
- luf->cs_next = xcalloc(1+n_max, sizeof(int));
- luf->flag = xcalloc(1+n_max, sizeof(int));
- luf->work = xcalloc(1+n_max, sizeof(double));
- done: return;
- }
- /***********************************************************************
- * initialize - initialize LU-factorization data structures
- *
- * This routine initializes data structures for subsequent computing
- * the LU-factorization of a given matrix A, which is specified by the
- * formal routine col. On exit V = A and F = P = Q = I, where I is the
- * unity matrix. (Row-wise representation of the matrix F is not used
- * at the factorization stage and therefore is not initialized.)
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- static int initialize(LUF *luf, int (*col)(void *info, int j, int rn[],
- double aj[]), void *info)
- { int n = luf->n;
- int *fc_ptr = luf->fc_ptr;
- int *fc_len = luf->fc_len;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vr_cap = luf->vr_cap;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *vc_cap = luf->vc_cap;
- int *pp_row = luf->pp_row;
- int *pp_col = luf->pp_col;
- int *qq_row = luf->qq_row;
- int *qq_col = luf->qq_col;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_prev = luf->sv_prev;
- int *sv_next = luf->sv_next;
- double *vr_max = luf->vr_max;
- int *rs_head = luf->rs_head;
- int *rs_prev = luf->rs_prev;
- int *rs_next = luf->rs_next;
- int *cs_head = luf->cs_head;
- int *cs_prev = luf->cs_prev;
- int *cs_next = luf->cs_next;
- int *flag = luf->flag;
- double *work = luf->work;
- int ret = 0;
- int i, i_ptr, j, j_beg, j_end, k, len, nnz, sv_beg, sv_end, ptr;
- double big, val;
- /* free all locations of the sparse vector area */
- sv_beg = 1;
- sv_end = luf->sv_size + 1;
- /* (row-wise representation of the matrix F is not initialized,
- because it is not used at the factorization stage) */
- /* build the matrix F in column-wise format (initially F = I) */
- for (j = 1; j <= n; j++)
- { fc_ptr[j] = sv_end;
- fc_len[j] = 0;
- }
- /* clear rows of the matrix V; clear the flag array */
- for (i = 1; i <= n; i++)
- vr_len[i] = vr_cap[i] = 0, flag[i] = 0;
- /* build the matrix V in column-wise format (initially V = A);
- count non-zeros in rows of this matrix; count total number of
- non-zeros; compute largest of absolute values of elements */
- nnz = 0;
- big = 0.0;
- for (j = 1; j <= n; j++)
- { int *rn = pp_row;
- double *aj = work;
- /* obtain j-th column of the matrix A */
- len = col(info, j, rn, aj);
- if (!(0 <= len && len <= n))
- xfault("luf_factorize: j = %d; len = %d; invalid column len"
- "gth\n", j, len);
- /* check for free locations */
- if (sv_end - sv_beg < len)
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* set pointer to the j-th column */
- vc_ptr[j] = sv_beg;
- /* set length of the j-th column */
- vc_len[j] = vc_cap[j] = len;
- /* count total number of non-zeros */
- nnz += len;
- /* walk through elements of the j-th column */
- for (ptr = 1; ptr <= len; ptr++)
- { /* get row index and numerical value of a[i,j] */
- i = rn[ptr];
- val = aj[ptr];
- if (!(1 <= i && i <= n))
- xfault("luf_factorize: i = %d; j = %d; invalid row index"
- "\n", i, j);
- if (flag[i])
- xfault("luf_factorize: i = %d; j = %d; duplicate element"
- " not allowed\n", i, j);
- if (val == 0.0)
- xfault("luf_factorize: i = %d; j = %d; zero element not "
- "allowed\n", i, j);
- /* add new element v[i,j] = a[i,j] to j-th column */
- sv_ind[sv_beg] = i;
- sv_val[sv_beg] = val;
- sv_beg++;
- /* big := max(big, |a[i,j]|) */
- if (val < 0.0) val = - val;
- if (big < val) big = val;
- /* mark non-zero in the i-th position of the j-th column */
- flag[i] = 1;
- /* increase length of the i-th row */
- vr_cap[i]++;
- }
- /* reset all non-zero marks */
- for (ptr = 1; ptr <= len; ptr++) flag[rn[ptr]] = 0;
- }
- /* allocate rows of the matrix V */
- for (i = 1; i <= n; i++)
- { /* get length of the i-th row */
- len = vr_cap[i];
- /* check for free locations */
- if (sv_end - sv_beg < len)
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* set pointer to the i-th row */
- vr_ptr[i] = sv_beg;
- /* reserve locations for the i-th row */
- sv_beg += len;
- }
- /* build the matrix V in row-wise format using representation of
- this matrix in column-wise format */
- for (j = 1; j <= n; j++)
- { /* walk through elements of the j-th column */
- j_beg = vc_ptr[j];
- j_end = j_beg + vc_len[j] - 1;
- for (k = j_beg; k <= j_end; k++)
- { /* get row index and numerical value of v[i,j] */
- i = sv_ind[k];
- val = sv_val[k];
- /* store element in the i-th row */
- i_ptr = vr_ptr[i] + vr_len[i];
- sv_ind[i_ptr] = j;
- sv_val[i_ptr] = val;
- /* increase count of the i-th row */
- vr_len[i]++;
- }
- }
- /* initialize the matrices P and Q (initially P = Q = I) */
- for (k = 1; k <= n; k++)
- pp_row[k] = pp_col[k] = qq_row[k] = qq_col[k] = k;
- /* set sva partitioning pointers */
- luf->sv_beg = sv_beg;
- luf->sv_end = sv_end;
- /* the initial physical order of rows and columns of the matrix V
- is n+1, ..., n+n, 1, ..., n (firstly columns, then rows) */
- luf->sv_head = n+1;
- luf->sv_tail = n;
- for (i = 1; i <= n; i++)
- { sv_prev[i] = i-1;
- sv_next[i] = i+1;
- }
- sv_prev[1] = n+n;
- sv_next[n] = 0;
- for (j = 1; j <= n; j++)
- { sv_prev[n+j] = n+j-1;
- sv_next[n+j] = n+j+1;
- }
- sv_prev[n+1] = 0;
- sv_next[n+n] = 1;
- /* clear working arrays */
- for (k = 1; k <= n; k++)
- { flag[k] = 0;
- work[k] = 0.0;
- }
- /* initialize some statistics */
- luf->nnz_a = nnz;
- luf->nnz_f = 0;
- luf->nnz_v = nnz;
- luf->max_a = big;
- luf->big_v = big;
- luf->rank = -1;
- /* initially the active submatrix is the entire matrix V */
- /* largest of absolute values of elements in each active row is
- unknown yet */
- for (i = 1; i <= n; i++) vr_max[i] = -1.0;
- /* build linked lists of active rows */
- for (len = 0; len <= n; len++) rs_head[len] = 0;
- for (i = 1; i <= n; i++)
- { len = vr_len[i];
- rs_prev[i] = 0;
- rs_next[i] = rs_head[len];
- if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
- rs_head[len] = i;
- }
- /* build linked lists of active columns */
- for (len = 0; len <= n; len++) cs_head[len] = 0;
- for (j = 1; j <= n; j++)
- { len = vc_len[j];
- cs_prev[j] = 0;
- cs_next[j] = cs_head[len];
- if (cs_next[j] != 0) cs_prev[cs_next[j]] = j;
- cs_head[len] = j;
- }
- done: /* return to the factorizing routine */
- return ret;
- }
- /***********************************************************************
- * find_pivot - choose a pivot element
- *
- * This routine chooses a pivot element in the active submatrix of the
- * matrix U = P*V*Q.
- *
- * It is assumed that on entry the matrix U has the following partially
- * triangularized form:
- *
- * 1 k n
- * 1 x x x x x x x x x x
- * . x x x x x x x x x
- * . . x x x x x x x x
- * . . . x x x x x x x
- * k . . . . * * * * * *
- * . . . . * * * * * *
- * . . . . * * * * * *
- * . . . . * * * * * *
- * . . . . * * * * * *
- * n . . . . * * * * * *
- *
- * where rows and columns k, k+1, ..., n belong to the active submatrix
- * (elements of the active submatrix are marked by '*').
- *
- * Since the matrix U = P*V*Q is not stored, the routine works with the
- * matrix V. It is assumed that the row-wise representation corresponds
- * to the matrix V, but the column-wise representation corresponds to
- * the active submatrix of the matrix V, i.e. elements of the matrix V,
- * which doesn't belong to the active submatrix, are missing from the
- * column linked lists. It is also assumed that each active row of the
- * matrix V is in the set R[len], where len is number of non-zeros in
- * the row, and each active column of the matrix V is in the set C[len],
- * where len is number of non-zeros in the column (in the latter case
- * only elements of the active submatrix are counted; such elements are
- * marked by '*' on the figure above).
- *
- * For the reason of numerical stability the routine applies so called
- * threshold pivoting proposed by J.Reid. It is assumed that an element
- * v[i,j] can be selected as a pivot candidate if it is not very small
- * (in absolute value) among other elements in the same row, i.e. if it
- * satisfies to the stability condition |v[i,j]| >= tol * max|v[i,*]|,
- * where 0 < tol < 1 is a given tolerance.
- *
- * In order to keep sparsity of the matrix V the routine uses Markowitz
- * strategy, trying to choose such element v[p,q], which satisfies to
- * the stability condition (see above) and has smallest Markowitz cost
- * (nr[p]-1) * (nc[q]-1), where nr[p] and nc[q] are numbers of non-zero
- * elements, respectively, in the p-th row and in the q-th column of the
- * active submatrix.
- *
- * In order to reduce the search, i.e. not to walk through all elements
- * of the active submatrix, the routine exploits a technique proposed by
- * I.Duff. This technique is based on using the sets R[len] and C[len]
- * of active rows and columns.
- *
- * If the pivot element v[p,q] has been chosen, the routine stores its
- * indices to the locations *p and *q and returns zero. Otherwise, if
- * the active submatrix is empty and therefore the pivot element can't
- * be chosen, the routine returns non-zero. */
- static int find_pivot(LUF *luf, int *_p, int *_q)
- { int n = luf->n;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- double *vr_max = luf->vr_max;
- int *rs_head = luf->rs_head;
- int *rs_next = luf->rs_next;
- int *cs_head = luf->cs_head;
- int *cs_prev = luf->cs_prev;
- int *cs_next = luf->cs_next;
- double piv_tol = luf->piv_tol;
- int piv_lim = luf->piv_lim;
- int suhl = luf->suhl;
- int p, q, len, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr,
- ncand, next_j, min_p, min_q, min_len;
- double best, cost, big, temp;
- /* initially no pivot candidates have been found so far */
- p = q = 0, best = DBL_MAX, ncand = 0;
- /* if in the active submatrix there is a column that has the only
- non-zero (column singleton), choose it as pivot */
- j = cs_head[1];
- if (j != 0)
- { xassert(vc_len[j] == 1);
- p = sv_ind[vc_ptr[j]], q = j;
- goto done;
- }
- /* if in the active submatrix there is a row that has the only
- non-zero (row singleton), choose it as pivot */
- i = rs_head[1];
- if (i != 0)
- { xassert(vr_len[i] == 1);
- p = i, q = sv_ind[vr_ptr[i]];
- goto done;
- }
- /* there are no singletons in the active submatrix; walk through
- other non-empty rows and columns */
- for (len = 2; len <= n; len++)
- { /* consider active columns that have len non-zeros */
- for (j = cs_head[len]; j != 0; j = next_j)
- { /* the j-th column has len non-zeros */
- j_beg = vc_ptr[j];
- j_end = j_beg + vc_len[j] - 1;
- /* save pointer to the next column with the same length */
- next_j = cs_next[j];
- /* find an element in the j-th column, which is placed in a
- row with minimal number of non-zeros and satisfies to the
- stability condition (such element may not exist) */
- min_p = min_q = 0, min_len = INT_MAX;
- for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
- { /* get row index of v[i,j] */
- i = sv_ind[j_ptr];
- i_beg = vr_ptr[i];
- i_end = i_beg + vr_len[i] - 1;
- /* if the i-th row is not shorter than that one, where
- minimal element is currently placed, skip v[i,j] */
- if (vr_len[i] >= min_len) continue;
- /* determine the largest of absolute values of elements
- in the i-th row */
- big = vr_max[i];
- if (big < 0.0)
- { /* the largest value is unknown yet; compute it */
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { temp = sv_val[i_ptr];
- if (temp < 0.0) temp = - temp;
- if (big < temp) big = temp;
- }
- vr_max[i] = big;
- }
- /* find v[i,j] in the i-th row */
- for (i_ptr = vr_ptr[i]; sv_ind[i_ptr] != j; i_ptr++);
- xassert(i_ptr <= i_end);
- /* if v[i,j] doesn't satisfy to the stability condition,
- skip it */
- temp = sv_val[i_ptr];
- if (temp < 0.0) temp = - temp;
- if (temp < piv_tol * big) continue;
- /* v[i,j] is better than the current minimal element */
- min_p = i, min_q = j, min_len = vr_len[i];
- /* if Markowitz cost of the current minimal element is
- not greater than (len-1)**2, it can be chosen right
- now; this heuristic reduces the search and works well
- in many cases */
- if (min_len <= len)
- { p = min_p, q = min_q;
- goto done;
- }
- }
- /* the j-th column has been scanned */
- if (min_p != 0)
- { /* the minimal element is a next pivot candidate */
- ncand++;
- /* compute its Markowitz cost */
- cost = (double)(min_len - 1) * (double)(len - 1);
- /* choose between the minimal element and the current
- candidate */
- if (cost < best) p = min_p, q = min_q, best = cost;
- /* if piv_lim candidates have been considered, there are
- doubts that a much better candidate exists; therefore
- it's time to terminate the search */
- if (ncand == piv_lim) goto done;
- }
- else
- { /* the j-th column has no elements, which satisfy to the
- stability condition; Uwe Suhl suggests to exclude such
- column from the further consideration until it becomes
- a column singleton; in hard cases this significantly
- reduces a time needed for pivot searching */
- if (suhl)
- { /* remove the j-th column from the active set */
- if (cs_prev[j] == 0)
- cs_head[len] = cs_next[j];
- else
- cs_next[cs_prev[j]] = cs_next[j];
- if (cs_next[j] == 0)
- /* nop */;
- else
- cs_prev[cs_next[j]] = cs_prev[j];
- /* the following assignment is used to avoid an error
- when the routine eliminate (see below) will try to
- remove the j-th column from the active set */
- cs_prev[j] = cs_next[j] = j;
- }
- }
- }
- /* consider active rows that have len non-zeros */
- for (i = rs_head[len]; i != 0; i = rs_next[i])
- { /* the i-th row has len non-zeros */
- i_beg = vr_ptr[i];
- i_end = i_beg + vr_len[i] - 1;
- /* determine the largest of absolute values of elements in
- the i-th row */
- big = vr_max[i];
- if (big < 0.0)
- { /* the largest value is unknown yet; compute it */
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { temp = sv_val[i_ptr];
- if (temp < 0.0) temp = - temp;
- if (big < temp) big = temp;
- }
- vr_max[i] = big;
- }
- /* find an element in the i-th row, which is placed in a
- column with minimal number of non-zeros and satisfies to
- the stability condition (such element always exists) */
- min_p = min_q = 0, min_len = INT_MAX;
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { /* get column index of v[i,j] */
- j = sv_ind[i_ptr];
- /* if the j-th column is not shorter than that one, where
- minimal element is currently placed, skip v[i,j] */
- if (vc_len[j] >= min_len) continue;
- /* if v[i,j] doesn't satisfy to the stability condition,
- skip it */
- temp = sv_val[i_ptr];
- if (temp < 0.0) temp = - temp;
- if (temp < piv_tol * big) continue;
- /* v[i,j] is better than the current minimal element */
- min_p = i, min_q = j, min_len = vc_len[j];
- /* if Markowitz cost of the current minimal element is
- not greater than (len-1)**2, it can be chosen right
- now; this heuristic reduces the search and works well
- in many cases */
- if (min_len <= len)
- { p = min_p, q = min_q;
- goto done;
- }
- }
- /* the i-th row has been scanned */
- if (min_p != 0)
- { /* the minimal element is a next pivot candidate */
- ncand++;
- /* compute its Markowitz cost */
- cost = (double)(len - 1) * (double)(min_len - 1);
- /* choose between the minimal element and the current
- candidate */
- if (cost < best) p = min_p, q = min_q, best = cost;
- /* if piv_lim candidates have been considered, there are
- doubts that a much better candidate exists; therefore
- it's time to terminate the search */
- if (ncand == piv_lim) goto done;
- }
- else
- { /* this can't be because this can never be */
- xassert(min_p != min_p);
- }
- }
- }
- done: /* bring the pivot to the factorizing routine */
- *_p = p, *_q = q;
- return (p == 0);
- }
- /***********************************************************************
- * eliminate - perform gaussian elimination.
- *
- * This routine performs elementary gaussian transformations in order
- * to eliminate subdiagonal elements in the k-th column of the matrix
- * U = P*V*Q using the pivot element u[k,k], where k is the number of
- * the current elimination step.
- *
- * The parameters p and q are, respectively, row and column indices of
- * the element v[p,q], which corresponds to the element u[k,k].
- *
- * Each time when the routine applies the elementary transformation to
- * a non-pivot row of the matrix V, it stores the corresponding element
- * to the matrix F in order to keep the main equality A = F*V.
- *
- * The routine assumes that on entry the matrices L = P*F*inv(P) and
- * U = P*V*Q are the following:
- *
- * 1 k 1 k n
- * 1 1 . . . . . . . . . 1 x x x x x x x x x x
- * x 1 . . . . . . . . . x x x x x x x x x
- * x x 1 . . . . . . . . . x x x x x x x x
- * x x x 1 . . . . . . . . . x x x x x x x
- * k x x x x 1 . . . . . k . . . . * * * * * *
- * x x x x _ 1 . . . . . . . . # * * * * *
- * x x x x _ . 1 . . . . . . . # * * * * *
- * x x x x _ . . 1 . . . . . . # * * * * *
- * x x x x _ . . . 1 . . . . . # * * * * *
- * n x x x x _ . . . . 1 n . . . . # * * * * *
- *
- * matrix L matrix U
- *
- * where rows and columns of the matrix U with numbers k, k+1, ..., n
- * form the active submatrix (eliminated elements are marked by '#' and
- * other elements of the active submatrix are marked by '*'). Note that
- * each eliminated non-zero element u[i,k] of the matrix U gives the
- * corresponding element l[i,k] of the matrix L (marked by '_').
- *
- * Actually all operations are performed on the matrix V. Should note
- * that the row-wise representation corresponds to the matrix V, but the
- * column-wise representation corresponds to the active submatrix of the
- * matrix V, i.e. elements of the matrix V, which doesn't belong to the
- * active submatrix, are missing from the column linked lists.
- *
- * Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal
- * elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies
- * the following elementary gaussian transformations:
- *
- * (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V),
- *
- * where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier.
- *
- * Additionally, in order to keep the main equality A = F*V, each time
- * when the routine applies the transformation to i-th row of the matrix
- * V, it also adds f[i,p] as a new element to the matrix F.
- *
- * IMPORTANT: On entry the working arrays flag and work should contain
- * zeros. This status is provided by the routine on exit.
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- static int eliminate(LUF *luf, int p, int q)
- { int n = luf->n;
- int *fc_ptr = luf->fc_ptr;
- int *fc_len = luf->fc_len;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vr_cap = luf->vr_cap;
- double *vr_piv = luf->vr_piv;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *vc_cap = luf->vc_cap;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_prev = luf->sv_prev;
- int *sv_next = luf->sv_next;
- double *vr_max = luf->vr_max;
- int *rs_head = luf->rs_head;
- int *rs_prev = luf->rs_prev;
- int *rs_next = luf->rs_next;
- int *cs_head = luf->cs_head;
- int *cs_prev = luf->cs_prev;
- int *cs_next = luf->cs_next;
- int *flag = luf->flag;
- double *work = luf->work;
- double eps_tol = luf->eps_tol;
- /* at this stage the row-wise representation of the matrix F is
- not used, so fr_len can be used as a working array */
- int *ndx = luf->fr_len;
- int ret = 0;
- int len, fill, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, k,
- p_beg, p_end, p_ptr, q_beg, q_end, q_ptr;
- double fip, val, vpq, temp;
- xassert(1 <= p && p <= n);
- xassert(1 <= q && q <= n);
- /* remove the p-th (pivot) row from the active set; this row will
- never return there */
- if (rs_prev[p] == 0)
- rs_head[vr_len[p]] = rs_next[p];
- else
- rs_next[rs_prev[p]] = rs_next[p];
- if (rs_next[p] == 0)
- ;
- else
- rs_prev[rs_next[p]] = rs_prev[p];
- /* remove the q-th (pivot) column from the active set; this column
- will never return there */
- if (cs_prev[q] == 0)
- cs_head[vc_len[q]] = cs_next[q];
- else
- cs_next[cs_prev[q]] = cs_next[q];
- if (cs_next[q] == 0)
- ;
- else
- cs_prev[cs_next[q]] = cs_prev[q];
- /* find the pivot v[p,q] = u[k,k] in the p-th row */
- p_beg = vr_ptr[p];
- p_end = p_beg + vr_len[p] - 1;
- for (p_ptr = p_beg; sv_ind[p_ptr] != q; p_ptr++) /* nop */;
- xassert(p_ptr <= p_end);
- /* store value of the pivot */
- vpq = (vr_piv[p] = sv_val[p_ptr]);
- /* remove the pivot from the p-th row */
- sv_ind[p_ptr] = sv_ind[p_end];
- sv_val[p_ptr] = sv_val[p_end];
- vr_len[p]--;
- p_end--;
- /* find the pivot v[p,q] = u[k,k] in the q-th column */
- q_beg = vc_ptr[q];
- q_end = q_beg + vc_len[q] - 1;
- for (q_ptr = q_beg; sv_ind[q_ptr] != p; q_ptr++) /* nop */;
- xassert(q_ptr <= q_end);
- /* remove the pivot from the q-th column */
- sv_ind[q_ptr] = sv_ind[q_end];
- vc_len[q]--;
- q_end--;
- /* walk through the p-th (pivot) row, which doesn't contain the
- pivot v[p,q] already, and do the following... */
- for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++)
- { /* get column index of v[p,j] */
- j = sv_ind[p_ptr];
- /* store v[p,j] to the working array */
- flag[j] = 1;
- work[j] = sv_val[p_ptr];
- /* remove the j-th column from the active set; this column will
- return there later with new length */
- if (cs_prev[j] == 0)
- cs_head[vc_len[j]] = cs_next[j];
- else
- cs_next[cs_prev[j]] = cs_next[j];
- if (cs_next[j] == 0)
- ;
- else
- cs_prev[cs_next[j]] = cs_prev[j];
- /* find v[p,j] in the j-th column */
- j_beg = vc_ptr[j];
- j_end = j_beg + vc_len[j] - 1;
- for (j_ptr = j_beg; sv_ind[j_ptr] != p; j_ptr++) /* nop */;
- xassert(j_ptr <= j_end);
- /* since v[p,j] leaves the active submatrix, remove it from the
- j-th column; however, v[p,j] is kept in the p-th row */
- sv_ind[j_ptr] = sv_ind[j_end];
- vc_len[j]--;
- }
- /* walk through the q-th (pivot) column, which doesn't contain the
- pivot v[p,q] already, and perform gaussian elimination */
- while (q_beg <= q_end)
- { /* element v[i,q] should be eliminated */
- /* get row index of v[i,q] */
- i = sv_ind[q_beg];
- /* remove the i-th row from the active set; later this row will
- return there with new length */
- if (rs_prev[i] == 0)
- rs_head[vr_len[i]] = rs_next[i];
- else
- rs_next[rs_prev[i]] = rs_next[i];
- if (rs_next[i] == 0)
- ;
- else
- rs_prev[rs_next[i]] = rs_prev[i];
- /* find v[i,q] in the i-th row */
- i_beg = vr_ptr[i];
- i_end = i_beg + vr_len[i] - 1;
- for (i_ptr = i_beg; sv_ind[i_ptr] != q; i_ptr++) /* nop */;
- xassert(i_ptr <= i_end);
- /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] */
- fip = sv_val[i_ptr] / vpq;
- /* since v[i,q] should be eliminated, remove it from the i-th
- row */
- sv_ind[i_ptr] = sv_ind[i_end];
- sv_val[i_ptr] = sv_val[i_end];
- vr_len[i]--;
- i_end--;
- /* and from the q-th column */
- sv_ind[q_beg] = sv_ind[q_end];
- vc_len[q]--;
- q_end--;
- /* perform gaussian transformation:
- (i-th row) := (i-th row) - f[i,p] * (p-th row)
- note that now the p-th row, which is in the working array,
- doesn't contain the pivot v[p,q], and the i-th row doesn't
- contain the eliminated element v[i,q] */
- /* walk through the i-th row and transform existing non-zero
- elements */
- fill = vr_len[p];
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { /* get column index of v[i,j] */
- j = sv_ind[i_ptr];
- /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */
- if (flag[j])
- { /* v[p,j] != 0 */
- temp = (sv_val[i_ptr] -= fip * work[j]);
- if (temp < 0.0) temp = - temp;
- flag[j] = 0;
- fill--; /* since both v[i,j] and v[p,j] exist */
- if (temp == 0.0 || temp < eps_tol)
- { /* new v[i,j] is closer to zero; replace it by exact
- zero, i.e. remove it from the active submatrix */
- /* remove v[i,j] from the i-th row */
- sv_ind[i_ptr] = sv_ind[i_end];
- sv_val[i_ptr] = sv_val[i_end];
- vr_len[i]--;
- i_ptr--;
- i_end--;
- /* find v[i,j] in the j-th column */
- j_beg = vc_ptr[j];
- j_end = j_beg + vc_len[j] - 1;
- for (j_ptr = j_beg; sv_ind[j_ptr] != i; j_ptr++);
- xassert(j_ptr <= j_end);
- /* remove v[i,j] from the j-th column */
- sv_ind[j_ptr] = sv_ind[j_end];
- vc_len[j]--;
- }
- else
- { /* v_big := max(v_big, |v[i,j]|) */
- if (luf->big_v < temp) luf->big_v = temp;
- }
- }
- }
- /* now flag is the pattern of the set v[p,*] \ v[i,*], and fill
- is number of non-zeros in this set; therefore up to fill new
- non-zeros may appear in the i-th row */
- if (vr_len[i] + fill > vr_cap[i])
- { /* enlarge the i-th row */
- if (luf_enlarge_row(luf, i, vr_len[i] + fill))
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* defragmentation may change row and column pointers of the
- matrix V */
- p_beg = vr_ptr[p];
- p_end = p_beg + vr_len[p] - 1;
- q_beg = vc_ptr[q];
- q_end = q_beg + vc_len[q] - 1;
- }
- /* walk through the p-th (pivot) row and create new elements
- of the i-th row that appear due to fill-in; column indices
- of these new elements are accumulated in the array ndx */
- len = 0;
- for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++)
- { /* get column index of v[p,j], which may cause fill-in */
- j = sv_ind[p_ptr];
- if (flag[j])
- { /* compute new non-zero v[i,j] = 0 - f[i,p] * v[p,j] */
- temp = (val = - fip * work[j]);
- if (temp < 0.0) temp = - temp;
- if (temp == 0.0 || temp < eps_tol)
- /* if v[i,j] is closer to zero; just ignore it */;
- else
- { /* add v[i,j] to the i-th row */
- i_ptr = vr_ptr[i] + vr_len[i];
- sv_ind[i_ptr] = j;
- sv_val[i_ptr] = val;
- vr_len[i]++;
- /* remember column index of v[i,j] */
- ndx[++len] = j;
- /* big_v := max(big_v, |v[i,j]|) */
- if (luf->big_v < temp) luf->big_v = temp;
- }
- }
- else
- { /* there is no fill-in, because v[i,j] already exists in
- the i-th row; restore the flag of the element v[p,j],
- which was reset before */
- flag[j] = 1;
- }
- }
- /* add new non-zeros v[i,j] to the corresponding columns */
- for (k = 1; k <= len; k++)
- { /* get column index of new non-zero v[i,j] */
- j = ndx[k];
- /* one free location is needed in the j-th column */
- if (vc_len[j] + 1 > vc_cap[j])
- { /* enlarge the j-th column */
- if (luf_enlarge_col(luf, j, vc_len[j] + 10))
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* defragmentation may change row and column pointers of
- the matrix V */
- p_beg = vr_ptr[p];
- p_end = p_beg + vr_len[p] - 1;
- q_beg = vc_ptr[q];
- q_end = q_beg + vc_len[q] - 1;
- }
- /* add new non-zero v[i,j] to the j-th column */
- j_ptr = vc_ptr[j] + vc_len[j];
- sv_ind[j_ptr] = i;
- vc_len[j]++;
- }
- /* now the i-th row has been completely transformed, therefore
- it can return to the active set with new length */
- rs_prev[i] = 0;
- rs_next[i] = rs_head[vr_len[i]];
- if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
- rs_head[vr_len[i]] = i;
- /* the largest of absolute values of elements in the i-th row
- is currently unknown */
- vr_max[i] = -1.0;
- /* at least one free location is needed to store the gaussian
- multiplier */
- if (luf->sv_end - luf->sv_beg < 1)
- { /* there are no free locations at all; defragment SVA */
- luf_defrag_sva(luf);
- if (luf->sv_end - luf->sv_beg < 1)
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* defragmentation may change row and column pointers of the
- matrix V */
- p_beg = vr_ptr[p];
- p_end = p_beg + vr_len[p] - 1;
- q_beg = vc_ptr[q];
- q_end = q_beg + vc_len[q] - 1;
- }
- /* add the element f[i,p], which is the gaussian multiplier,
- to the matrix F */
- luf->sv_end--;
- sv_ind[luf->sv_end] = i;
- sv_val[luf->sv_end] = fip;
- fc_len[p]++;
- /* end of elimination loop */
- }
- /* at this point the q-th (pivot) column should be empty */
- xassert(vc_len[q] == 0);
- /* reset capacity of the q-th column */
- vc_cap[q] = 0;
- /* remove node of the q-th column from the addressing list */
- k = n + q;
- if (sv_prev[k] == 0)
- luf->sv_head = sv_next[k];
- else
- sv_next[sv_prev[k]] = sv_next[k];
- if (sv_next[k] == 0)
- luf->sv_tail = sv_prev[k];
- else
- sv_prev[sv_next[k]] = sv_prev[k];
- /* the p-th column of the matrix F has been completely built; set
- its pointer */
- fc_ptr[p] = luf->sv_end;
- /* walk through the p-th (pivot) row and do the following... */
- for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++)
- { /* get column index of v[p,j] */
- j = sv_ind[p_ptr];
- /* erase v[p,j] from the working array */
- flag[j] = 0;
- work[j] = 0.0;
- /* the j-th column has been completely transformed, therefore
- it can return to the active set with new length; however
- the special case c_prev[j] = c_next[j] = j means that the
- routine find_pivot excluded the j-th column from the active
- set due to Uwe Suhl's rule, and therefore in this case the
- column can return to the active set only if it is a column
- singleton */
- if (!(vc_len[j] != 1 && cs_prev[j] == j && cs_next[j] == j))
- { cs_prev[j] = 0;
- cs_next[j] = cs_head[vc_len[j]];
- if (cs_next[j] != 0) cs_prev[cs_next[j]] = j;
- cs_head[vc_len[j]] = j;
- }
- }
- done: /* return to the factorizing routine */
- return ret;
- }
- /***********************************************************************
- * build_v_cols - build the matrix V in column-wise format
- *
- * This routine builds the column-wise representation of the matrix V
- * using its row-wise representation.
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- static int build_v_cols(LUF *luf)
- { int n = luf->n;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *vc_cap = luf->vc_cap;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int *sv_prev = luf->sv_prev;
- int *sv_next = luf->sv_next;
- int ret = 0;
- int i, i_beg, i_end, i_ptr, j, j_ptr, k, nnz;
- /* it is assumed that on entry all columns of the matrix V are
- empty, i.e. vc_len[j] = vc_cap[j] = 0 for all j = 1, ..., n,
- and have been removed from the addressing list */
- /* count non-zeros in columns of the matrix V; count total number
- of non-zeros in this matrix */
- nnz = 0;
- for (i = 1; i <= n; i++)
- { /* walk through elements of the i-th row and count non-zeros
- in the corresponding columns */
- i_beg = vr_ptr[i];
- i_end = i_beg + vr_len[i] - 1;
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- vc_cap[sv_ind[i_ptr]]++;
- /* count total number of non-zeros */
- nnz += vr_len[i];
- }
- /* store total number of non-zeros */
- luf->nnz_v = nnz;
- /* check for free locations */
- if (luf->sv_end - luf->sv_beg < nnz)
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* allocate columns of the matrix V */
- for (j = 1; j <= n; j++)
- { /* set pointer to the j-th column */
- vc_ptr[j] = luf->sv_beg;
- /* reserve locations for the j-th column */
- luf->sv_beg += vc_cap[j];
- }
- /* build the matrix V in column-wise format using this matrix in
- row-wise format */
- for (i = 1; i <= n; i++)
- { /* walk through elements of the i-th row */
- i_beg = vr_ptr[i];
- i_end = i_beg + vr_len[i] - 1;
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { /* get column index */
- j = sv_ind[i_ptr];
- /* store element in the j-th column */
- j_ptr = vc_ptr[j] + vc_len[j];
- sv_ind[j_ptr] = i;
- sv_val[j_ptr] = sv_val[i_ptr];
- /* increase length of the j-th column */
- vc_len[j]++;
- }
- }
- /* now columns are placed in the sparse vector area behind rows
- in the order n+1, n+2, ..., n+n; so insert column nodes in the
- addressing list using this order */
- for (k = n+1; k <= n+n; k++)
- { sv_prev[k] = k-1;
- sv_next[k] = k+1;
- }
- sv_prev[n+1] = luf->sv_tail;
- sv_next[luf->sv_tail] = n+1;
- sv_next[n+n] = 0;
- luf->sv_tail = n+n;
- done: /* return to the factorizing routine */
- return ret;
- }
- /***********************************************************************
- * build_f_rows - build the matrix F in row-wise format
- *
- * This routine builds the row-wise representation of the matrix F using
- * its column-wise representation.
- *
- * If no error occured, the routine returns zero. Otherwise, in case of
- * overflow of the sparse vector area, the routine returns non-zero. */
- static int build_f_rows(LUF *luf)
- { int n = luf->n;
- int *fr_ptr = luf->fr_ptr;
- int *fr_len = luf->fr_len;
- int *fc_ptr = luf->fc_ptr;
- int *fc_len = luf->fc_len;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int ret = 0;
- int i, j, j_beg, j_end, j_ptr, ptr, nnz;
- /* clear rows of the matrix F */
- for (i = 1; i <= n; i++) fr_len[i] = 0;
- /* count non-zeros in rows of the matrix F; count total number of
- non-zeros in this matrix */
- nnz = 0;
- for (j = 1; j <= n; j++)
- { /* walk through elements of the j-th column and count non-zeros
- in the corresponding rows */
- j_beg = fc_ptr[j];
- j_end = j_beg + fc_len[j] - 1;
- for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
- fr_len[sv_ind[j_ptr]]++;
- /* increase total number of non-zeros */
- nnz += fc_len[j];
- }
- /* store total number of non-zeros */
- luf->nnz_f = nnz;
- /* check for free locations */
- if (luf->sv_end - luf->sv_beg < nnz)
- { /* overflow of the sparse vector area */
- ret = 1;
- goto done;
- }
- /* allocate rows of the matrix F */
- for (i = 1; i <= n; i++)
- { /* set pointer to the end of the i-th row; later this pointer
- will be set to the beginning of the i-th row */
- fr_ptr[i] = luf->sv_end;
- /* reserve locations for the i-th row */
- luf->sv_end -= fr_len[i];
- }
- /* build the matrix F in row-wise format using this matrix in
- column-wise format */
- for (j = 1; j <= n; j++)
- { /* walk through elements of the j-th column */
- j_beg = fc_ptr[j];
- j_end = j_beg + fc_len[j] - 1;
- for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
- { /* get row index */
- i = sv_ind[j_ptr];
- /* store element in the i-th row */
- ptr = --fr_ptr[i];
- sv_ind[ptr] = j;
- sv_val[ptr] = sv_val[j_ptr];
- }
- }
- done: /* return to the factorizing routine */
- return ret;
- }
- /***********************************************************************
- * NAME
- *
- * luf_factorize - compute LU-factorization
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j,
- * int ind[], double val[]), void *info);
- *
- * DESCRIPTION
- *
- * The routine luf_factorize computes LU-factorization of a specified
- * square matrix A.
- *
- * The parameter luf specifies LU-factorization program object created
- * by the routine luf_create_it.
- *
- * The parameter n specifies the order of A, n > 0.
- *
- * The formal routine col specifies the matrix A to be factorized. To
- * obtain j-th column of A the routine luf_factorize calls the routine
- * col with the parameter j (1 <= j <= n). In response the routine col
- * should store row indices and numerical values of non-zero elements
- * of j-th column of A to locations ind[1,...,len] and val[1,...,len],
- * respectively, where len is the number of non-zeros in j-th column
- * returned on exit. Neither zero nor duplicate elements are allowed.
- *
- * The parameter info is a transit pointer passed to the routine col.
- *
- * RETURNS
- *
- * 0 LU-factorization has been successfully computed.
- *
- * LUF_ESING
- * The specified matrix is singular within the working precision.
- * (On some elimination step the active submatrix is exactly zero,
- * so no pivot can be chosen.)
- *
- * LUF_ECOND
- * The specified matrix is ill-conditioned.
- * (On some elimination step too intensive growth of elements of the
- * active submatix has been detected.)
- *
- * If matrix A is well scaled, the return code LUF_ECOND may also mean
- * that the threshold pivoting tolerance piv_tol should be increased.
- *
- * In case of non-zero return code the factorization becomes invalid.
- * It should not be used in other operations until the cause of failure
- * has been eliminated and the factorization has been recomputed again
- * with the routine luf_factorize.
- *
- * REPAIRING SINGULAR MATRIX
- *
- * If the routine luf_factorize returns non-zero code, it provides all
- * necessary information that can be used for "repairing" the matrix A,
- * where "repairing" means replacing linearly dependent columns of the
- * matrix A by appropriate columns of the unity matrix. This feature is
- * needed when this routine is used for factorizing the basis matrix
- * within the simplex method procedure.
- *
- * On exit linearly dependent columns of the (partially transformed)
- * matrix U have numbers rank+1, rank+2, ..., n, where rank is estimated
- * rank of the matrix A stored by the routine to the member luf->rank.
- * The correspondence between columns of A and U is the same as between
- * columns of V and U. Thus, linearly dependent columns of the matrix A
- * have numbers qq_col[rank+1], qq_col[rank+2], ..., qq_col[n], where
- * qq_col is the column-like representation of the permutation matrix Q.
- * It is understood that each j-th linearly dependent column of the
- * matrix U should be replaced by the unity vector, where all elements
- * are zero except the unity diagonal element u[j,j]. On the other hand
- * j-th row of the matrix U corresponds to the row of the matrix V (and
- * therefore of the matrix A) with the number pp_row[j], where pp_row is
- * the row-like representation of the permutation matrix P. Thus, each
- * j-th linearly dependent column of the matrix U should be replaced by
- * column of the unity matrix with the number pp_row[j].
- *
- * The code that repairs the matrix A may look like follows:
- *
- * for (j = rank+1; j <= n; j++)
- * { replace the column qq_col[j] of the matrix A by the column
- * pp_row[j] of the unity matrix;
- * }
- *
- * where rank, pp_row, and qq_col are members of the structure LUF. */
- int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j,
- int ind[], double val[]), void *info)
- { int *pp_row, *pp_col, *qq_row, *qq_col;
- double max_gro = luf->max_gro;
- int i, j, k, p, q, t, ret;
- if (n < 1)
- xfault("luf_factorize: n = %d; invalid parameter\n", n);
- if (n > N_MAX)
- xfault("luf_factorize: n = %d; matrix too big\n", n);
- /* invalidate the factorization */
- luf->valid = 0;
- /* reallocate arrays, if necessary */
- reallocate(luf, n);
- pp_row = luf->pp_row;
- pp_col = luf->pp_col;
- qq_row = luf->qq_row;
- qq_col = luf->qq_col;
- /* estimate initial size of the SVA, if not specified */
- if (luf->sv_size == 0 && luf->new_sva == 0)
- luf->new_sva = 5 * (n + 10);
- more: /* reallocate the sparse vector area, if required */
- if (luf->new_sva > 0)
- { if (luf->sv_ind != NULL) xfree(luf->sv_ind);
- if (luf->sv_val != NULL) xfree(luf->sv_val);
- luf->sv_size = luf->new_sva;
- luf->sv_ind = xcalloc(1+luf->sv_size, sizeof(int));
- luf->sv_val = xcalloc(1+luf->sv_size, sizeof(double));
- luf->new_sva = 0;
- }
- /* initialize LU-factorization data structures */
- if (initialize(luf, col, info))
- { /* overflow of the sparse vector area */
- luf->new_sva = luf->sv_size + luf->sv_size;
- xassert(luf->new_sva > luf->sv_size);
- goto more;
- }
- /* main elimination loop */
- for (k = 1; k <= n; k++)
- { /* choose a pivot element v[p,q] */
- if (find_pivot(luf, &p, &q))
- { /* no pivot can be chosen, because the active submatrix is
- exactly zero */
- luf->rank = k - 1;
- ret = LUF_ESING;
- goto done;
- }
- /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th
- rows and k-th and j'-th columns of the matrix U = P*V*Q to
- move the element u[i',j'] to the position u[k,k] */
- i = pp_col[p], j = qq_row[q];
- xassert(k <= i && i <= n && k <= j && j <= n);
- /* permute k-th and i-th rows of the matrix U */
- t = pp_row[k];
- pp_row[i] = t, pp_col[t] = i;
- pp_row[k] = p, pp_col[p] = k;
- /* permute k-th and j-th columns of the matrix U */
- t = qq_col[k];
- qq_col[j] = t, qq_row[t] = j;
- qq_col[k] = q, qq_row[q] = k;
- /* eliminate subdiagonal elements of k-th column of the matrix
- U = P*V*Q using the pivot element u[k,k] = v[p,q] */
- if (eliminate(luf, p, q))
- { /* overflow of the sparse vector area */
- luf->new_sva = luf->sv_size + luf->sv_size;
- xassert(luf->new_sva > luf->sv_size);
- goto more;
- }
- /* check relative growth of elements of the matrix V */
- if (luf->big_v > max_gro * luf->max_a)
- { /* the growth is too intensive, therefore most probably the
- matrix A is ill-conditioned */
- luf->rank = k - 1;
- ret = LUF_ECOND;
- goto done;
- }
- }
- /* now the matrix U = P*V*Q is upper triangular, the matrix V has
- been built in row-wise format, and the matrix F has been built
- in column-wise format */
- /* defragment the sparse vector area in order to merge all free
- locations in one continuous extent */
- luf_defrag_sva(luf);
- /* build the matrix V in column-wise format */
- if (build_v_cols(luf))
- { /* overflow of the sparse vector area */
- luf->new_sva = luf->sv_size + luf->sv_size;
- xassert(luf->new_sva > luf->sv_size);
- goto more;
- }
- /* build the matrix F in row-wise format */
- if (build_f_rows(luf))
- { /* overflow of the sparse vector area */
- luf->new_sva = luf->sv_size + luf->sv_size;
- xassert(luf->new_sva > luf->sv_size);
- goto more;
- }
- /* the LU-factorization has been successfully computed */
- luf->valid = 1;
- luf->rank = n;
- ret = 0;
- /* if there are few free locations in the sparse vector area, try
- increasing its size in the future */
- t = 3 * (n + luf->nnz_v) + 2 * luf->nnz_f;
- if (luf->sv_size < t)
- { luf->new_sva = luf->sv_size;
- while (luf->new_sva < t)
- { k = luf->new_sva;
- luf->new_sva = k + k;
- xassert(luf->new_sva > k);
- }
- }
- done: /* return to the calling program */
- return ret;
- }
- /***********************************************************************
- * NAME
- *
- * luf_f_solve - solve system F*x = b or F'*x = b
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * void luf_f_solve(LUF *luf, int tr, double x[]);
- *
- * DESCRIPTION
- *
- * The routine luf_f_solve solves either the system F*x = b (if the
- * flag tr is zero) or the system F'*x = b (if the flag tr is non-zero),
- * where the matrix F is a component of LU-factorization specified by
- * the parameter luf, F' is a matrix transposed to F.
- *
- * On entry the array x should contain elements of the right-hand side
- * vector b in locations x[1], ..., x[n], where n is the order of the
- * matrix F. On exit this array will contain elements of the solution
- * vector x in the same locations. */
- void luf_f_solve(LUF *luf, int tr, double x[])
- { int n = luf->n;
- int *fr_ptr = luf->fr_ptr;
- int *fr_len = luf->fr_len;
- int *fc_ptr = luf->fc_ptr;
- int *fc_len = luf->fc_len;
- int *pp_row = luf->pp_row;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- int i, j, k, beg, end, ptr;
- double xk;
- if (!luf->valid)
- xfault("luf_f_solve: LU-factorization is not valid\n");
- if (!tr)
- { /* solve the system F*x = b */
- for (j = 1; j <= n; j++)
- { k = pp_row[j];
- xk = x[k];
- if (xk != 0.0)
- { beg = fc_ptr[k];
- end = beg + fc_len[k] - 1;
- for (ptr = beg; ptr <= end; ptr++)
- x[sv_ind[ptr]] -= sv_val[ptr] * xk;
- }
- }
- }
- else
- { /* solve the system F'*x = b */
- for (i = n; i >= 1; i--)
- { k = pp_row[i];
- xk = x[k];
- if (xk != 0.0)
- { beg = fr_ptr[k];
- end = beg + fr_len[k] - 1;
- for (ptr = beg; ptr <= end; ptr++)
- x[sv_ind[ptr]] -= sv_val[ptr] * xk;
- }
- }
- }
- return;
- }
- /***********************************************************************
- * NAME
- *
- * luf_v_solve - solve system V*x = b or V'*x = b
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * void luf_v_solve(LUF *luf, int tr, double x[]);
- *
- * DESCRIPTION
- *
- * The routine luf_v_solve solves either the system V*x = b (if the
- * flag tr is zero) or the system V'*x = b (if the flag tr is non-zero),
- * where the matrix V is a component of LU-factorization specified by
- * the parameter luf, V' is a matrix transposed to V.
- *
- * On entry the array x should contain elements of the right-hand side
- * vector b in locations x[1], ..., x[n], where n is the order of the
- * matrix V. On exit this array will contain elements of the solution
- * vector x in the same locations. */
- void luf_v_solve(LUF *luf, int tr, double x[])
- { int n = luf->n;
- int *vr_ptr = luf->vr_ptr;
- int *vr_len = luf->vr_len;
- double *vr_piv = luf->vr_piv;
- int *vc_ptr = luf->vc_ptr;
- int *vc_len = luf->vc_len;
- int *pp_row = luf->pp_row;
- int *qq_col = luf->qq_col;
- int *sv_ind = luf->sv_ind;
- double *sv_val = luf->sv_val;
- double *b = luf->work;
- int i, j, k, beg, end, ptr;
- double temp;
- if (!luf->valid)
- xfault("luf_v_solve: LU-factorization is not valid\n");
- for (k = 1; k <= n; k++) b[k] = x[k], x[k] = 0.0;
- if (!tr)
- { /* solve the system V*x = b */
- for (k = n; k >= 1; k--)
- { i = pp_row[k], j = qq_col[k];
- temp = b[i];
- if (temp != 0.0)
- { x[j] = (temp /= vr_piv[i]);
- beg = vc_ptr[j];
- end = beg + vc_len[j] - 1;
- for (ptr = beg; ptr <= end; ptr++)
- b[sv_ind[ptr]] -= sv_val[ptr] * temp;
- }
- }
- }
- else
- { /* solve the system V'*x = b */
- for (k = 1; k <= n; k++)
- { i = pp_row[k], j = qq_col[k];
- temp = b[j];
- if (temp != 0.0)
- { x[i] = (temp /= vr_piv[i]);
- beg = vr_ptr[i];
- end = beg + vr_len[i] - 1;
- for (ptr = beg; ptr <= end; ptr++)
- b[sv_ind[ptr]] -= sv_val[ptr] * temp;
- }
- }
- }
- return;
- }
- /***********************************************************************
- * NAME
- *
- * luf_a_solve - solve system A*x = b or A'*x = b
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * void luf_a_solve(LUF *luf, int tr, double x[]);
- *
- * DESCRIPTION
- *
- * The routine luf_a_solve solves either the system A*x = b (if the
- * flag tr is zero) or the system A'*x = b (if the flag tr is non-zero),
- * where the parameter luf specifies LU-factorization of the matrix A,
- * A' is a matrix transposed to A.
- *
- * On entry the array x should contain elements of the right-hand side
- * vector b in locations x[1], ..., x[n], where n is the order of the
- * matrix A. On exit this array will contain elements of the solution
- * vector x in the same locations. */
- void luf_a_solve(LUF *luf, int tr, double x[])
- { if (!luf->valid)
- xfault("luf_a_solve: LU-factorization is not valid\n");
- if (!tr)
- { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */
- luf_f_solve(luf, 0, x);
- luf_v_solve(luf, 0, x);
- }
- else
- { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */
- luf_v_solve(luf, 1, x);
- luf_f_solve(luf, 1, x);
- }
- return;
- }
- /***********************************************************************
- * NAME
- *
- * luf_delete_it - delete LU-factorization
- *
- * SYNOPSIS
- *
- * #include "glpluf.h"
- * void luf_delete_it(LUF *luf);
- *
- * DESCRIPTION
- *
- * The routine luf_delete deletes LU-factorization specified by the
- * parameter luf and frees all the memory allocated to this program
- * object. */
- void luf_delete_it(LUF *luf)
- { if (luf->fr_ptr != NULL) xfree(luf->fr_ptr);
- if (luf->fr_len != NULL) xfree(luf->fr_len);
- if (luf->fc_ptr != NULL) xfree(luf->fc_ptr);
- if (luf->fc_len != NULL) xfree(luf->fc_len);
- if (luf->vr_ptr != NULL) xfree(luf->vr_ptr);
- if (luf->vr_len != NULL) xfree(luf->vr_len);
- if (luf->vr_cap != NULL) xfree(luf->vr_cap);
- if (luf->vr_piv != NULL) xfree(luf->vr_piv);
- if (luf->vc_ptr != NULL) xfree(luf->vc_ptr);
- if (luf->vc_len != NULL) xfree(luf->vc_len);
- if (luf->vc_cap != NULL) xfree(luf->vc_cap);
- if (luf->pp_row != NULL) xfree(luf->pp_row);
- if (luf->pp_col != NULL) xfree(luf->pp_col);
- if (luf->qq_row != NULL) xfree(luf->qq_row);
- if (luf->qq_col != NULL) xfree(luf->qq_col);
- if (luf->sv_ind != NULL) xfree(luf->sv_ind);
- if (luf->sv_val != NULL) xfree(luf->sv_val);
- if (luf->sv_prev != NULL) xfree(luf->sv_prev);
- if (luf->sv_next != NULL) xfree(luf->sv_next);
- if (luf->vr_max != NULL) xfree(luf->vr_max);
- if (luf->rs_head != NULL) xfree(luf->rs_head);
- if (luf->rs_prev != NULL) xfree(luf->rs_prev);
- if (luf->rs_next != NULL) xfree(luf->rs_next);
- if (luf->cs_head != NULL) xfree(luf->cs_head);
- if (luf->cs_prev != NULL) xfree(luf->cs_prev);
- if (luf->cs_next != NULL) xfree(luf->cs_next);
- if (luf->flag != NULL) xfree(luf->flag);
- if (luf->work != NULL) xfree(luf->work);
- xfree(luf);
- return;
- }
- /* eof */
|