123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- #pragma GCC diagnostic ignored "-Wall"
- /* glplpx02.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpapi.h"
- /***********************************************************************
- * NAME
- *
- * lpx_put_solution - store basic solution components
- *
- * SYNOPSIS
- *
- * void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
- * const int *d_stat, const double *obj_val, const int r_stat[],
- * const double r_prim[], const double r_dual[], const int c_stat[],
- * const double c_prim[], const double c_dual[])
- *
- * DESCRIPTION
- *
- * The routine lpx_put_solution stores basic solution components to the
- * specified problem object.
- *
- * The parameter inval is the basis factorization invalidity flag.
- * If this flag is clear, the current status of the basis factorization
- * remains unchanged. If this flag is set, the routine invalidates the
- * basis factorization.
- *
- * The parameter p_stat is a pointer to the status of primal basic
- * solution, which should be specified as follows:
- *
- * GLP_UNDEF - primal solution is undefined;
- * GLP_FEAS - primal solution is feasible;
- * GLP_INFEAS - primal solution is infeasible;
- * GLP_NOFEAS - no primal feasible solution exists.
- *
- * If the parameter p_stat is NULL, the current status of primal basic
- * solution remains unchanged.
- *
- * The parameter d_stat is a pointer to the status of dual basic
- * solution, which should be specified as follows:
- *
- * GLP_UNDEF - dual solution is undefined;
- * GLP_FEAS - dual solution is feasible;
- * GLP_INFEAS - dual solution is infeasible;
- * GLP_NOFEAS - no dual feasible solution exists.
- *
- * If the parameter d_stat is NULL, the current status of dual basic
- * solution remains unchanged.
- *
- * The parameter obj_val is a pointer to the objective function value.
- * If it is NULL, the current value of the objective function remains
- * unchanged.
- *
- * The array element r_stat[i], 1 <= i <= m (where m is the number of
- * rows in the problem object), specifies the status of i-th auxiliary
- * variable, which should be specified as follows:
- *
- * GLP_BS - basic variable;
- * GLP_NL - non-basic variable on lower bound;
- * GLP_NU - non-basic variable on upper bound;
- * GLP_NF - non-basic free variable;
- * GLP_NS - non-basic fixed variable.
- *
- * If the parameter r_stat is NULL, the current statuses of auxiliary
- * variables remain unchanged.
- *
- * The array element r_prim[i], 1 <= i <= m (where m is the number of
- * rows in the problem object), specifies a primal value of i-th
- * auxiliary variable. If the parameter r_prim is NULL, the current
- * primal values of auxiliary variables remain unchanged.
- *
- * The array element r_dual[i], 1 <= i <= m (where m is the number of
- * rows in the problem object), specifies a dual value (reduced cost)
- * of i-th auxiliary variable. If the parameter r_dual is NULL, the
- * current dual values of auxiliary variables remain unchanged.
- *
- * The array element c_stat[j], 1 <= j <= n (where n is the number of
- * columns in the problem object), specifies the status of j-th
- * structural variable, which should be specified as follows:
- *
- * GLP_BS - basic variable;
- * GLP_NL - non-basic variable on lower bound;
- * GLP_NU - non-basic variable on upper bound;
- * GLP_NF - non-basic free variable;
- * GLP_NS - non-basic fixed variable.
- *
- * If the parameter c_stat is NULL, the current statuses of structural
- * variables remain unchanged.
- *
- * The array element c_prim[j], 1 <= j <= n (where n is the number of
- * columns in the problem object), specifies a primal value of j-th
- * structural variable. If the parameter c_prim is NULL, the current
- * primal values of structural variables remain unchanged.
- *
- * The array element c_dual[j], 1 <= j <= n (where n is the number of
- * columns in the problem object), specifies a dual value (reduced cost)
- * of j-th structural variable. If the parameter c_dual is NULL, the
- * current dual values of structural variables remain unchanged. */
- void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
- const int *d_stat, const double *obj_val, const int r_stat[],
- const double r_prim[], const double r_dual[], const int c_stat[],
- const double c_prim[], const double c_dual[])
- { GLPROW *row;
- GLPCOL *col;
- int i, j;
- /* invalidate the basis factorization, if required */
- if (inval) lp->valid = 0;
- /* store primal status */
- if (p_stat != NULL)
- { if (!(*p_stat == GLP_UNDEF || *p_stat == GLP_FEAS ||
- *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS))
- xerror("lpx_put_solution: p_stat = %d; invalid primal statu"
- "s\n", *p_stat);
- lp->pbs_stat = *p_stat;
- }
- /* store dual status */
- if (d_stat != NULL)
- { if (!(*d_stat == GLP_UNDEF || *d_stat == GLP_FEAS ||
- *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS))
- xerror("lpx_put_solution: d_stat = %d; invalid dual status "
- "\n", *d_stat);
- lp->dbs_stat = *d_stat;
- }
- /* store objective function value */
- if (obj_val != NULL) lp->obj_val = *obj_val;
- /* store row solution components */
- for (i = 1; i <= lp->m; i++)
- { row = lp->row[i];
- if (r_stat != NULL)
- { if (!(r_stat[i] == GLP_BS ||
- row->type == GLP_FR && r_stat[i] == GLP_NF ||
- row->type == GLP_LO && r_stat[i] == GLP_NL ||
- row->type == GLP_UP && r_stat[i] == GLP_NU ||
- row->type == GLP_DB && r_stat[i] == GLP_NL ||
- row->type == GLP_DB && r_stat[i] == GLP_NU ||
- row->type == GLP_FX && r_stat[i] == GLP_NS))
- xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s"
- "tatus\n", i, r_stat[i]);
- row->stat = r_stat[i];
- }
- if (r_prim != NULL) row->prim = r_prim[i];
- if (r_dual != NULL) row->dual = r_dual[i];
- }
- /* store column solution components */
- for (j = 1; j <= lp->n; j++)
- { col = lp->col[j];
- if (c_stat != NULL)
- { if (!(c_stat[j] == GLP_BS ||
- col->type == GLP_FR && c_stat[j] == GLP_NF ||
- col->type == GLP_LO && c_stat[j] == GLP_NL ||
- col->type == GLP_UP && c_stat[j] == GLP_NU ||
- col->type == GLP_DB && c_stat[j] == GLP_NL ||
- col->type == GLP_DB && c_stat[j] == GLP_NU ||
- col->type == GLP_FX && c_stat[j] == GLP_NS))
- xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum"
- "n status\n", j, c_stat[j]);
- col->stat = c_stat[j];
- }
- if (c_prim != NULL) col->prim = c_prim[j];
- if (c_dual != NULL) col->dual = c_dual[j];
- }
- return;
- }
- /*----------------------------------------------------------------------
- -- lpx_put_mip_soln - store mixed integer solution components.
- --
- -- *Synopsis*
- --
- -- #include "glplpx.h"
- -- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
- -- double col_mipx[]);
- --
- -- *Description*
- --
- -- The routine lpx_put_mip_soln stores solution components obtained by
- -- branch-and-bound solver into the specified problem object.
- --
- -- NOTE: This routine is intended for internal use only. */
- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
- double col_mipx[])
- { GLPROW *row;
- GLPCOL *col;
- int i, j;
- double sum;
- /* store mixed integer status */
- #if 0
- if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT ||
- i_stat == LPX_I_FEAS || i_stat == LPX_I_NOFEAS))
- fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st"
- "atus", i_stat);
- lp->i_stat = i_stat;
- #else
- switch (i_stat)
- { case LPX_I_UNDEF:
- lp->mip_stat = GLP_UNDEF; break;
- case LPX_I_OPT:
- lp->mip_stat = GLP_OPT; break;
- case LPX_I_FEAS:
- lp->mip_stat = GLP_FEAS; break;
- case LPX_I_NOFEAS:
- lp->mip_stat = GLP_NOFEAS; break;
- default:
- xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege"
- "r status\n", i_stat);
- }
- #endif
- /* store row solution components */
- if (row_mipx != NULL)
- { for (i = 1; i <= lp->m; i++)
- { row = lp->row[i];
- row->mipx = row_mipx[i];
- }
- }
- /* store column solution components */
- if (col_mipx != NULL)
- { for (j = 1; j <= lp->n; j++)
- { col = lp->col[j];
- col->mipx = col_mipx[j];
- }
- }
- /* if the solution is claimed to be integer feasible, check it */
- if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS)
- { for (j = 1; j <= lp->n; j++)
- { col = lp->col[j];
- if (col->kind == GLP_IV && col->mipx != floor(col->mipx))
- xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i"
- "ntegral\n", j, DBL_DIG, col->mipx);
- }
- }
- /* compute the objective function value */
- sum = lp->c0;
- for (j = 1; j <= lp->n; j++)
- { col = lp->col[j];
- sum += col->coef * col->mipx;
- }
- lp->mip_obj = sum;
- return;
- }
- /* eof */
|