123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- /* glplpf.h (LP basis factorization, Schur complement version) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #ifndef GLPLPF_H
- #define GLPLPF_H
- #include "glpscf.h"
- #include "glpluf.h"
- /***********************************************************************
- * The structure LPF defines the factorization of the basis mxm matrix
- * B, where m is the number of rows in corresponding problem instance.
- *
- * This factorization is the following septet:
- *
- * [B] = (L0, U0, R, S, C, P, Q), (1)
- *
- * and is based on the following main equality:
- *
- * ( B F^) ( B0 F ) ( L0 0 ) ( U0 R )
- * ( ) = P ( ) Q = P ( ) ( ) Q, (2)
- * ( G^ H^) ( G H ) ( S I ) ( 0 C )
- *
- * where:
- *
- * B is the current basis matrix (not stored);
- *
- * F^, G^, H^ are some additional matrices (not stored);
- *
- * B0 is some initial basis matrix (not stored);
- *
- * F, G, H are some additional matrices (not stored);
- *
- * P, Q are permutation matrices (stored in both row- and column-like
- * formats);
- *
- * L0, U0 are some matrices that defines a factorization of the initial
- * basis matrix B0 = L0 * U0 (stored in an invertable form);
- *
- * R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
- * a column-wise sparse format);
- *
- * S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
- * a row-wise sparse format);
- *
- * C is the Schur complement for matrix (B0 F G H). It is defined from
- * S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
- * = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
- *
- * REFERENCES
- *
- * 1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
- * tion," SCCM, Stanford University, 2006.
- *
- * 2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
- * sity, Spring 2006.
- *
- * 3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
- * ibid. */
- typedef struct LPF LPF;
- struct LPF
- { /* LP basis factorization */
- int valid;
- /* the factorization is valid only if this flag is set */
- /*--------------------------------------------------------------*/
- /* initial basis matrix B0 */
- int m0_max;
- /* maximal value of m0 (increased automatically, if necessary) */
- int m0;
- /* the order of B0 */
- LUF *luf;
- /* LU-factorization of B0 */
- /*--------------------------------------------------------------*/
- /* current basis matrix B */
- int m;
- /* the order of B */
- double *B; /* double B[1+m*m]; */
- /* B in dense format stored by rows and used only for debugging;
- normally this array is not allocated */
- /*--------------------------------------------------------------*/
- /* augmented matrix (B0 F G H) of the order m0+n */
- int n_max;
- /* maximal number of additional rows and columns */
- int n;
- /* current number of additional rows and columns */
- /*--------------------------------------------------------------*/
- /* m0xn matrix R in column-wise format */
- int *R_ptr; /* int R_ptr[1+n_max]; */
- /* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
- int *R_len; /* int R_len[1+n_max]; */
- /* R_len[j], 1 <= j <= n, is the length of j-th column */
- /*--------------------------------------------------------------*/
- /* nxm0 matrix S in row-wise format */
- int *S_ptr; /* int S_ptr[1+n_max]; */
- /* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
- int *S_len; /* int S_len[1+n_max]; */
- /* S_len[i], 1 <= i <= n, is the length of i-th row */
- /*--------------------------------------------------------------*/
- /* Schur complement C of the order n */
- SCF *scf; /* SCF scf[1:n_max]; */
- /* factorization of the Schur complement */
- /*--------------------------------------------------------------*/
- /* matrix P of the order m0+n */
- int *P_row; /* int P_row[1+m0_max+n_max]; */
- /* P_row[i] = j means that P[i,j] = 1 */
- int *P_col; /* int P_col[1+m0_max+n_max]; */
- /* P_col[j] = i means that P[i,j] = 1 */
- /*--------------------------------------------------------------*/
- /* matrix Q of the order m0+n */
- int *Q_row; /* int Q_row[1+m0_max+n_max]; */
- /* Q_row[i] = j means that Q[i,j] = 1 */
- int *Q_col; /* int Q_col[1+m0_max+n_max]; */
- /* Q_col[j] = i means that Q[i,j] = 1 */
- /*--------------------------------------------------------------*/
- /* Sparse Vector Area (SVA) is a set of locations intended to
- store sparse vectors which represent columns of matrix R and
- rows of matrix S; each location is a doublet (ind, val), where
- ind is an index, val is a numerical value of a sparse vector
- element; in the whole each sparse vector is a set of adjacent
- locations defined by a pointer to its first element and its
- length, i.e. the number of its elements */
- int v_size;
- /* the SVA size, in locations; locations are numbered by integers
- 1, 2, ..., v_size, and location 0 is not used */
- int v_ptr;
- /* pointer to the first available location */
- int *v_ind; /* int v_ind[1+v_size]; */
- /* v_ind[k], 1 <= k <= v_size, is the index field of location k */
- double *v_val; /* double v_val[1+v_size]; */
- /* v_val[k], 1 <= k <= v_size, is the value field of location k */
- /*--------------------------------------------------------------*/
- double *work1; /* double work1[1+m0+n_max]; */
- /* working array */
- double *work2; /* double work2[1+m0+n_max]; */
- /* working array */
- };
- /* return codes: */
- #define LPF_ESING 1 /* singular matrix */
- #define LPF_ECOND 2 /* ill-conditioned matrix */
- #define LPF_ELIMIT 3 /* update limit reached */
- #define lpf_create_it _glp_lpf_create_it
- LPF *lpf_create_it(void);
- /* create LP basis factorization */
- #define lpf_factorize _glp_lpf_factorize
- int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
- (void *info, int j, int ind[], double val[]), void *info);
- /* compute LP basis factorization */
- #define lpf_ftran _glp_lpf_ftran
- void lpf_ftran(LPF *lpf, double x[]);
- /* perform forward transformation (solve system B*x = b) */
- #define lpf_btran _glp_lpf_btran
- void lpf_btran(LPF *lpf, double x[]);
- /* perform backward transformation (solve system B'*x = b) */
- #define lpf_update_it _glp_lpf_update_it
- int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
- const double val[]);
- /* update LP basis factorization */
- #define lpf_delete_it _glp_lpf_delete_it
- void lpf_delete_it(LPF *lpf);
- /* delete LP basis factorization */
- #endif
- /* eof */
|