1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144 |
- /* glpipm.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpipm.h"
- #include "glpmat.h"
- #define ITER_MAX 100
- /* maximal number of iterations */
- struct csa
- { /* common storage area */
- /*--------------------------------------------------------------*/
- /* LP data */
- int m;
- /* number of rows (equality constraints) */
- int n;
- /* number of columns (structural variables) */
- int *A_ptr; /* int A_ptr[1+m+1]; */
- int *A_ind; /* int A_ind[A_ptr[m+1]]; */
- double *A_val; /* double A_val[A_ptr[m+1]]; */
- /* mxn-matrix A in storage-by-rows format */
- double *b; /* double b[1+m]; */
- /* m-vector b of right-hand sides */
- double *c; /* double c[1+n]; */
- /* n-vector c of objective coefficients; c[0] is constant term of
- the objective function */
- /*--------------------------------------------------------------*/
- /* LP solution */
- double *x; /* double x[1+n]; */
- double *y; /* double y[1+m]; */
- double *z; /* double z[1+n]; */
- /* current point in primal-dual space; the best point on exit */
- /*--------------------------------------------------------------*/
- /* control parameters */
- const glp_iptcp *parm;
- /*--------------------------------------------------------------*/
- /* working arrays and variables */
- double *D; /* double D[1+n]; */
- /* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and
- Z = diag(z[j]) */
- int *P; /* int P[1+m+m]; */
- /* permutation mxm-matrix P used to minimize fill-in in Cholesky
- factorization */
- int *S_ptr; /* int S_ptr[1+m+1]; */
- int *S_ind; /* int S_ind[S_ptr[m+1]]; */
- double *S_val; /* double S_val[S_ptr[m+1]]; */
- double *S_diag; /* double S_diag[1+m]; */
- /* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular
- part without diagonal elements is stored in S_ptr, S_ind, and
- S_val in storage-by-rows format, diagonal elements are stored
- in S_diag */
- int *U_ptr; /* int U_ptr[1+m+1]; */
- int *U_ind; /* int U_ind[U_ptr[m+1]]; */
- double *U_val; /* double U_val[U_ptr[m+1]]; */
- double *U_diag; /* double U_diag[1+m]; */
- /* upper triangular mxm-matrix U defining Cholesky factorization
- S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind,
- U_val in storage-by-rows format, diagonal elements are stored
- in U_diag */
- int iter;
- /* iteration number (0, 1, 2, ...); iter = 0 corresponds to the
- initial point */
- double obj;
- /* current value of the objective function */
- double rpi;
- /* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */
- double rdi;
- /* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */
- double gap;
- /* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative
- difference between primal and dual objective functions */
- double phi;
- /* merit function phi = ||A*x-b||/max(1,||b||) +
- + ||A'*y+z-c||/max(1,||c||) +
- + |c'*x-b'*y|/max(1,||b||,||c||) */
- double mu;
- /* duality measure mu = x'*z/n (used as barrier parameter) */
- double rmu;
- /* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */
- double rmu0;
- /* the initial value of rmu on iteration 0 */
- double *phi_min; /* double phi_min[1+ITER_MAX]; */
- /* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on
- k-th iteration, 0 <= k <= iter */
- int best_iter;
- /* iteration number, on which the value of phi reached its best
- (minimal) value */
- double *best_x; /* double best_x[1+n]; */
- double *best_y; /* double best_y[1+m]; */
- double *best_z; /* double best_z[1+n]; */
- /* best point (in the sense of the merit function phi) which has
- been reached on iteration iter_best */
- double best_obj;
- /* objective value at the best point */
- double *dx_aff; /* double dx_aff[1+n]; */
- double *dy_aff; /* double dy_aff[1+m]; */
- double *dz_aff; /* double dz_aff[1+n]; */
- /* affine scaling direction */
- double alfa_aff_p, alfa_aff_d;
- /* maximal primal and dual stepsizes in affine scaling direction,
- on which x and z are still non-negative */
- double mu_aff;
- /* duality measure mu_aff = x_aff'*z_aff/n in the boundary point
- x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */
- double sigma;
- /* Mehrotra's heuristic parameter (0 <= sigma <= 1) */
- double *dx_cc; /* double dx_cc[1+n]; */
- double *dy_cc; /* double dy_cc[1+m]; */
- double *dz_cc; /* double dz_cc[1+n]; */
- /* centering corrector direction */
- double *dx; /* double dx[1+n]; */
- double *dy; /* double dy[1+m]; */
- double *dz; /* double dz[1+n]; */
- /* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc,
- dz = dz_aff+dz_cc */
- double alfa_max_p;
- double alfa_max_d;
- /* maximal primal and dual stepsizes in combined direction, on
- which x and z are still non-negative */
- };
- /***********************************************************************
- * initialize - allocate and initialize common storage area
- *
- * This routine allocates and initializes the common storage area (CSA)
- * used by interior-point method routines. */
- static void initialize(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- int i;
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1);
- csa->D = xcalloc(1+n, sizeof(double));
- /* P := I */
- csa->P = xcalloc(1+m+m, sizeof(int));
- for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i;
- /* S := A*A', symbolically */
- csa->S_ptr = xcalloc(1+m+1, sizeof(int));
- csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
- csa->S_ptr);
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n",
- csa->S_ptr[m+1]-1 + m);
- /* determine P using specified ordering algorithm */
- if (csa->parm->ord_alg == GLP_ORD_NONE)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Original ordering is being used\n");
- for (i = 1; i <= m; i++)
- csa->P[i] = csa->P[m+i] = i;
- }
- else if (csa->parm->ord_alg == GLP_ORD_QMD)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Minimum degree ordering (QMD)...\n");
- min_degree(m, csa->S_ptr, csa->S_ind, csa->P);
- }
- else if (csa->parm->ord_alg == GLP_ORD_AMD)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Approximate minimum degree ordering (AMD)...\n");
- amd_order1(m, csa->S_ptr, csa->S_ind, csa->P);
- }
- else if (csa->parm->ord_alg == GLP_ORD_SYMAMD)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Approximate minimum degree ordering (SYMAMD)...\n")
- ;
- symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P);
- }
- else
- xassert(csa != csa);
- /* S := P*A*A'*P', symbolically */
- xfree(csa->S_ind);
- csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
- csa->S_ptr);
- csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double));
- csa->S_diag = xcalloc(1+m, sizeof(double));
- /* compute Cholesky factorization S = U'*U, symbolically */
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Computing Cholesky factorization S = L*L'...\n");
- csa->U_ptr = xcalloc(1+m+1, sizeof(int));
- csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr);
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m);
- csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double));
- csa->U_diag = xcalloc(1+m, sizeof(double));
- csa->iter = 0;
- csa->obj = 0.0;
- csa->rpi = 0.0;
- csa->rdi = 0.0;
- csa->gap = 0.0;
- csa->phi = 0.0;
- csa->mu = 0.0;
- csa->rmu = 0.0;
- csa->rmu0 = 0.0;
- csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double));
- csa->best_iter = 0;
- csa->best_x = xcalloc(1+n, sizeof(double));
- csa->best_y = xcalloc(1+m, sizeof(double));
- csa->best_z = xcalloc(1+n, sizeof(double));
- csa->best_obj = 0.0;
- csa->dx_aff = xcalloc(1+n, sizeof(double));
- csa->dy_aff = xcalloc(1+m, sizeof(double));
- csa->dz_aff = xcalloc(1+n, sizeof(double));
- csa->alfa_aff_p = 0.0;
- csa->alfa_aff_d = 0.0;
- csa->mu_aff = 0.0;
- csa->sigma = 0.0;
- csa->dx_cc = xcalloc(1+n, sizeof(double));
- csa->dy_cc = xcalloc(1+m, sizeof(double));
- csa->dz_cc = xcalloc(1+n, sizeof(double));
- csa->dx = csa->dx_aff;
- csa->dy = csa->dy_aff;
- csa->dz = csa->dz_aff;
- csa->alfa_max_p = 0.0;
- csa->alfa_max_d = 0.0;
- return;
- }
- /***********************************************************************
- * A_by_vec - compute y = A*x
- *
- * This routine computes matrix-vector product y = A*x, where A is the
- * constraint matrix. */
- static void A_by_vec(struct csa *csa, double x[], double y[])
- { /* compute y = A*x */
- int m = csa->m;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int i, t, beg, end;
- double temp;
- for (i = 1; i <= m; i++)
- { temp = 0.0;
- beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]];
- y[i] = temp;
- }
- return;
- }
- /***********************************************************************
- * AT_by_vec - compute y = A'*x
- *
- * This routine computes matrix-vector product y = A'*x, where A' is a
- * matrix transposed to the constraint matrix A. */
- static void AT_by_vec(struct csa *csa, double x[], double y[])
- { /* compute y = A'*x, where A' is transposed to A */
- int m = csa->m;
- int n = csa->n;
- int *A_ptr = csa->A_ptr;
- int *A_ind = csa->A_ind;
- double *A_val = csa->A_val;
- int i, j, t, beg, end;
- double temp;
- for (j = 1; j <= n; j++) y[j] = 0.0;
- for (i = 1; i <= m; i++)
- { temp = x[i];
- if (temp == 0.0) continue;
- beg = A_ptr[i], end = A_ptr[i+1];
- for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp;
- }
- return;
- }
- /***********************************************************************
- * decomp_NE - numeric factorization of matrix S = P*A*D*A'*P'
- *
- * This routine implements numeric phase of Cholesky factorization of
- * the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal
- * equation system. Matrix D is assumed to be already computed. */
- static void decomp_NE(struct csa *csa)
- { adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind,
- csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val,
- csa->S_diag);
- chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val,
- csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag);
- return;
- }
- /***********************************************************************
- * solve_NE - solve normal equation system
- *
- * This routine solves the normal equation system:
- *
- * A*D*A'*y = h.
- *
- * It is assumed that the matrix A*D*A' has been previously factorized
- * by the routine decomp_NE.
- *
- * On entry the array y contains the vector of right-hand sides h. On
- * exit this array contains the computed vector of unknowns y.
- *
- * Once the vector y has been computed the routine checks for numeric
- * stability. If the residual vector:
- *
- * r = A*D*A'*y - h
- *
- * is relatively small, the routine returns zero, otherwise non-zero is
- * returned. */
- static int solve_NE(struct csa *csa, double y[])
- { int m = csa->m;
- int n = csa->n;
- int *P = csa->P;
- int i, j, ret = 0;
- double *h, *r, *w;
- /* save vector of right-hand sides h */
- h = xcalloc(1+m, sizeof(double));
- for (i = 1; i <= m; i++) h[i] = y[i];
- /* solve normal equation system (A*D*A')*y = h */
- /* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we
- have inv(A*D*A') = P'*inv(U)*inv(U')*P */
- /* w := P*h */
- w = xcalloc(1+m, sizeof(double));
- for (i = 1; i <= m; i++) w[i] = y[P[i]];
- /* w := inv(U')*w */
- ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
- /* w := inv(U)*w */
- u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
- /* y := P'*w */
- for (i = 1; i <= m; i++) y[i] = w[P[m+i]];
- xfree(w);
- /* compute residual vector r = A*D*A'*y - h */
- r = xcalloc(1+m, sizeof(double));
- /* w := A'*y */
- w = xcalloc(1+n, sizeof(double));
- AT_by_vec(csa, y, w);
- /* w := D*w */
- for (j = 1; j <= n; j++) w[j] *= csa->D[j];
- /* r := A*w */
- A_by_vec(csa, w, r);
- xfree(w);
- /* r := r - h */
- for (i = 1; i <= m; i++) r[i] -= h[i];
- /* check for numeric stability */
- for (i = 1; i <= m; i++)
- { if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4)
- { ret = 1;
- break;
- }
- }
- xfree(h);
- xfree(r);
- return ret;
- }
- /***********************************************************************
- * solve_NS - solve Newtonian system
- *
- * This routine solves the Newtonian system:
- *
- * A*dx = p
- *
- * A'*dy + dz = q
- *
- * Z*dx + X*dz = r
- *
- * where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal
- * equation system:
- *
- * (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p
- *
- * (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by
- * the routine decomp_NE).
- *
- * Once vector dy has been computed the routine computes vectors dx and
- * dz as follows:
- *
- * dx = inv(Z)*(X*(A'*dy-q)+r)
- *
- * dz = inv(X)*(r-Z*dx)
- *
- * The routine solve_NS returns the same code which was reported by the
- * routine solve_NE (see above). */
- static int solve_NS(struct csa *csa, double p[], double q[], double r[],
- double dx[], double dy[], double dz[])
- { int m = csa->m;
- int n = csa->n;
- double *x = csa->x;
- double *z = csa->z;
- int i, j, ret;
- double *w = dx;
- /* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for
- the normal equation system */
- for (j = 1; j <= n; j++)
- w[j] = (x[j] * q[j] - r[j]) / z[j];
- A_by_vec(csa, w, dy);
- for (i = 1; i <= m; i++) dy[i] += p[i];
- /* solve the normal equation system to compute vector dy */
- ret = solve_NE(csa, dy);
- /* compute vectors dx and dz */
- AT_by_vec(csa, dy, dx);
- for (j = 1; j <= n; j++)
- { dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j];
- dz[j] = (r[j] - z[j] * dx[j]) / x[j];
- }
- return ret;
- }
- /***********************************************************************
- * initial_point - choose initial point using Mehrotra's heuristic
- *
- * This routine chooses a starting point using a heuristic proposed in
- * the paper:
- *
- * S. Mehrotra. On the implementation of a primal-dual interior point
- * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
- *
- * The starting point x in the primal space is chosen as a solution of
- * the following least squares problem:
- *
- * minimize ||x||
- *
- * subject to A*x = b
- *
- * which can be computed explicitly as follows:
- *
- * x = A'*inv(A*A')*b
- *
- * Similarly, the starting point (y, z) in the dual space is chosen as
- * a solution of the following least squares problem:
- *
- * minimize ||z||
- *
- * subject to A'*y + z = c
- *
- * which can be computed explicitly as follows:
- *
- * y = inv(A*A')*A*c
- *
- * z = c - A'*y
- *
- * However, some components of the vectors x and z may be non-positive
- * or close to zero, so the routine uses a Mehrotra's heuristic to find
- * a more appropriate starting point. */
- static void initial_point(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- double *b = csa->b;
- double *c = csa->c;
- double *x = csa->x;
- double *y = csa->y;
- double *z = csa->z;
- double *D = csa->D;
- int i, j;
- double dp, dd, ex, ez, xz;
- /* factorize A*A' */
- for (j = 1; j <= n; j++) D[j] = 1.0;
- decomp_NE(csa);
- /* x~ = A'*inv(A*A')*b */
- for (i = 1; i <= m; i++) y[i] = b[i];
- solve_NE(csa, y);
- AT_by_vec(csa, y, x);
- /* y~ = inv(A*A')*A*c */
- A_by_vec(csa, c, y);
- solve_NE(csa, y);
- /* z~ = c - A'*y~ */
- AT_by_vec(csa, y,z);
- for (j = 1; j <= n; j++) z[j] = c[j] - z[j];
- /* use Mehrotra's heuristic in order to choose more appropriate
- starting point with positive components of vectors x and z */
- dp = dd = 0.0;
- for (j = 1; j <= n; j++)
- { if (dp < -1.5 * x[j]) dp = -1.5 * x[j];
- if (dd < -1.5 * z[j]) dd = -1.5 * z[j];
- }
- /* note that b = 0 involves x = 0, and c = 0 involves y = 0 and
- z = 0, so we need to be careful */
- if (dp == 0.0) dp = 1.5;
- if (dd == 0.0) dd = 1.5;
- ex = ez = xz = 0.0;
- for (j = 1; j <= n; j++)
- { ex += (x[j] + dp);
- ez += (z[j] + dd);
- xz += (x[j] + dp) * (z[j] + dd);
- }
- dp += 0.5 * (xz / ez);
- dd += 0.5 * (xz / ex);
- for (j = 1; j <= n; j++)
- { x[j] += dp;
- z[j] += dd;
- xassert(x[j] > 0.0 && z[j] > 0.0);
- }
- return;
- }
- /***********************************************************************
- * basic_info - perform basic computations at the current point
- *
- * This routine computes the following quantities at the current point:
- *
- * 1) value of the objective function:
- *
- * F = c'*x + c[0]
- *
- * 2) relative primal infeasibility:
- *
- * rpi = ||A*x-b|| / (1+||b||)
- *
- * 3) relative dual infeasibility:
- *
- * rdi = ||A'*y+z-c|| / (1+||c||)
- *
- * 4) primal-dual gap (relative difference between the primal and the
- * dual objective function values):
- *
- * gap = |c'*x-b'*y| / (1+|c'*x|)
- *
- * 5) merit function:
- *
- * phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) +
- *
- * + |c'*x-b'*y| / max(1,||b||,||c||)
- *
- * 6) duality measure:
- *
- * mu = x'*z / n
- *
- * 7) the ratio of infeasibility to mu:
- *
- * rmu = max(||A*x-b||,||A'*y+z-c||) / mu
- *
- * where ||*|| denotes euclidian norm, *' denotes transposition. */
- static void basic_info(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- double *b = csa->b;
- double *c = csa->c;
- double *x = csa->x;
- double *y = csa->y;
- double *z = csa->z;
- int i, j;
- double norm1, bnorm, norm2, cnorm, cx, by, *work, temp;
- /* compute value of the objective function */
- temp = c[0];
- for (j = 1; j <= n; j++) temp += c[j] * x[j];
- csa->obj = temp;
- /* norm1 = ||A*x-b|| */
- work = xcalloc(1+m, sizeof(double));
- A_by_vec(csa, x, work);
- norm1 = 0.0;
- for (i = 1; i <= m; i++)
- norm1 += (work[i] - b[i]) * (work[i] - b[i]);
- norm1 = sqrt(norm1);
- xfree(work);
- /* bnorm = ||b|| */
- bnorm = 0.0;
- for (i = 1; i <= m; i++) bnorm += b[i] * b[i];
- bnorm = sqrt(bnorm);
- /* compute relative primal infeasibility */
- csa->rpi = norm1 / (1.0 + bnorm);
- /* norm2 = ||A'*y+z-c|| */
- work = xcalloc(1+n, sizeof(double));
- AT_by_vec(csa, y, work);
- norm2 = 0.0;
- for (j = 1; j <= n; j++)
- norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]);
- norm2 = sqrt(norm2);
- xfree(work);
- /* cnorm = ||c|| */
- cnorm = 0.0;
- for (j = 1; j <= n; j++) cnorm += c[j] * c[j];
- cnorm = sqrt(cnorm);
- /* compute relative dual infeasibility */
- csa->rdi = norm2 / (1.0 + cnorm);
- /* by = b'*y */
- by = 0.0;
- for (i = 1; i <= m; i++) by += b[i] * y[i];
- /* cx = c'*x */
- cx = 0.0;
- for (j = 1; j <= n; j++) cx += c[j] * x[j];
- /* compute primal-dual gap */
- csa->gap = fabs(cx - by) / (1.0 + fabs(cx));
- /* compute merit function */
- csa->phi = 0.0;
- csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0);
- csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0);
- temp = 1.0;
- if (temp < bnorm) temp = bnorm;
- if (temp < cnorm) temp = cnorm;
- csa->phi += fabs(cx - by) / temp;
- /* compute duality measure */
- temp = 0.0;
- for (j = 1; j <= n; j++) temp += x[j] * z[j];
- csa->mu = temp / (double)n;
- /* compute the ratio of infeasibility to mu */
- csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu;
- return;
- }
- /***********************************************************************
- * make_step - compute next point using Mehrotra's technique
- *
- * This routine computes the next point using the predictor-corrector
- * technique proposed in the paper:
- *
- * S. Mehrotra. On the implementation of a primal-dual interior point
- * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
- *
- * At first, the routine computes so called affine scaling (predictor)
- * direction (dx_aff,dy_aff,dz_aff) which is a solution of the system:
- *
- * A*dx_aff = b - A*x
- *
- * A'*dy_aff + dz_aff = c - A'*y - z
- *
- * Z*dx_aff + X*dz_aff = - X*Z*e
- *
- * where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]),
- * e = (1,...,1)'.
- *
- * Then, the routine computes the centering parameter sigma, using the
- * following Mehrotra's heuristic:
- *
- * alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0}
- *
- * alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0}
- *
- * mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n
- *
- * sigma = (mu_aff/mu)^3
- *
- * where alfa_aff_p is the maximal stepsize along the affine scaling
- * direction in the primal space, alfa_aff_d is the maximal stepsize
- * along the same direction in the dual space.
- *
- * After determining sigma the routine computes so called centering
- * (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of
- * the system:
- *
- * A*dx_cc = 0
- *
- * A'*dy_cc + dz_cc = 0
- *
- * Z*dx_cc + X*dz_cc = sigma*mu*e - X*Z*e
- *
- * Finally, the routine computes the combined direction
- *
- * (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc)
- *
- * and determines maximal primal and dual stepsizes along the combined
- * direction:
- *
- * alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0}
- *
- * alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0}
- *
- * In order to prevent the next point to be too close to the boundary
- * of the positive ortant, the routine decreases maximal stepsizes:
- *
- * alfa_p = gamma_p * alfa_max_p
- *
- * alfa_d = gamma_d * alfa_max_d
- *
- * where gamma_p and gamma_d are scaling factors, and computes the next
- * point:
- *
- * x_new = x + alfa_p * dx
- *
- * y_new = y + alfa_d * dy
- *
- * z_new = z + alfa_d * dz
- *
- * which becomes the current point on the next iteration. */
- static int make_step(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- double *b = csa->b;
- double *c = csa->c;
- double *x = csa->x;
- double *y = csa->y;
- double *z = csa->z;
- double *dx_aff = csa->dx_aff;
- double *dy_aff = csa->dy_aff;
- double *dz_aff = csa->dz_aff;
- double *dx_cc = csa->dx_cc;
- double *dy_cc = csa->dy_cc;
- double *dz_cc = csa->dz_cc;
- double *dx = csa->dx;
- double *dy = csa->dy;
- double *dz = csa->dz;
- int i, j, ret = 0;
- double temp, gamma_p, gamma_d, *p, *q, *r;
- /* allocate working arrays */
- p = xcalloc(1+m, sizeof(double));
- q = xcalloc(1+n, sizeof(double));
- r = xcalloc(1+n, sizeof(double));
- /* p = b - A*x */
- A_by_vec(csa, x, p);
- for (i = 1; i <= m; i++) p[i] = b[i] - p[i];
- /* q = c - A'*y - z */
- AT_by_vec(csa, y,q);
- for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j];
- /* r = - X * Z * e */
- for (j = 1; j <= n; j++) r[j] = - x[j] * z[j];
- /* solve the first Newtonian system */
- if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff))
- { ret = 1;
- goto done;
- }
- /* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */
- /* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */
- csa->alfa_aff_p = csa->alfa_aff_d = 1.0;
- for (j = 1; j <= n; j++)
- { if (dx_aff[j] < 0.0)
- { temp = - x[j] / dx_aff[j];
- if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp;
- }
- if (dz_aff[j] < 0.0)
- { temp = - z[j] / dz_aff[j];
- if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp;
- }
- }
- /* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */
- temp = 0.0;
- for (j = 1; j <= n; j++)
- temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) *
- (z[j] + csa->alfa_aff_d * dz_aff[j]);
- csa->mu_aff = temp / (double)n;
- /* sigma = (mu_aff/mu)^3 */
- temp = csa->mu_aff / csa->mu;
- csa->sigma = temp * temp * temp;
- /* p = 0 */
- for (i = 1; i <= m; i++) p[i] = 0.0;
- /* q = 0 */
- for (j = 1; j <= n; j++) q[j] = 0.0;
- /* r = sigma * mu * e - X * Z * e */
- for (j = 1; j <= n; j++)
- r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j];
- /* solve the second Newtonian system with the same coefficients
- but with altered right-hand sides */
- if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc))
- { ret = 1;
- goto done;
- }
- /* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */
- for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j];
- for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i];
- for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j];
- /* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */
- /* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */
- csa->alfa_max_p = csa->alfa_max_d = 1.0;
- for (j = 1; j <= n; j++)
- { if (dx[j] < 0.0)
- { temp = - x[j] / dx[j];
- if (csa->alfa_max_p > temp) csa->alfa_max_p = temp;
- }
- if (dz[j] < 0.0)
- { temp = - z[j] / dz[j];
- if (csa->alfa_max_d > temp) csa->alfa_max_d = temp;
- }
- }
- /* determine scale factors (not implemented yet) */
- gamma_p = 0.90;
- gamma_d = 0.90;
- /* compute the next point */
- for (j = 1; j <= n; j++)
- { x[j] += gamma_p * csa->alfa_max_p * dx[j];
- xassert(x[j] > 0.0);
- }
- for (i = 1; i <= m; i++)
- y[i] += gamma_d * csa->alfa_max_d * dy[i];
- for (j = 1; j <= n; j++)
- { z[j] += gamma_d * csa->alfa_max_d * dz[j];
- xassert(z[j] > 0.0);
- }
- done: /* free working arrays */
- xfree(p);
- xfree(q);
- xfree(r);
- return ret;
- }
- /***********************************************************************
- * terminate - deallocate common storage area
- *
- * This routine frees all memory allocated to the common storage area
- * used by interior-point method routines. */
- static void terminate(struct csa *csa)
- { xfree(csa->D);
- xfree(csa->P);
- xfree(csa->S_ptr);
- xfree(csa->S_ind);
- xfree(csa->S_val);
- xfree(csa->S_diag);
- xfree(csa->U_ptr);
- xfree(csa->U_ind);
- xfree(csa->U_val);
- xfree(csa->U_diag);
- xfree(csa->phi_min);
- xfree(csa->best_x);
- xfree(csa->best_y);
- xfree(csa->best_z);
- xfree(csa->dx_aff);
- xfree(csa->dy_aff);
- xfree(csa->dz_aff);
- xfree(csa->dx_cc);
- xfree(csa->dy_cc);
- xfree(csa->dz_cc);
- return;
- }
- /***********************************************************************
- * ipm_main - main interior-point method routine
- *
- * This is a main routine of the primal-dual interior-point method.
- *
- * The routine ipm_main returns one of the following codes:
- *
- * 0 - optimal solution found;
- * 1 - problem has no feasible (primal or dual) solution;
- * 2 - no convergence;
- * 3 - iteration limit exceeded;
- * 4 - numeric instability on solving Newtonian system.
- *
- * In case of non-zero return code the routine returns the best point,
- * which has been reached during optimization. */
- static int ipm_main(struct csa *csa)
- { int m = csa->m;
- int n = csa->n;
- int i, j, status;
- double temp;
- /* choose initial point using Mehrotra's heuristic */
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Guessing initial point...\n");
- initial_point(csa);
- /* main loop starts here */
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Optimization begins...\n");
- for (;;)
- { /* perform basic computations at the current point */
- basic_info(csa);
- /* save initial value of rmu */
- if (csa->iter == 0) csa->rmu0 = csa->rmu;
- /* accumulate values of min(phi[k]) and save the best point */
- xassert(csa->iter <= ITER_MAX);
- if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi)
- { csa->phi_min[csa->iter] = csa->phi;
- csa->best_iter = csa->iter;
- for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j];
- for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i];
- for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j];
- csa->best_obj = csa->obj;
- }
- else
- csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1];
- /* display information at the current point */
- if (csa->parm->msg_lev >= GLP_MSG_ON)
- xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap ="
- " %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi,
- csa->gap);
- /* check if the current point is optimal */
- if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("OPTIMAL SOLUTION FOUND\n");
- status = 0;
- break;
- }
- /* check if the problem has no feasible solution */
- temp = 1e5 * csa->phi_min[csa->iter];
- if (temp < 1e-8) temp = 1e-8;
- if (csa->phi >= temp)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n")
- ;
- status = 1;
- break;
- }
- /* check for very slow convergence or divergence */
- if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu /
- csa->rmu0 >= 1e6) ||
- (csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 *
- csa->phi_min[csa->iter - 30]))
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("NO CONVERGENCE; SEARCH TERMINATED\n");
- status = 2;
- break;
- }
- /* check for maximal number of iterations */
- if (csa->iter == ITER_MAX)
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
- status = 3;
- break;
- }
- /* start the next iteration */
- csa->iter++;
- /* factorize normal equation system */
- for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j];
- decomp_NE(csa);
- /* compute the next point using Mehrotra's predictor-corrector
- technique */
- if (make_step(csa))
- { if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n");
- status = 4;
- break;
- }
- }
- /* restore the best point */
- if (status != 0)
- { for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j];
- for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i];
- for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j];
- if (csa->parm->msg_lev >= GLP_MSG_ALL)
- xprintf("Best point %17.9e was reached on iteration %d\n",
- csa->best_obj, csa->best_iter);
- }
- /* return to the calling program */
- return status;
- }
- /***********************************************************************
- * NAME
- *
- * ipm_solve - core LP solver based on the interior-point method
- *
- * SYNOPSIS
- *
- * #include "glpipm.h"
- * int ipm_solve(glp_prob *P, const glp_iptcp *parm);
- *
- * DESCRIPTION
- *
- * The routine ipm_solve is a core LP solver based on the primal-dual
- * interior-point method.
- *
- * The routine assumes the following standard formulation of LP problem
- * to be solved:
- *
- * minimize
- *
- * F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n]
- *
- * subject to linear constraints
- *
- * a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1]
- *
- * a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2]
- *
- * . . . . . .
- *
- * a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m]
- *
- * and non-negative variables
- *
- * x[1] >= 0, x[2] >= 0, ..., x[n] >= 0
- *
- * where:
- * F is the objective function;
- * x[1], ..., x[n] are (structural) variables;
- * c[0] is a constant term of the objective function;
- * c[1], ..., c[n] are objective coefficients;
- * a[1,1], ..., a[m,n] are constraint coefficients;
- * b[1], ..., b[n] are right-hand sides.
- *
- * The solution is three vectors x, y, and z, which are stored by the
- * routine in the arrays x, y, and z, respectively. These vectors
- * correspond to the best primal-dual point found during optimization.
- * They are approximate solution of the following system (which is the
- * Karush-Kuhn-Tucker optimality conditions):
- *
- * A*x = b (primal feasibility condition)
- *
- * A'*y + z = c (dual feasibility condition)
- *
- * x'*z = 0 (primal-dual complementarity condition)
- *
- * x >= 0, z >= 0 (non-negativity condition)
- *
- * where:
- * x[1], ..., x[n] are primal (structural) variables;
- * y[1], ..., y[m] are dual variables (Lagrange multipliers) for
- * equality constraints;
- * z[1], ..., z[n] are dual variables (Lagrange multipliers) for
- * non-negativity constraints.
- *
- * RETURNS
- *
- * 0 LP has been successfully solved.
- *
- * GLP_ENOCVG
- * No convergence.
- *
- * GLP_EITLIM
- * Iteration limit exceeded.
- *
- * GLP_EINSTAB
- * Numeric instability on solving Newtonian system.
- *
- * In case of non-zero return code the routine returns the best point,
- * which has been reached during optimization. */
- int ipm_solve(glp_prob *P, const glp_iptcp *parm)
- { struct csa _dsa, *csa = &_dsa;
- int m = P->m;
- int n = P->n;
- int nnz = P->nnz;
- GLPROW *row;
- GLPCOL *col;
- GLPAIJ *aij;
- int i, j, loc, ret, *A_ind, *A_ptr;
- double dir, *A_val, *b, *c, *x, *y, *z;
- xassert(m > 0);
- xassert(n > 0);
- /* allocate working arrays */
- A_ptr = xcalloc(1+m+1, sizeof(int));
- A_ind = xcalloc(1+nnz, sizeof(int));
- A_val = xcalloc(1+nnz, sizeof(double));
- b = xcalloc(1+m, sizeof(double));
- c = xcalloc(1+n, sizeof(double));
- x = xcalloc(1+n, sizeof(double));
- y = xcalloc(1+m, sizeof(double));
- z = xcalloc(1+n, sizeof(double));
- /* prepare rows and constraint coefficients */
- loc = 1;
- for (i = 1; i <= m; i++)
- { row = P->row[i];
- xassert(row->type == GLP_FX);
- b[i] = row->lb * row->rii;
- A_ptr[i] = loc;
- for (aij = row->ptr; aij != NULL; aij = aij->r_next)
- { A_ind[loc] = aij->col->j;
- A_val[loc] = row->rii * aij->val * aij->col->sjj;
- loc++;
- }
- }
- A_ptr[m+1] = loc;
- xassert(loc-1 == nnz);
- /* prepare columns and objective coefficients */
- if (P->dir == GLP_MIN)
- dir = +1.0;
- else if (P->dir == GLP_MAX)
- dir = -1.0;
- else
- xassert(P != P);
- c[0] = dir * P->c0;
- for (j = 1; j <= n; j++)
- { col = P->col[j];
- xassert(col->type == GLP_LO && col->lb == 0.0);
- c[j] = dir * col->coef * col->sjj;
- }
- /* allocate and initialize the common storage area */
- csa->m = m;
- csa->n = n;
- csa->A_ptr = A_ptr;
- csa->A_ind = A_ind;
- csa->A_val = A_val;
- csa->b = b;
- csa->c = c;
- csa->x = x;
- csa->y = y;
- csa->z = z;
- csa->parm = parm;
- initialize(csa);
- /* solve LP with the interior-point method */
- ret = ipm_main(csa);
- /* deallocate the common storage area */
- terminate(csa);
- /* determine solution status */
- if (ret == 0)
- { /* optimal solution found */
- P->ipt_stat = GLP_OPT;
- ret = 0;
- }
- else if (ret == 1)
- { /* problem has no feasible (primal or dual) solution */
- P->ipt_stat = GLP_NOFEAS;
- ret = 0;
- }
- else if (ret == 2)
- { /* no convergence */
- P->ipt_stat = GLP_INFEAS;
- ret = GLP_ENOCVG;
- }
- else if (ret == 3)
- { /* iteration limit exceeded */
- P->ipt_stat = GLP_INFEAS;
- ret = GLP_EITLIM;
- }
- else if (ret == 4)
- { /* numeric instability on solving Newtonian system */
- P->ipt_stat = GLP_INFEAS;
- ret = GLP_EINSTAB;
- }
- else
- xassert(ret != ret);
- /* store row solution components */
- for (i = 1; i <= m; i++)
- { row = P->row[i];
- row->pval = row->lb;
- row->dval = dir * y[i] * row->rii;
- }
- /* store column solution components */
- P->ipt_obj = P->c0;
- for (j = 1; j <= n; j++)
- { col = P->col[j];
- col->pval = x[j] * col->sjj;
- col->dval = dir * z[j] / col->sjj;
- P->ipt_obj += col->coef * col->pval;
- }
- /* free working arrays */
- xfree(A_ptr);
- xfree(A_ind);
- xfree(A_val);
- xfree(b);
- xfree(c);
- xfree(x);
- xfree(y);
- xfree(z);
- return ret;
- }
- /* eof */
|