123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- /* glpios11.c (process cuts stored in the local cut pool) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpios.h"
- /***********************************************************************
- * NAME
- *
- * ios_process_cuts - process cuts stored in the local cut pool
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_process_cuts(glp_tree *T);
- *
- * DESCRIPTION
- *
- * The routine ios_process_cuts analyzes each cut currently stored in
- * the local cut pool, which must be non-empty, and either adds the cut
- * to the current subproblem or just discards it. All cuts are assumed
- * to be locally valid. On exit the local cut pool remains unchanged.
- *
- * REFERENCES
- *
- * 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by
- * Lift-and-Project in a Branch-and-Cut Framework", Management Sc.,
- * 42 (1996) 1229-1246.
- *
- * 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in
- * a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts",
- * Preliminary Draft, October 28, 2003, pp.6-8. */
- struct info
- { /* estimated cut efficiency */
- IOSCUT *cut;
- /* pointer to cut in the cut pool */
- char flag;
- /* if this flag is set, the cut is included into the current
- subproblem */
- double eff;
- /* cut efficacy (normalized residual) */
- double deg;
- /* lower bound to objective degradation */
- };
- static int fcmp(const void *arg1, const void *arg2)
- { const struct info *info1 = arg1, *info2 = arg2;
- if (info1->deg == 0.0 && info2->deg == 0.0)
- { if (info1->eff > info2->eff) return -1;
- if (info1->eff < info2->eff) return +1;
- }
- else
- { if (info1->deg > info2->deg) return -1;
- if (info1->deg < info2->deg) return +1;
- }
- return 0;
- }
- static double parallel(IOSCUT *a, IOSCUT *b, double work[]);
- void ios_process_cuts(glp_tree *T)
- { IOSPOOL *pool;
- IOSCUT *cut;
- IOSAIJ *aij;
- struct info *info;
- int k, kk, max_cuts, len, ret, *ind;
- double *val, *work;
- /* the current subproblem must exist */
- xassert(T->curr != NULL);
- /* the pool must exist and be non-empty */
- pool = T->local;
- xassert(pool != NULL);
- xassert(pool->size > 0);
- /* allocate working arrays */
- info = xcalloc(1+pool->size, sizeof(struct info));
- ind = xcalloc(1+T->n, sizeof(int));
- val = xcalloc(1+T->n, sizeof(double));
- work = xcalloc(1+T->n, sizeof(double));
- for (k = 1; k <= T->n; k++) work[k] = 0.0;
- /* build the list of cuts stored in the cut pool */
- for (k = 0, cut = pool->head; cut != NULL; cut = cut->next)
- k++, info[k].cut = cut, info[k].flag = 0;
- xassert(k == pool->size);
- /* estimate efficiency of all cuts in the cut pool */
- for (k = 1; k <= pool->size; k++)
- { double temp, dy, dz;
- cut = info[k].cut;
- /* build the vector of cut coefficients and compute its
- Euclidean norm */
- len = 0; temp = 0.0;
- for (aij = cut->ptr; aij != NULL; aij = aij->next)
- { xassert(1 <= aij->j && aij->j <= T->n);
- len++, ind[len] = aij->j, val[len] = aij->val;
- temp += aij->val * aij->val;
- }
- if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
- /* transform the cut to express it only through non-basic
- (auxiliary and structural) variables */
- len = glp_transform_row(T->mip, len, ind, val);
- /* determine change in the cut value and in the objective
- value for the adjacent basis by simulating one step of the
- dual simplex */
- ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
- cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
- /* determine normalized residual and lower bound to objective
- degradation */
- if (ret == 0)
- { info[k].eff = fabs(dy) / sqrt(temp);
- /* if some reduced costs violates (slightly) their zero
- bounds (i.e. have wrong signs) due to round-off errors,
- dz also may have wrong sign being close to zero */
- if (T->mip->dir == GLP_MIN)
- { if (dz < 0.0) dz = 0.0;
- info[k].deg = + dz;
- }
- else /* GLP_MAX */
- { if (dz > 0.0) dz = 0.0;
- info[k].deg = - dz;
- }
- }
- else if (ret == 1)
- { /* the constraint is not violated at the current point */
- info[k].eff = info[k].deg = 0.0;
- }
- else if (ret == 2)
- { /* no dual feasible adjacent basis exists */
- info[k].eff = 1.0;
- info[k].deg = DBL_MAX;
- }
- else
- xassert(ret != ret);
- /* if the degradation is too small, just ignore it */
- if (info[k].deg < 0.01) info[k].deg = 0.0;
- }
- /* sort the list of cuts by decreasing objective degradation and
- then by decreasing efficacy */
- qsort(&info[1], pool->size, sizeof(struct info), fcmp);
- /* only first (most efficient) max_cuts in the list are qualified
- as candidates to be added to the current subproblem */
- max_cuts = (T->curr->level == 0 ? 90 : 10);
- if (max_cuts > pool->size) max_cuts = pool->size;
- /* add cuts to the current subproblem */
- #if 0
- xprintf("*** adding cuts ***\n");
- #endif
- for (k = 1; k <= max_cuts; k++)
- { int i, len;
- /* if this cut seems to be inefficient, skip it */
- if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
- /* if the angle between this cut and every other cut included
- in the current subproblem is small, skip this cut */
- for (kk = 1; kk < k; kk++)
- { if (info[kk].flag)
- { if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
- break;
- }
- }
- if (kk < k) continue;
- /* add this cut to the current subproblem */
- #if 0
- xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
- #endif
- cut = info[k].cut, info[k].flag = 1;
- i = glp_add_rows(T->mip, 1);
- if (cut->name != NULL)
- glp_set_row_name(T->mip, i, cut->name);
- xassert(T->mip->row[i]->origin == GLP_RF_CUT);
- T->mip->row[i]->klass = cut->klass;
- len = 0;
- for (aij = cut->ptr; aij != NULL; aij = aij->next)
- len++, ind[len] = aij->j, val[len] = aij->val;
- glp_set_mat_row(T->mip, i, len, ind, val);
- xassert(cut->type == GLP_LO || cut->type == GLP_UP);
- glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs);
- }
- /* free working arrays */
- xfree(info);
- xfree(ind);
- xfree(val);
- xfree(work);
- return;
- }
- #if 0
- /***********************************************************************
- * Given a cut a * x >= b (<= b) the routine efficacy computes the cut
- * efficacy as follows:
- *
- * eff = d * (a * x~ - b) / ||a||,
- *
- * where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is
- * the vector of values of structural variables in optimal solution to
- * LP relaxation of the current subproblem, ||a|| is the Euclidean norm
- * of the vector of cut coefficients.
- *
- * If the cut is violated at point x~, the efficacy eff is positive,
- * and its value is the Euclidean distance between x~ and the cut plane
- * a * x = b in the space of structural variables.
- *
- * Following geometrical intuition, it is quite natural to consider
- * this distance as a first-order measure of the expected efficacy of
- * the cut: the larger the distance the better the cut [1]. */
- static double efficacy(glp_tree *T, IOSCUT *cut)
- { glp_prob *mip = T->mip;
- IOSAIJ *aij;
- double s = 0.0, t = 0.0, temp;
- for (aij = cut->ptr; aij != NULL; aij = aij->next)
- { xassert(1 <= aij->j && aij->j <= mip->n);
- s += aij->val * mip->col[aij->j]->prim;
- t += aij->val * aij->val;
- }
- temp = sqrt(t);
- if (temp < DBL_EPSILON) temp = DBL_EPSILON;
- if (cut->type == GLP_LO)
- temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp);
- else if (cut->type == GLP_UP)
- temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp);
- else
- xassert(cut != cut);
- return temp;
- }
- #endif
- /***********************************************************************
- * Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the
- * routine parallel computes the cosine of angle between the cut planes
- * a1 * x = b1 and a2 * x = b2 (which is the acute angle between two
- * normals to these planes) in the space of structural variables as
- * follows:
- *
- * cos phi = (a1' * a2) / (||a1|| * ||a2||),
- *
- * where (a1' * a2) is a dot product of vectors of cut coefficients,
- * ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2.
- *
- * Note that requirement cos phi = 0 forces the cuts to be orthogonal,
- * i.e. with disjoint support, while requirement cos phi <= 0.999 means
- * only avoiding duplicate (parallel) cuts [1]. */
- static double parallel(IOSCUT *a, IOSCUT *b, double work[])
- { IOSAIJ *aij;
- double s = 0.0, sa = 0.0, sb = 0.0, temp;
- for (aij = a->ptr; aij != NULL; aij = aij->next)
- { work[aij->j] = aij->val;
- sa += aij->val * aij->val;
- }
- for (aij = b->ptr; aij != NULL; aij = aij->next)
- { s += work[aij->j] * aij->val;
- sb += aij->val * aij->val;
- }
- for (aij = a->ptr; aij != NULL; aij = aij->next)
- work[aij->j] = 0.0;
- temp = sqrt(sa) * sqrt(sb);
- if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
- return s / temp;
- }
- /* eof */
|