123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- /* glpios05.c (Gomory's mixed integer cut generator) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpios.h"
- /***********************************************************************
- * NAME
- *
- * ios_gmi_gen - generate Gomory's mixed integer cuts.
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_gmi_gen(glp_tree *tree, IOSPOOL *pool);
- *
- * DESCRIPTION
- *
- * The routine ios_gmi_gen generates Gomory's mixed integer cuts for
- * the current point and adds them to the cut pool. */
- #define MAXCUTS 50
- /* maximal number of cuts to be generated for one round */
- struct worka
- { /* Gomory's cut generator working area */
- int *ind; /* int ind[1+n]; */
- double *val; /* double val[1+n]; */
- double *phi; /* double phi[1+m+n]; */
- };
- #define f(x) ((x) - floor(x))
- /* compute fractional part of x */
- static void gen_cut(glp_tree *tree, struct worka *worka, int j)
- { /* this routine tries to generate Gomory's mixed integer cut for
- specified structural variable x[m+j] of integer kind, which is
- basic and has fractional value in optimal solution to current
- LP relaxation */
- glp_prob *mip = tree->mip;
- int m = mip->m;
- int n = mip->n;
- int *ind = worka->ind;
- double *val = worka->val;
- double *phi = worka->phi;
- int i, k, len, kind, stat;
- double lb, ub, alfa, beta, ksi, phi1, rhs;
- /* compute row of the simplex tableau, which (row) corresponds
- to specified basic variable xB[i] = x[m+j]; see (23) */
- len = glp_eval_tab_row(mip, m+j, ind, val);
- /* determine beta[i], which a value of xB[i] in optimal solution
- to current LP relaxation; note that this value is the same as
- if it would be computed with formula (27); it is assumed that
- beta[i] is fractional enough */
- beta = mip->col[j]->prim;
- /* compute cut coefficients phi and right-hand side rho, which
- correspond to formula (30); dense format is used, because rows
- of the simplex tableau is usually dense */
- for (k = 1; k <= m+n; k++) phi[k] = 0.0;
- rhs = f(beta); /* initial value of rho; see (28), (32) */
- for (j = 1; j <= len; j++)
- { /* determine original number of non-basic variable xN[j] */
- k = ind[j];
- xassert(1 <= k && k <= m+n);
- /* determine the kind, bounds and current status of xN[j] in
- optimal solution to LP relaxation */
- if (k <= m)
- { /* auxiliary variable */
- GLPROW *row = mip->row[k];
- kind = GLP_CV;
- lb = row->lb;
- ub = row->ub;
- stat = row->stat;
- }
- else
- { /* structural variable */
- GLPCOL *col = mip->col[k-m];
- kind = col->kind;
- lb = col->lb;
- ub = col->ub;
- stat = col->stat;
- }
- /* xN[j] cannot be basic */
- xassert(stat != GLP_BS);
- /* determine row coefficient ksi[i,j] at xN[j]; see (23) */
- ksi = val[j];
- /* if ksi[i,j] is too large in the magnitude, do not generate
- the cut */
- if (fabs(ksi) > 1e+05) goto fini;
- /* if ksi[i,j] is too small in the magnitude, skip it */
- if (fabs(ksi) < 1e-10) goto skip;
- /* compute row coefficient alfa[i,j] at y[j]; see (26) */
- switch (stat)
- { case GLP_NF:
- /* xN[j] is free (unbounded) having non-zero ksi[i,j];
- do not generate the cut */
- goto fini;
- case GLP_NL:
- /* xN[j] has active lower bound */
- alfa = - ksi;
- break;
- case GLP_NU:
- /* xN[j] has active upper bound */
- alfa = + ksi;
- break;
- case GLP_NS:
- /* xN[j] is fixed; skip it */
- goto skip;
- default:
- xassert(stat != stat);
- }
- /* compute cut coefficient phi'[j] at y[j]; see (21), (28) */
- switch (kind)
- { case GLP_IV:
- /* y[j] is integer */
- if (fabs(alfa - floor(alfa + 0.5)) < 1e-10)
- { /* alfa[i,j] is close to nearest integer; skip it */
- goto skip;
- }
- else if (f(alfa) <= f(beta))
- phi1 = f(alfa);
- else
- phi1 = (f(beta) / (1.0 - f(beta))) * (1.0 - f(alfa));
- break;
- case GLP_CV:
- /* y[j] is continuous */
- if (alfa >= 0.0)
- phi1 = + alfa;
- else
- phi1 = (f(beta) / (1.0 - f(beta))) * (- alfa);
- break;
- default:
- xassert(kind != kind);
- }
- /* compute cut coefficient phi[j] at xN[j] and update right-
- hand side rho; see (31), (32) */
- switch (stat)
- { case GLP_NL:
- /* xN[j] has active lower bound */
- phi[k] = + phi1;
- rhs += phi1 * lb;
- break;
- case GLP_NU:
- /* xN[j] has active upper bound */
- phi[k] = - phi1;
- rhs -= phi1 * ub;
- break;
- default:
- xassert(stat != stat);
- }
- skip: ;
- }
- /* now the cut has the form sum_k phi[k] * x[k] >= rho, where cut
- coefficients are stored in the array phi in dense format;
- x[1,...,m] are auxiliary variables, x[m+1,...,m+n] are struc-
- tural variables; see (30) */
- /* eliminate auxiliary variables in order to express the cut only
- through structural variables; see (33) */
- for (i = 1; i <= m; i++)
- { GLPROW *row;
- GLPAIJ *aij;
- if (fabs(phi[i]) < 1e-10) continue;
- /* auxiliary variable x[i] has non-zero cut coefficient */
- row = mip->row[i];
- /* x[i] cannot be fixed */
- xassert(row->type != GLP_FX);
- /* substitute x[i] = sum_j a[i,j] * x[m+j] */
- for (aij = row->ptr; aij != NULL; aij = aij->r_next)
- phi[m+aij->col->j] += phi[i] * aij->val;
- }
- /* convert the final cut to sparse format and substitute fixed
- (structural) variables */
- len = 0;
- for (j = 1; j <= n; j++)
- { GLPCOL *col;
- if (fabs(phi[m+j]) < 1e-10) continue;
- /* structural variable x[m+j] has non-zero cut coefficient */
- col = mip->col[j];
- if (col->type == GLP_FX)
- { /* eliminate x[m+j] */
- rhs -= phi[m+j] * col->lb;
- }
- else
- { len++;
- ind[len] = j;
- val[len] = phi[m+j];
- }
- }
- if (fabs(rhs) < 1e-12) rhs = 0.0;
- /* if the cut inequality seems to be badly scaled, reject it to
- avoid numeric difficulties */
- for (k = 1; k <= len; k++)
- { if (fabs(val[k]) < 1e-03) goto fini;
- if (fabs(val[k]) > 1e+03) goto fini;
- }
- /* add the cut to the cut pool for further consideration */
- #if 0
- ios_add_cut_row(tree, pool, GLP_RF_GMI, len, ind, val, GLP_LO,
- rhs);
- #else
- glp_ios_add_row(tree, NULL, GLP_RF_GMI, 0, len, ind, val, GLP_LO,
- rhs);
- #endif
- fini: return;
- }
- struct var { int j; double f; };
- static int fcmp(const void *p1, const void *p2)
- { const struct var *v1 = p1, *v2 = p2;
- if (v1->f > v2->f) return -1;
- if (v1->f < v2->f) return +1;
- return 0;
- }
- void ios_gmi_gen(glp_tree *tree)
- { /* main routine to generate Gomory's cuts */
- glp_prob *mip = tree->mip;
- int m = mip->m;
- int n = mip->n;
- struct var *var;
- int k, nv, j, size;
- struct worka _worka, *worka = &_worka;
- /* allocate working arrays */
- var = xcalloc(1+n, sizeof(struct var));
- worka->ind = xcalloc(1+n, sizeof(int));
- worka->val = xcalloc(1+n, sizeof(double));
- worka->phi = xcalloc(1+m+n, sizeof(double));
- /* build the list of integer structural variables, which are
- basic and have fractional value in optimal solution to current
- LP relaxation */
- nv = 0;
- for (j = 1; j <= n; j++)
- { GLPCOL *col = mip->col[j];
- double frac;
- if (col->kind != GLP_IV) continue;
- if (col->type == GLP_FX) continue;
- if (col->stat != GLP_BS) continue;
- frac = f(col->prim);
- if (!(0.05 <= frac && frac <= 0.95)) continue;
- /* add variable to the list */
- nv++, var[nv].j = j, var[nv].f = frac;
- }
- /* order the list by descending fractionality */
- qsort(&var[1], nv, sizeof(struct var), fcmp);
- /* try to generate cuts by one for each variable in the list, but
- not more than MAXCUTS cuts */
- size = glp_ios_pool_size(tree);
- for (k = 1; k <= nv; k++)
- { if (glp_ios_pool_size(tree) - size >= MAXCUTS) break;
- gen_cut(tree, worka, var[k].j);
- }
- /* free working arrays */
- xfree(var);
- xfree(worka->ind);
- xfree(worka->val);
- xfree(worka->phi);
- return;
- }
- /* eof */
|