1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612 |
- /* glpios01.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpios.h"
- /***********************************************************************
- * NAME
- *
- * ios_create_tree - create branch-and-bound tree
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm);
- *
- * DESCRIPTION
- *
- * The routine ios_create_tree creates the branch-and-bound tree.
- *
- * Being created the tree consists of the only root subproblem whose
- * reference number is 1. Note that initially the root subproblem is in
- * frozen state and therefore needs to be revived.
- *
- * RETURNS
- *
- * The routine returns a pointer to the tree created. */
- static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent);
- glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm)
- { int m = mip->m;
- int n = mip->n;
- glp_tree *tree;
- int i, j;
- xassert(mip->tree == NULL);
- mip->tree = tree = xmalloc(sizeof(glp_tree));
- tree->pool = dmp_create_pool();
- tree->n = n;
- /* save original problem components */
- tree->orig_m = m;
- tree->orig_type = xcalloc(1+m+n, sizeof(char));
- tree->orig_lb = xcalloc(1+m+n, sizeof(double));
- tree->orig_ub = xcalloc(1+m+n, sizeof(double));
- tree->orig_stat = xcalloc(1+m+n, sizeof(char));
- tree->orig_prim = xcalloc(1+m+n, sizeof(double));
- tree->orig_dual = xcalloc(1+m+n, sizeof(double));
- for (i = 1; i <= m; i++)
- { GLPROW *row = mip->row[i];
- tree->orig_type[i] = (char)row->type;
- tree->orig_lb[i] = row->lb;
- tree->orig_ub[i] = row->ub;
- tree->orig_stat[i] = (char)row->stat;
- tree->orig_prim[i] = row->prim;
- tree->orig_dual[i] = row->dual;
- }
- for (j = 1; j <= n; j++)
- { GLPCOL *col = mip->col[j];
- tree->orig_type[m+j] = (char)col->type;
- tree->orig_lb[m+j] = col->lb;
- tree->orig_ub[m+j] = col->ub;
- tree->orig_stat[m+j] = (char)col->stat;
- tree->orig_prim[m+j] = col->prim;
- tree->orig_dual[m+j] = col->dual;
- }
- tree->orig_obj = mip->obj_val;
- /* initialize the branch-and-bound tree */
- tree->nslots = 0;
- tree->avail = 0;
- tree->slot = NULL;
- tree->head = tree->tail = NULL;
- tree->a_cnt = tree->n_cnt = tree->t_cnt = 0;
- /* the root subproblem is not solved yet, so its final components
- are unknown so far */
- tree->root_m = 0;
- tree->root_type = NULL;
- tree->root_lb = tree->root_ub = NULL;
- tree->root_stat = NULL;
- /* the current subproblem does not exist yet */
- tree->curr = NULL;
- tree->mip = mip;
- /*tree->solved = 0;*/
- tree->non_int = xcalloc(1+n, sizeof(char));
- memset(&tree->non_int[1], 0, n);
- /* arrays to save parent subproblem components will be allocated
- later */
- tree->pred_m = tree->pred_max = 0;
- tree->pred_type = NULL;
- tree->pred_lb = tree->pred_ub = NULL;
- tree->pred_stat = NULL;
- /* cut generator */
- tree->local = ios_create_pool(tree);
- /*tree->first_attempt = 1;*/
- /*tree->max_added_cuts = 0;*/
- /*tree->min_eff = 0.0;*/
- /*tree->miss = 0;*/
- /*tree->just_selected = 0;*/
- tree->mir_gen = NULL;
- tree->clq_gen = NULL;
- /*tree->round = 0;*/
- #if 0
- /* create the conflict graph */
- tree->n_ref = xcalloc(1+n, sizeof(int));
- memset(&tree->n_ref[1], 0, n * sizeof(int));
- tree->c_ref = xcalloc(1+n, sizeof(int));
- memset(&tree->c_ref[1], 0, n * sizeof(int));
- tree->g = scg_create_graph(0);
- tree->j_ref = xcalloc(1+tree->g->n_max, sizeof(int));
- #endif
- /* pseudocost branching */
- tree->pcost = NULL;
- tree->iwrk = xcalloc(1+n, sizeof(int));
- tree->dwrk = xcalloc(1+n, sizeof(double));
- /* initialize control parameters */
- tree->parm = parm;
- tree->tm_beg = xtime();
- tree->tm_lag = xlset(0);
- tree->sol_cnt = 0;
- /* initialize advanced solver interface */
- tree->reason = 0;
- tree->reopt = 0;
- tree->reinv = 0;
- tree->br_var = 0;
- tree->br_sel = 0;
- tree->child = 0;
- tree->next_p = 0;
- /*tree->btrack = NULL;*/
- tree->stop = 0;
- /* create the root subproblem, which initially is identical to
- the original MIP */
- new_node(tree, NULL);
- return tree;
- }
- /***********************************************************************
- * NAME
- *
- * ios_revive_node - revive specified subproblem
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_revive_node(glp_tree *tree, int p);
- *
- * DESCRIPTION
- *
- * The routine ios_revive_node revives the specified subproblem, whose
- * reference number is p, and thereby makes it the current subproblem.
- * Note that the specified subproblem must be active. Besides, if the
- * current subproblem already exists, it must be frozen before reviving
- * another subproblem. */
- void ios_revive_node(glp_tree *tree, int p)
- { glp_prob *mip = tree->mip;
- IOSNPD *node, *root;
- /* obtain pointer to the specified subproblem */
- xassert(1 <= p && p <= tree->nslots);
- node = tree->slot[p].node;
- xassert(node != NULL);
- /* the specified subproblem must be active */
- xassert(node->count == 0);
- /* the current subproblem must not exist */
- xassert(tree->curr == NULL);
- /* the specified subproblem becomes current */
- tree->curr = node;
- /*tree->solved = 0;*/
- /* obtain pointer to the root subproblem */
- root = tree->slot[1].node;
- xassert(root != NULL);
- /* at this point problem object components correspond to the root
- subproblem, so if the root subproblem should be revived, there
- is nothing more to do */
- if (node == root) goto done;
- xassert(mip->m == tree->root_m);
- /* build path from the root to the current node */
- node->temp = NULL;
- for (node = node; node != NULL; node = node->up)
- { if (node->up == NULL)
- xassert(node == root);
- else
- node->up->temp = node;
- }
- /* go down from the root to the current node and make necessary
- changes to restore components of the current subproblem */
- for (node = root; node != NULL; node = node->temp)
- { int m = mip->m;
- int n = mip->n;
- /* if the current node is reached, the problem object at this
- point corresponds to its parent, so save attributes of rows
- and columns for the parent subproblem */
- if (node->temp == NULL)
- { int i, j;
- tree->pred_m = m;
- /* allocate/reallocate arrays, if necessary */
- if (tree->pred_max < m + n)
- { int new_size = m + n + 100;
- if (tree->pred_type != NULL) xfree(tree->pred_type);
- if (tree->pred_lb != NULL) xfree(tree->pred_lb);
- if (tree->pred_ub != NULL) xfree(tree->pred_ub);
- if (tree->pred_stat != NULL) xfree(tree->pred_stat);
- tree->pred_max = new_size;
- tree->pred_type = xcalloc(1+new_size, sizeof(char));
- tree->pred_lb = xcalloc(1+new_size, sizeof(double));
- tree->pred_ub = xcalloc(1+new_size, sizeof(double));
- tree->pred_stat = xcalloc(1+new_size, sizeof(char));
- }
- /* save row attributes */
- for (i = 1; i <= m; i++)
- { GLPROW *row = mip->row[i];
- tree->pred_type[i] = (char)row->type;
- tree->pred_lb[i] = row->lb;
- tree->pred_ub[i] = row->ub;
- tree->pred_stat[i] = (char)row->stat;
- }
- /* save column attributes */
- for (j = 1; j <= n; j++)
- { GLPCOL *col = mip->col[j];
- tree->pred_type[mip->m+j] = (char)col->type;
- tree->pred_lb[mip->m+j] = col->lb;
- tree->pred_ub[mip->m+j] = col->ub;
- tree->pred_stat[mip->m+j] = (char)col->stat;
- }
- }
- /* change bounds of rows and columns */
- { IOSBND *b;
- for (b = node->b_ptr; b != NULL; b = b->next)
- { if (b->k <= m)
- glp_set_row_bnds(mip, b->k, b->type, b->lb, b->ub);
- else
- glp_set_col_bnds(mip, b->k-m, b->type, b->lb, b->ub);
- }
- }
- /* change statuses of rows and columns */
- { IOSTAT *s;
- for (s = node->s_ptr; s != NULL; s = s->next)
- { if (s->k <= m)
- glp_set_row_stat(mip, s->k, s->stat);
- else
- glp_set_col_stat(mip, s->k-m, s->stat);
- }
- }
- /* add new rows */
- if (node->r_ptr != NULL)
- { IOSROW *r;
- IOSAIJ *a;
- int i, len, *ind;
- double *val;
- ind = xcalloc(1+n, sizeof(int));
- val = xcalloc(1+n, sizeof(double));
- for (r = node->r_ptr; r != NULL; r = r->next)
- { i = glp_add_rows(mip, 1);
- glp_set_row_name(mip, i, r->name);
- #if 1 /* 20/IX-2008 */
- xassert(mip->row[i]->level == 0);
- mip->row[i]->level = node->level;
- mip->row[i]->origin = r->origin;
- mip->row[i]->klass = r->klass;
- #endif
- glp_set_row_bnds(mip, i, r->type, r->lb, r->ub);
- len = 0;
- for (a = r->ptr; a != NULL; a = a->next)
- len++, ind[len] = a->j, val[len] = a->val;
- glp_set_mat_row(mip, i, len, ind, val);
- glp_set_rii(mip, i, r->rii);
- glp_set_row_stat(mip, i, r->stat);
- }
- xfree(ind);
- xfree(val);
- }
- #if 0
- /* add new edges to the conflict graph */
- /* add new cliques to the conflict graph */
- /* (not implemented yet) */
- xassert(node->own_nn == 0);
- xassert(node->own_nc == 0);
- xassert(node->e_ptr == NULL);
- #endif
- }
- /* the specified subproblem has been revived */
- node = tree->curr;
- /* delete its bound change list */
- while (node->b_ptr != NULL)
- { IOSBND *b;
- b = node->b_ptr;
- node->b_ptr = b->next;
- dmp_free_atom(tree->pool, b, sizeof(IOSBND));
- }
- /* delete its status change list */
- while (node->s_ptr != NULL)
- { IOSTAT *s;
- s = node->s_ptr;
- node->s_ptr = s->next;
- dmp_free_atom(tree->pool, s, sizeof(IOSTAT));
- }
- #if 1 /* 20/XI-2009 */
- /* delete its row addition list (additional rows may appear, for
- example, due to branching on GUB constraints */
- while (node->r_ptr != NULL)
- { IOSROW *r;
- r = node->r_ptr;
- node->r_ptr = r->next;
- xassert(r->name == NULL);
- while (r->ptr != NULL)
- { IOSAIJ *a;
- a = r->ptr;
- r->ptr = a->next;
- dmp_free_atom(tree->pool, a, sizeof(IOSAIJ));
- }
- dmp_free_atom(tree->pool, r, sizeof(IOSROW));
- }
- #endif
- done: return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_freeze_node - freeze current subproblem
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_freeze_node(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine ios_freeze_node freezes the current subproblem. */
- void ios_freeze_node(glp_tree *tree)
- { glp_prob *mip = tree->mip;
- int m = mip->m;
- int n = mip->n;
- IOSNPD *node;
- /* obtain pointer to the current subproblem */
- node = tree->curr;
- xassert(node != NULL);
- if (node->up == NULL)
- { /* freeze the root subproblem */
- int k;
- xassert(node->p == 1);
- xassert(tree->root_m == 0);
- xassert(tree->root_type == NULL);
- xassert(tree->root_lb == NULL);
- xassert(tree->root_ub == NULL);
- xassert(tree->root_stat == NULL);
- tree->root_m = m;
- tree->root_type = xcalloc(1+m+n, sizeof(char));
- tree->root_lb = xcalloc(1+m+n, sizeof(double));
- tree->root_ub = xcalloc(1+m+n, sizeof(double));
- tree->root_stat = xcalloc(1+m+n, sizeof(char));
- for (k = 1; k <= m+n; k++)
- { if (k <= m)
- { GLPROW *row = mip->row[k];
- tree->root_type[k] = (char)row->type;
- tree->root_lb[k] = row->lb;
- tree->root_ub[k] = row->ub;
- tree->root_stat[k] = (char)row->stat;
- }
- else
- { GLPCOL *col = mip->col[k-m];
- tree->root_type[k] = (char)col->type;
- tree->root_lb[k] = col->lb;
- tree->root_ub[k] = col->ub;
- tree->root_stat[k] = (char)col->stat;
- }
- }
- }
- else
- { /* freeze non-root subproblem */
- int root_m = tree->root_m;
- int pred_m = tree->pred_m;
- int i, j, k;
- xassert(pred_m <= m);
- /* build change lists for rows and columns which exist in the
- parent subproblem */
- xassert(node->b_ptr == NULL);
- xassert(node->s_ptr == NULL);
- for (k = 1; k <= pred_m + n; k++)
- { int pred_type, pred_stat, type, stat;
- double pred_lb, pred_ub, lb, ub;
- /* determine attributes in the parent subproblem */
- pred_type = tree->pred_type[k];
- pred_lb = tree->pred_lb[k];
- pred_ub = tree->pred_ub[k];
- pred_stat = tree->pred_stat[k];
- /* determine attributes in the current subproblem */
- if (k <= pred_m)
- { GLPROW *row = mip->row[k];
- type = row->type;
- lb = row->lb;
- ub = row->ub;
- stat = row->stat;
- }
- else
- { GLPCOL *col = mip->col[k - pred_m];
- type = col->type;
- lb = col->lb;
- ub = col->ub;
- stat = col->stat;
- }
- /* save type and bounds of a row/column, if changed */
- if (!(pred_type == type && pred_lb == lb && pred_ub == ub))
- { IOSBND *b;
- b = dmp_get_atom(tree->pool, sizeof(IOSBND));
- b->k = k;
- b->type = (unsigned char)type;
- b->lb = lb;
- b->ub = ub;
- b->next = node->b_ptr;
- node->b_ptr = b;
- }
- /* save status of a row/column, if changed */
- if (pred_stat != stat)
- { IOSTAT *s;
- s = dmp_get_atom(tree->pool, sizeof(IOSTAT));
- s->k = k;
- s->stat = (unsigned char)stat;
- s->next = node->s_ptr;
- node->s_ptr = s;
- }
- }
- /* save new rows added to the current subproblem */
- xassert(node->r_ptr == NULL);
- if (pred_m < m)
- { int i, len, *ind;
- double *val;
- ind = xcalloc(1+n, sizeof(int));
- val = xcalloc(1+n, sizeof(double));
- for (i = m; i > pred_m; i--)
- { GLPROW *row = mip->row[i];
- IOSROW *r;
- const char *name;
- r = dmp_get_atom(tree->pool, sizeof(IOSROW));
- name = glp_get_row_name(mip, i);
- if (name == NULL)
- r->name = NULL;
- else
- { r->name = dmp_get_atom(tree->pool, strlen(name)+1);
- strcpy(r->name, name);
- }
- #if 1 /* 20/IX-2008 */
- r->origin = row->origin;
- r->klass = row->klass;
- #endif
- r->type = (unsigned char)row->type;
- r->lb = row->lb;
- r->ub = row->ub;
- r->ptr = NULL;
- len = glp_get_mat_row(mip, i, ind, val);
- for (k = 1; k <= len; k++)
- { IOSAIJ *a;
- a = dmp_get_atom(tree->pool, sizeof(IOSAIJ));
- a->j = ind[k];
- a->val = val[k];
- a->next = r->ptr;
- r->ptr = a;
- }
- r->rii = row->rii;
- r->stat = (unsigned char)row->stat;
- r->next = node->r_ptr;
- node->r_ptr = r;
- }
- xfree(ind);
- xfree(val);
- }
- /* remove all rows missing in the root subproblem */
- if (m != root_m)
- { int nrs, *num;
- nrs = m - root_m;
- xassert(nrs > 0);
- num = xcalloc(1+nrs, sizeof(int));
- for (i = 1; i <= nrs; i++) num[i] = root_m + i;
- glp_del_rows(mip, nrs, num);
- xfree(num);
- }
- m = mip->m;
- /* and restore attributes of all rows and columns for the root
- subproblem */
- xassert(m == root_m);
- for (i = 1; i <= m; i++)
- { glp_set_row_bnds(mip, i, tree->root_type[i],
- tree->root_lb[i], tree->root_ub[i]);
- glp_set_row_stat(mip, i, tree->root_stat[i]);
- }
- for (j = 1; j <= n; j++)
- { glp_set_col_bnds(mip, j, tree->root_type[m+j],
- tree->root_lb[m+j], tree->root_ub[m+j]);
- glp_set_col_stat(mip, j, tree->root_stat[m+j]);
- }
- #if 1
- /* remove all edges and cliques missing in the conflict graph
- for the root subproblem */
- /* (not implemented yet) */
- #endif
- }
- /* the current subproblem has been frozen */
- tree->curr = NULL;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_clone_node - clone specified subproblem
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[]);
- *
- * DESCRIPTION
- *
- * The routine ios_clone_node clones the specified subproblem, whose
- * reference number is p, creating its nnn exact copies. Note that the
- * specified subproblem must be active and must be in the frozen state
- * (i.e. it must not be the current subproblem).
- *
- * Each clone, an exact copy of the specified subproblem, becomes a new
- * active subproblem added to the end of the active list. After cloning
- * the specified subproblem becomes inactive.
- *
- * The reference numbers of clone subproblems are stored to locations
- * ref[1], ..., ref[nnn]. */
- static int get_slot(glp_tree *tree)
- { int p;
- /* if no free slots are available, increase the room */
- if (tree->avail == 0)
- { int nslots = tree->nslots;
- IOSLOT *save = tree->slot;
- if (nslots == 0)
- tree->nslots = 20;
- else
- { tree->nslots = nslots + nslots;
- xassert(tree->nslots > nslots);
- }
- tree->slot = xcalloc(1+tree->nslots, sizeof(IOSLOT));
- if (save != NULL)
- { memcpy(&tree->slot[1], &save[1], nslots * sizeof(IOSLOT));
- xfree(save);
- }
- /* push more free slots into the stack */
- for (p = tree->nslots; p > nslots; p--)
- { tree->slot[p].node = NULL;
- tree->slot[p].next = tree->avail;
- tree->avail = p;
- }
- }
- /* pull a free slot from the stack */
- p = tree->avail;
- tree->avail = tree->slot[p].next;
- xassert(tree->slot[p].node == NULL);
- tree->slot[p].next = 0;
- return p;
- }
- static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent)
- { IOSNPD *node;
- int p;
- /* pull a free slot for the new node */
- p = get_slot(tree);
- /* create descriptor of the new subproblem */
- node = dmp_get_atom(tree->pool, sizeof(IOSNPD));
- tree->slot[p].node = node;
- node->p = p;
- node->up = parent;
- node->level = (parent == NULL ? 0 : parent->level + 1);
- node->count = 0;
- node->b_ptr = NULL;
- node->s_ptr = NULL;
- node->r_ptr = NULL;
- node->solved = 0;
- #if 0
- node->own_nn = node->own_nc = 0;
- node->e_ptr = NULL;
- #endif
- #if 1 /* 04/X-2008 */
- node->lp_obj = (parent == NULL ? (tree->mip->dir == GLP_MIN ?
- -DBL_MAX : +DBL_MAX) : parent->lp_obj);
- #endif
- node->bound = (parent == NULL ? (tree->mip->dir == GLP_MIN ?
- -DBL_MAX : +DBL_MAX) : parent->bound);
- node->br_var = 0;
- node->br_val = 0.0;
- node->ii_cnt = 0;
- node->ii_sum = 0.0;
- #if 1 /* 30/XI-2009 */
- node->changed = 0;
- #endif
- if (tree->parm->cb_size == 0)
- node->data = NULL;
- else
- { node->data = dmp_get_atom(tree->pool, tree->parm->cb_size);
- memset(node->data, 0, tree->parm->cb_size);
- }
- node->temp = NULL;
- node->prev = tree->tail;
- node->next = NULL;
- /* add the new subproblem to the end of the active list */
- if (tree->head == NULL)
- tree->head = node;
- else
- tree->tail->next = node;
- tree->tail = node;
- tree->a_cnt++;
- tree->n_cnt++;
- tree->t_cnt++;
- /* increase the number of child subproblems */
- if (parent == NULL)
- xassert(p == 1);
- else
- parent->count++;
- return node;
- }
- void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[])
- { IOSNPD *node;
- int k;
- /* obtain pointer to the subproblem to be cloned */
- xassert(1 <= p && p <= tree->nslots);
- node = tree->slot[p].node;
- xassert(node != NULL);
- /* the specified subproblem must be active */
- xassert(node->count == 0);
- /* and must be in the frozen state */
- xassert(tree->curr != node);
- /* remove the specified subproblem from the active list, because
- it becomes inactive */
- if (node->prev == NULL)
- tree->head = node->next;
- else
- node->prev->next = node->next;
- if (node->next == NULL)
- tree->tail = node->prev;
- else
- node->next->prev = node->prev;
- node->prev = node->next = NULL;
- tree->a_cnt--;
- /* create clone subproblems */
- xassert(nnn > 0);
- for (k = 1; k <= nnn; k++)
- ref[k] = new_node(tree, node)->p;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_delete_node - delete specified subproblem
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_delete_node(glp_tree *tree, int p);
- *
- * DESCRIPTION
- *
- * The routine ios_delete_node deletes the specified subproblem, whose
- * reference number is p. The subproblem must be active and must be in
- * the frozen state (i.e. it must not be the current subproblem).
- *
- * Note that deletion is performed recursively, i.e. if a subproblem to
- * be deleted is the only child of its parent, the parent subproblem is
- * also deleted, etc. */
- void ios_delete_node(glp_tree *tree, int p)
- { IOSNPD *node, *temp;
- /* obtain pointer to the subproblem to be deleted */
- xassert(1 <= p && p <= tree->nslots);
- node = tree->slot[p].node;
- xassert(node != NULL);
- /* the specified subproblem must be active */
- xassert(node->count == 0);
- /* and must be in the frozen state */
- xassert(tree->curr != node);
- /* remove the specified subproblem from the active list, because
- it is gone from the tree */
- if (node->prev == NULL)
- tree->head = node->next;
- else
- node->prev->next = node->next;
- if (node->next == NULL)
- tree->tail = node->prev;
- else
- node->next->prev = node->prev;
- node->prev = node->next = NULL;
- tree->a_cnt--;
- loop: /* recursive deletion starts here */
- /* delete the bound change list */
- { IOSBND *b;
- while (node->b_ptr != NULL)
- { b = node->b_ptr;
- node->b_ptr = b->next;
- dmp_free_atom(tree->pool, b, sizeof(IOSBND));
- }
- }
- /* delete the status change list */
- { IOSTAT *s;
- while (node->s_ptr != NULL)
- { s = node->s_ptr;
- node->s_ptr = s->next;
- dmp_free_atom(tree->pool, s, sizeof(IOSTAT));
- }
- }
- /* delete the row addition list */
- while (node->r_ptr != NULL)
- { IOSROW *r;
- r = node->r_ptr;
- if (r->name != NULL)
- dmp_free_atom(tree->pool, r->name, strlen(r->name)+1);
- while (r->ptr != NULL)
- { IOSAIJ *a;
- a = r->ptr;
- r->ptr = a->next;
- dmp_free_atom(tree->pool, a, sizeof(IOSAIJ));
- }
- node->r_ptr = r->next;
- dmp_free_atom(tree->pool, r, sizeof(IOSROW));
- }
- #if 0
- /* delete the edge addition list */
- /* delete the clique addition list */
- /* (not implemented yet) */
- xassert(node->own_nn == 0);
- xassert(node->own_nc == 0);
- xassert(node->e_ptr == NULL);
- #endif
- /* free application-specific data */
- if (tree->parm->cb_size == 0)
- xassert(node->data == NULL);
- else
- dmp_free_atom(tree->pool, node->data, tree->parm->cb_size);
- /* free the corresponding node slot */
- p = node->p;
- xassert(tree->slot[p].node == node);
- tree->slot[p].node = NULL;
- tree->slot[p].next = tree->avail;
- tree->avail = p;
- /* save pointer to the parent subproblem */
- temp = node->up;
- /* delete the subproblem descriptor */
- dmp_free_atom(tree->pool, node, sizeof(IOSNPD));
- tree->n_cnt--;
- /* take pointer to the parent subproblem */
- node = temp;
- if (node != NULL)
- { /* the parent subproblem exists; decrease the number of its
- child subproblems */
- xassert(node->count > 0);
- node->count--;
- /* if now the parent subproblem has no childs, it also must be
- deleted */
- if (node->count == 0) goto loop;
- }
- return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_delete_tree - delete branch-and-bound tree
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_delete_tree(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine ios_delete_tree deletes the branch-and-bound tree, which
- * the parameter tree points to, and frees all the memory allocated to
- * this program object.
- *
- * On exit components of the problem object are restored to correspond
- * to the original MIP passed to the routine ios_create_tree. */
- void ios_delete_tree(glp_tree *tree)
- { glp_prob *mip = tree->mip;
- int i, j;
- int m = mip->m;
- int n = mip->n;
- xassert(mip->tree == tree);
- /* remove all additional rows */
- if (m != tree->orig_m)
- { int nrs, *num;
- nrs = m - tree->orig_m;
- xassert(nrs > 0);
- num = xcalloc(1+nrs, sizeof(int));
- for (i = 1; i <= nrs; i++) num[i] = tree->orig_m + i;
- glp_del_rows(mip, nrs, num);
- xfree(num);
- }
- m = tree->orig_m;
- /* restore original attributes of rows and columns */
- xassert(m == tree->orig_m);
- xassert(n == tree->n);
- for (i = 1; i <= m; i++)
- { glp_set_row_bnds(mip, i, tree->orig_type[i],
- tree->orig_lb[i], tree->orig_ub[i]);
- glp_set_row_stat(mip, i, tree->orig_stat[i]);
- mip->row[i]->prim = tree->orig_prim[i];
- mip->row[i]->dual = tree->orig_dual[i];
- }
- for (j = 1; j <= n; j++)
- { glp_set_col_bnds(mip, j, tree->orig_type[m+j],
- tree->orig_lb[m+j], tree->orig_ub[m+j]);
- glp_set_col_stat(mip, j, tree->orig_stat[m+j]);
- mip->col[j]->prim = tree->orig_prim[m+j];
- mip->col[j]->dual = tree->orig_dual[m+j];
- }
- mip->pbs_stat = mip->dbs_stat = GLP_FEAS;
- mip->obj_val = tree->orig_obj;
- /* delete the branch-and-bound tree */
- xassert(tree->local != NULL);
- ios_delete_pool(tree, tree->local);
- dmp_delete_pool(tree->pool);
- xfree(tree->orig_type);
- xfree(tree->orig_lb);
- xfree(tree->orig_ub);
- xfree(tree->orig_stat);
- xfree(tree->orig_prim);
- xfree(tree->orig_dual);
- xfree(tree->slot);
- if (tree->root_type != NULL) xfree(tree->root_type);
- if (tree->root_lb != NULL) xfree(tree->root_lb);
- if (tree->root_ub != NULL) xfree(tree->root_ub);
- if (tree->root_stat != NULL) xfree(tree->root_stat);
- xfree(tree->non_int);
- #if 0
- xfree(tree->n_ref);
- xfree(tree->c_ref);
- xfree(tree->j_ref);
- #endif
- if (tree->pcost != NULL) ios_pcost_free(tree);
- xfree(tree->iwrk);
- xfree(tree->dwrk);
- #if 0
- scg_delete_graph(tree->g);
- #endif
- if (tree->pred_type != NULL) xfree(tree->pred_type);
- if (tree->pred_lb != NULL) xfree(tree->pred_lb);
- if (tree->pred_ub != NULL) xfree(tree->pred_ub);
- if (tree->pred_stat != NULL) xfree(tree->pred_stat);
- #if 0
- xassert(tree->cut_gen == NULL);
- #endif
- xassert(tree->mir_gen == NULL);
- xassert(tree->clq_gen == NULL);
- xfree(tree);
- mip->tree = NULL;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_eval_degrad - estimate obj. degrad. for down- and up-branches
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up);
- *
- * DESCRIPTION
- *
- * Given optimal basis to LP relaxation of the current subproblem the
- * routine ios_eval_degrad performs the dual ratio test to compute the
- * objective values in the adjacent basis for down- and up-branches,
- * which are stored in locations *dn and *up, assuming that x[j] is a
- * variable chosen to branch upon. */
- void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up)
- { glp_prob *mip = tree->mip;
- int m = mip->m, n = mip->n;
- int len, kase, k, t, stat;
- double alfa, beta, gamma, delta, dz;
- int *ind = tree->iwrk;
- double *val = tree->dwrk;
- /* current basis must be optimal */
- xassert(glp_get_status(mip) == GLP_OPT);
- /* basis factorization must exist */
- xassert(glp_bf_exists(mip));
- /* obtain (fractional) value of x[j] in optimal basic solution
- to LP relaxation of the current subproblem */
- xassert(1 <= j && j <= n);
- beta = mip->col[j]->prim;
- /* since the value of x[j] is fractional, it is basic; compute
- corresponding row of the simplex table */
- len = lpx_eval_tab_row(mip, m+j, ind, val);
- /* kase < 0 means down-branch; kase > 0 means up-branch */
- for (kase = -1; kase <= +1; kase += 2)
- { /* for down-branch we introduce new upper bound floor(beta)
- for x[j]; similarly, for up-branch we introduce new lower
- bound ceil(beta) for x[j]; in the current basis this new
- upper/lower bound is violated, so in the adjacent basis
- x[j] will leave the basis and go to its new upper/lower
- bound; we need to know which non-basic variable x[k] should
- enter the basis to keep dual feasibility */
- #if 0 /* 23/XI-2009 */
- k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-7);
- #else
- k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-9);
- #endif
- /* if no variable has been chosen, current basis being primal
- infeasible due to the new upper/lower bound of x[j] is dual
- unbounded, therefore, LP relaxation to corresponding branch
- has no primal feasible solution */
- if (k == 0)
- { if (mip->dir == GLP_MIN)
- { if (kase < 0)
- *dn = +DBL_MAX;
- else
- *up = +DBL_MAX;
- }
- else if (mip->dir == GLP_MAX)
- { if (kase < 0)
- *dn = -DBL_MAX;
- else
- *up = -DBL_MAX;
- }
- else
- xassert(mip != mip);
- continue;
- }
- xassert(1 <= k && k <= m+n);
- /* row of the simplex table corresponding to specified basic
- variable x[j] is the following:
- x[j] = ... + alfa * x[k] + ... ;
- we need to know influence coefficient, alfa, at non-basic
- variable x[k] chosen with the dual ratio test */
- for (t = 1; t <= len; t++)
- if (ind[t] == k) break;
- xassert(1 <= t && t <= len);
- alfa = val[t];
- /* determine status and reduced cost of variable x[k] */
- if (k <= m)
- { stat = mip->row[k]->stat;
- gamma = mip->row[k]->dual;
- }
- else
- { stat = mip->col[k-m]->stat;
- gamma = mip->col[k-m]->dual;
- }
- /* x[k] cannot be basic or fixed non-basic */
- xassert(stat == GLP_NL || stat == GLP_NU || stat == GLP_NF);
- /* if the current basis is dual degenerative, some reduced
- costs, which are close to zero, may have wrong sign due to
- round-off errors, so correct the sign of gamma */
- if (mip->dir == GLP_MIN)
- { if (stat == GLP_NL && gamma < 0.0 ||
- stat == GLP_NU && gamma > 0.0 ||
- stat == GLP_NF) gamma = 0.0;
- }
- else if (mip->dir == GLP_MAX)
- { if (stat == GLP_NL && gamma > 0.0 ||
- stat == GLP_NU && gamma < 0.0 ||
- stat == GLP_NF) gamma = 0.0;
- }
- else
- xassert(mip != mip);
- /* determine the change of x[j] in the adjacent basis:
- delta x[j] = new x[j] - old x[j] */
- delta = (kase < 0 ? floor(beta) : ceil(beta)) - beta;
- /* compute the change of x[k] in the adjacent basis:
- delta x[k] = new x[k] - old x[k] = delta x[j] / alfa */
- delta /= alfa;
- /* compute the change of the objective in the adjacent basis:
- delta z = new z - old z = gamma * delta x[k] */
- dz = gamma * delta;
- if (mip->dir == GLP_MIN)
- xassert(dz >= 0.0);
- else if (mip->dir == GLP_MAX)
- xassert(dz <= 0.0);
- else
- xassert(mip != mip);
- /* compute the new objective value in the adjacent basis:
- new z = old z + delta z */
- if (kase < 0)
- *dn = mip->obj_val + dz;
- else
- *up = mip->obj_val + dz;
- }
- /*xprintf("obj = %g; dn = %g; up = %g\n",
- mip->obj_val, *dn, *up);*/
- return;
- }
- /***********************************************************************
- * NAME
- *
- * ios_round_bound - improve local bound by rounding
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * double ios_round_bound(glp_tree *tree, double bound);
- *
- * RETURNS
- *
- * For the given local bound for any integer feasible solution to the
- * current subproblem the routine ios_round_bound returns an improved
- * local bound for the same integer feasible solution.
- *
- * BACKGROUND
- *
- * Let the current subproblem has the following objective function:
- *
- * z = sum c[j] * x[j] + s >= b, (1)
- * j in J
- *
- * where J = {j: c[j] is non-zero and integer, x[j] is integer}, s is
- * the sum of terms corresponding to fixed variables, b is an initial
- * local bound (minimization).
- *
- * From (1) it follows that:
- *
- * d * sum (c[j] / d) * x[j] + s >= b, (2)
- * j in J
- *
- * or, equivalently,
- *
- * sum (c[j] / d) * x[j] >= (b - s) / d = h, (3)
- * j in J
- *
- * where d = gcd(c[j]). Since the left-hand side of (3) is integer,
- * h = (b - s) / d can be rounded up to the nearest integer:
- *
- * h' = ceil(h) = (b' - s) / d, (4)
- *
- * that gives an rounded, improved local bound:
- *
- * b' = d * h' + s. (5)
- *
- * In case of maximization '>=' in (1) should be replaced by '<=' that
- * leads to the following formula:
- *
- * h' = floor(h) = (b' - s) / d, (6)
- *
- * which should used in the same way as (4).
- *
- * NOTE: If b is a valid local bound for a child of the current
- * subproblem, b' is also valid for that child subproblem. */
- double ios_round_bound(glp_tree *tree, double bound)
- { glp_prob *mip = tree->mip;
- int n = mip->n;
- int d, j, nn, *c = tree->iwrk;
- double s, h;
- /* determine c[j] and compute s */
- nn = 0, s = mip->c0, d = 0;
- for (j = 1; j <= n; j++)
- { GLPCOL *col = mip->col[j];
- if (col->coef == 0.0) continue;
- if (col->type == GLP_FX)
- { /* fixed variable */
- s += col->coef * col->prim;
- }
- else
- { /* non-fixed variable */
- if (col->kind != GLP_IV) goto skip;
- if (col->coef != floor(col->coef)) goto skip;
- if (fabs(col->coef) <= (double)INT_MAX)
- c[++nn] = (int)fabs(col->coef);
- else
- d = 1;
- }
- }
- /* compute d = gcd(c[1],...c[nn]) */
- if (d == 0)
- { if (nn == 0) goto skip;
- d = gcdn(nn, c);
- }
- xassert(d > 0);
- /* compute new local bound */
- if (mip->dir == GLP_MIN)
- { if (bound != +DBL_MAX)
- { h = (bound - s) / (double)d;
- if (h >= floor(h) + 0.001)
- { /* round up */
- h = ceil(h);
- /*xprintf("d = %d; old = %g; ", d, bound);*/
- bound = (double)d * h + s;
- /*xprintf("new = %g\n", bound);*/
- }
- }
- }
- else if (mip->dir == GLP_MAX)
- { if (bound != -DBL_MAX)
- { h = (bound - s) / (double)d;
- if (h <= ceil(h) - 0.001)
- { /* round down */
- h = floor(h);
- bound = (double)d * h + s;
- }
- }
- }
- else
- xassert(mip != mip);
- skip: return bound;
- }
- /***********************************************************************
- * NAME
- *
- * ios_is_hopeful - check if subproblem is hopeful
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * int ios_is_hopeful(glp_tree *tree, double bound);
- *
- * DESCRIPTION
- *
- * Given the local bound of a subproblem the routine ios_is_hopeful
- * checks if the subproblem can have an integer optimal solution which
- * is better than the best one currently known.
- *
- * RETURNS
- *
- * If the subproblem can have a better integer optimal solution, the
- * routine returns non-zero; otherwise, if the corresponding branch can
- * be pruned, the routine returns zero. */
- int ios_is_hopeful(glp_tree *tree, double bound)
- { glp_prob *mip = tree->mip;
- int ret = 1;
- double eps;
- if (mip->mip_stat == GLP_FEAS)
- { eps = tree->parm->tol_obj * (1.0 + fabs(mip->mip_obj));
- switch (mip->dir)
- { case GLP_MIN:
- if (bound >= mip->mip_obj - eps) ret = 0;
- break;
- case GLP_MAX:
- if (bound <= mip->mip_obj + eps) ret = 0;
- break;
- default:
- xassert(mip != mip);
- }
- }
- else
- { switch (mip->dir)
- { case GLP_MIN:
- if (bound == +DBL_MAX) ret = 0;
- break;
- case GLP_MAX:
- if (bound == -DBL_MAX) ret = 0;
- break;
- default:
- xassert(mip != mip);
- }
- }
- return ret;
- }
- /***********************************************************************
- * NAME
- *
- * ios_best_node - find active node with best local bound
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * int ios_best_node(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine ios_best_node finds an active node whose local bound is
- * best among other active nodes.
- *
- * It is understood that the integer optimal solution of the original
- * mip problem cannot be better than the best bound, so the best bound
- * is an lower (minimization) or upper (maximization) global bound for
- * the original problem.
- *
- * RETURNS
- *
- * The routine ios_best_node returns the subproblem reference number
- * for the best node. However, if the tree is empty, it returns zero. */
- int ios_best_node(glp_tree *tree)
- { IOSNPD *node, *best = NULL;
- switch (tree->mip->dir)
- { case GLP_MIN:
- /* minimization */
- for (node = tree->head; node != NULL; node = node->next)
- if (best == NULL || best->bound > node->bound)
- best = node;
- break;
- case GLP_MAX:
- /* maximization */
- for (node = tree->head; node != NULL; node = node->next)
- if (best == NULL || best->bound < node->bound)
- best = node;
- break;
- default:
- xassert(tree != tree);
- }
- return best == NULL ? 0 : best->p;
- }
- /***********************************************************************
- * NAME
- *
- * ios_relative_gap - compute relative mip gap
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * double ios_relative_gap(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine ios_relative_gap computes the relative mip gap using the
- * formula:
- *
- * gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON),
- *
- * where best_mip is the best integer feasible solution found so far,
- * best_bnd is the best (global) bound. If no integer feasible solution
- * has been found yet, rel_gap is set to DBL_MAX.
- *
- * RETURNS
- *
- * The routine ios_relative_gap returns the relative mip gap. */
- double ios_relative_gap(glp_tree *tree)
- { glp_prob *mip = tree->mip;
- int p;
- double best_mip, best_bnd, gap;
- if (mip->mip_stat == GLP_FEAS)
- { best_mip = mip->mip_obj;
- p = ios_best_node(tree);
- if (p == 0)
- { /* the tree is empty */
- gap = 0.0;
- }
- else
- { best_bnd = tree->slot[p].node->bound;
- gap = fabs(best_mip - best_bnd) / (fabs(best_mip) +
- DBL_EPSILON);
- }
- }
- else
- { /* no integer feasible solution has been found yet */
- gap = DBL_MAX;
- }
- return gap;
- }
- /***********************************************************************
- * NAME
- *
- * ios_solve_node - solve LP relaxation of current subproblem
- *
- * SYNOPSIS
- *
- * #include "glpios.h"
- * int ios_solve_node(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine ios_solve_node re-optimizes LP relaxation of the current
- * subproblem using the dual simplex method.
- *
- * RETURNS
- *
- * The routine returns the code which is reported by glp_simplex. */
- int ios_solve_node(glp_tree *tree)
- { glp_prob *mip = tree->mip;
- glp_smcp parm;
- int ret;
- /* the current subproblem must exist */
- xassert(tree->curr != NULL);
- /* set some control parameters */
- glp_init_smcp(&parm);
- switch (tree->parm->msg_lev)
- { case GLP_MSG_OFF:
- parm.msg_lev = GLP_MSG_OFF; break;
- case GLP_MSG_ERR:
- parm.msg_lev = GLP_MSG_ERR; break;
- case GLP_MSG_ON:
- case GLP_MSG_ALL:
- parm.msg_lev = GLP_MSG_ON; break;
- case GLP_MSG_DBG:
- parm.msg_lev = GLP_MSG_ALL; break;
- default:
- xassert(tree != tree);
- }
- parm.meth = GLP_DUALP;
- if (tree->parm->msg_lev < GLP_MSG_DBG)
- parm.out_dly = tree->parm->out_dly;
- else
- parm.out_dly = 0;
- /* if the incumbent objective value is already known, use it to
- prematurely terminate the dual simplex search */
- if (mip->mip_stat == GLP_FEAS)
- { switch (tree->mip->dir)
- { case GLP_MIN:
- parm.obj_ul = mip->mip_obj;
- break;
- case GLP_MAX:
- parm.obj_ll = mip->mip_obj;
- break;
- default:
- xassert(mip != mip);
- }
- }
- /* try to solve/re-optimize the LP relaxation */
- ret = glp_simplex(mip, &parm);
- tree->curr->solved++;
- #if 0
- xprintf("ret = %d; status = %d; pbs = %d; dbs = %d; some = %d\n",
- ret, glp_get_status(mip), mip->pbs_stat, mip->dbs_stat,
- mip->some);
- lpx_print_sol(mip, "sol");
- #endif
- return ret;
- }
- /**********************************************************************/
- IOSPOOL *ios_create_pool(glp_tree *tree)
- { /* create cut pool */
- IOSPOOL *pool;
- #if 0
- pool = dmp_get_atom(tree->pool, sizeof(IOSPOOL));
- #else
- xassert(tree == tree);
- pool = xmalloc(sizeof(IOSPOOL));
- #endif
- pool->size = 0;
- pool->head = pool->tail = NULL;
- pool->ord = 0, pool->curr = NULL;
- return pool;
- }
- int ios_add_row(glp_tree *tree, IOSPOOL *pool,
- const char *name, int klass, int flags, int len, const int ind[],
- const double val[], int type, double rhs)
- { /* add row (constraint) to the cut pool */
- IOSCUT *cut;
- IOSAIJ *aij;
- int k;
- xassert(pool != NULL);
- cut = dmp_get_atom(tree->pool, sizeof(IOSCUT));
- if (name == NULL || name[0] == '\0')
- cut->name = NULL;
- else
- { for (k = 0; name[k] != '\0'; k++)
- { if (k == 256)
- xerror("glp_ios_add_row: cut name too long\n");
- if (iscntrl((unsigned char)name[k]))
- xerror("glp_ios_add_row: cut name contains invalid chara"
- "cter(s)\n");
- }
- cut->name = dmp_get_atom(tree->pool, strlen(name)+1);
- strcpy(cut->name, name);
- }
- if (!(0 <= klass && klass <= 255))
- xerror("glp_ios_add_row: klass = %d; invalid cut class\n",
- klass);
- cut->klass = (unsigned char)klass;
- if (flags != 0)
- xerror("glp_ios_add_row: flags = %d; invalid cut flags\n",
- flags);
- cut->ptr = NULL;
- if (!(0 <= len && len <= tree->n))
- xerror("glp_ios_add_row: len = %d; invalid cut length\n",
- len);
- for (k = 1; k <= len; k++)
- { aij = dmp_get_atom(tree->pool, sizeof(IOSAIJ));
- if (!(1 <= ind[k] && ind[k] <= tree->n))
- xerror("glp_ios_add_row: ind[%d] = %d; column index out of "
- "range\n", k, ind[k]);
- aij->j = ind[k];
- aij->val = val[k];
- aij->next = cut->ptr;
- cut->ptr = aij;
- }
- if (!(type == GLP_LO || type == GLP_UP || type == GLP_FX))
- xerror("glp_ios_add_row: type = %d; invalid cut type\n",
- type);
- cut->type = (unsigned char)type;
- cut->rhs = rhs;
- cut->prev = pool->tail;
- cut->next = NULL;
- if (cut->prev == NULL)
- pool->head = cut;
- else
- cut->prev->next = cut;
- pool->tail = cut;
- pool->size++;
- return pool->size;
- }
- IOSCUT *ios_find_row(IOSPOOL *pool, int i)
- { /* find row (constraint) in the cut pool */
- /* (smart linear search) */
- xassert(pool != NULL);
- xassert(1 <= i && i <= pool->size);
- if (pool->ord == 0)
- { xassert(pool->curr == NULL);
- pool->ord = 1;
- pool->curr = pool->head;
- }
- xassert(pool->curr != NULL);
- if (i < pool->ord)
- { if (i < pool->ord - i)
- { pool->ord = 1;
- pool->curr = pool->head;
- while (pool->ord != i)
- { pool->ord++;
- xassert(pool->curr != NULL);
- pool->curr = pool->curr->next;
- }
- }
- else
- { while (pool->ord != i)
- { pool->ord--;
- xassert(pool->curr != NULL);
- pool->curr = pool->curr->prev;
- }
- }
- }
- else if (i > pool->ord)
- { if (i - pool->ord < pool->size - i)
- { while (pool->ord != i)
- { pool->ord++;
- xassert(pool->curr != NULL);
- pool->curr = pool->curr->next;
- }
- }
- else
- { pool->ord = pool->size;
- pool->curr = pool->tail;
- while (pool->ord != i)
- { pool->ord--;
- xassert(pool->curr != NULL);
- pool->curr = pool->curr->prev;
- }
- }
- }
- xassert(pool->ord == i);
- xassert(pool->curr != NULL);
- return pool->curr;
- }
- void ios_del_row(glp_tree *tree, IOSPOOL *pool, int i)
- { /* remove row (constraint) from the cut pool */
- IOSCUT *cut;
- IOSAIJ *aij;
- xassert(pool != NULL);
- if (!(1 <= i && i <= pool->size))
- xerror("glp_ios_del_row: i = %d; cut number out of range\n",
- i);
- cut = ios_find_row(pool, i);
- xassert(pool->curr == cut);
- if (cut->next != NULL)
- pool->curr = cut->next;
- else if (cut->prev != NULL)
- pool->ord--, pool->curr = cut->prev;
- else
- pool->ord = 0, pool->curr = NULL;
- if (cut->name != NULL)
- dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1);
- if (cut->prev == NULL)
- { xassert(pool->head == cut);
- pool->head = cut->next;
- }
- else
- { xassert(cut->prev->next == cut);
- cut->prev->next = cut->next;
- }
- if (cut->next == NULL)
- { xassert(pool->tail == cut);
- pool->tail = cut->prev;
- }
- else
- { xassert(cut->next->prev == cut);
- cut->next->prev = cut->prev;
- }
- while (cut->ptr != NULL)
- { aij = cut->ptr;
- cut->ptr = aij->next;
- dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ));
- }
- dmp_free_atom(tree->pool, cut, sizeof(IOSCUT));
- pool->size--;
- return;
- }
- void ios_clear_pool(glp_tree *tree, IOSPOOL *pool)
- { /* remove all rows (constraints) from the cut pool */
- xassert(pool != NULL);
- while (pool->head != NULL)
- { IOSCUT *cut = pool->head;
- pool->head = cut->next;
- if (cut->name != NULL)
- dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1);
- while (cut->ptr != NULL)
- { IOSAIJ *aij = cut->ptr;
- cut->ptr = aij->next;
- dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ));
- }
- dmp_free_atom(tree->pool, cut, sizeof(IOSCUT));
- }
- pool->size = 0;
- pool->head = pool->tail = NULL;
- pool->ord = 0, pool->curr = NULL;
- return;
- }
- void ios_delete_pool(glp_tree *tree, IOSPOOL *pool)
- { /* delete cut pool */
- xassert(pool != NULL);
- ios_clear_pool(tree, pool);
- xfree(pool);
- return;
- }
- /**********************************************************************/
- #if 0
- static int refer_to_node(glp_tree *tree, int j)
- { /* determine node number corresponding to binary variable x[j] or
- its complement */
- glp_prob *mip = tree->mip;
- int n = mip->n;
- int *ref;
- if (j > 0)
- ref = tree->n_ref;
- else
- ref = tree->c_ref, j = - j;
- xassert(1 <= j && j <= n);
- if (ref[j] == 0)
- { /* new node is needed */
- SCG *g = tree->g;
- int n_max = g->n_max;
- ref[j] = scg_add_nodes(g, 1);
- if (g->n_max > n_max)
- { int *save = tree->j_ref;
- tree->j_ref = xcalloc(1+g->n_max, sizeof(int));
- memcpy(&tree->j_ref[1], &save[1], g->n * sizeof(int));
- xfree(save);
- }
- xassert(ref[j] == g->n);
- tree->j_ref[ref[j]] = j;
- xassert(tree->curr != NULL);
- if (tree->curr->level > 0) tree->curr->own_nn++;
- }
- return ref[j];
- }
- #endif
- #if 0
- void ios_add_edge(glp_tree *tree, int j1, int j2)
- { /* add new edge to the conflict graph */
- glp_prob *mip = tree->mip;
- int n = mip->n;
- SCGRIB *e;
- int first, i1, i2;
- xassert(-n <= j1 && j1 <= +n && j1 != 0);
- xassert(-n <= j2 && j2 <= +n && j2 != 0);
- xassert(j1 != j2);
- /* determine number of the first node, which was added for the
- current subproblem */
- xassert(tree->curr != NULL);
- first = tree->g->n - tree->curr->own_nn + 1;
- /* determine node numbers for both endpoints */
- i1 = refer_to_node(tree, j1);
- i2 = refer_to_node(tree, j2);
- /* add edge (i1,i2) to the conflict graph */
- e = scg_add_edge(tree->g, i1, i2);
- /* if the current subproblem is not the root and both endpoints
- were created on some previous levels, save the edge */
- if (tree->curr->level > 0 && i1 < first && i2 < first)
- { IOSRIB *rib;
- rib = dmp_get_atom(tree->pool, sizeof(IOSRIB));
- rib->j1 = j1;
- rib->j2 = j2;
- rib->e = e;
- rib->next = tree->curr->e_ptr;
- tree->curr->e_ptr = rib;
- }
- return;
- }
- #endif
- /* eof */
|