123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- /* glpini02.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpapi.h"
- struct var
- { /* structural variable */
- int j;
- /* ordinal number */
- double q;
- /* penalty value */
- };
- static int fcmp(const void *ptr1, const void *ptr2)
- { /* this routine is passed to the qsort() function */
- struct var *col1 = (void *)ptr1, *col2 = (void *)ptr2;
- if (col1->q < col2->q) return -1;
- if (col1->q > col2->q) return +1;
- return 0;
- }
- static int get_column(glp_prob *lp, int j, int ind[], double val[])
- { /* Bixby's algorithm assumes that the constraint matrix is scaled
- such that the maximum absolute value in every non-zero row and
- column is 1 */
- int k, len;
- double big;
- len = glp_get_mat_col(lp, j, ind, val);
- big = 0.0;
- for (k = 1; k <= len; k++)
- if (big < fabs(val[k])) big = fabs(val[k]);
- if (big == 0.0) big = 1.0;
- for (k = 1; k <= len; k++) val[k] /= big;
- return len;
- }
- static void cpx_basis(glp_prob *lp)
- { /* main routine */
- struct var *C, *C2, *C3, *C4;
- int m, n, i, j, jk, k, l, ll, t, n2, n3, n4, type, len, *I, *r,
- *ind;
- double alpha, gamma, cmax, temp, *v, *val;
- xprintf("Constructing initial basis...\n");
- /* determine the number of rows and columns */
- m = glp_get_num_rows(lp);
- n = glp_get_num_cols(lp);
- /* allocate working arrays */
- C = xcalloc(1+n, sizeof(struct var));
- I = xcalloc(1+m, sizeof(int));
- r = xcalloc(1+m, sizeof(int));
- v = xcalloc(1+m, sizeof(double));
- ind = xcalloc(1+m, sizeof(int));
- val = xcalloc(1+m, sizeof(double));
- /* make all auxiliary variables non-basic */
- for (i = 1; i <= m; i++)
- { if (glp_get_row_type(lp, i) != GLP_DB)
- glp_set_row_stat(lp, i, GLP_NS);
- else if (fabs(glp_get_row_lb(lp, i)) <=
- fabs(glp_get_row_ub(lp, i)))
- glp_set_row_stat(lp, i, GLP_NL);
- else
- glp_set_row_stat(lp, i, GLP_NU);
- }
- /* make all structural variables non-basic */
- for (j = 1; j <= n; j++)
- { if (glp_get_col_type(lp, j) != GLP_DB)
- glp_set_col_stat(lp, j, GLP_NS);
- else if (fabs(glp_get_col_lb(lp, j)) <=
- fabs(glp_get_col_ub(lp, j)))
- glp_set_col_stat(lp, j, GLP_NL);
- else
- glp_set_col_stat(lp, j, GLP_NU);
- }
- /* C2 is a set of free structural variables */
- n2 = 0, C2 = C + 0;
- for (j = 1; j <= n; j++)
- { type = glp_get_col_type(lp, j);
- if (type == GLP_FR)
- { n2++;
- C2[n2].j = j;
- C2[n2].q = 0.0;
- }
- }
- /* C3 is a set of structural variables having excatly one (lower
- or upper) bound */
- n3 = 0, C3 = C2 + n2;
- for (j = 1; j <= n; j++)
- { type = glp_get_col_type(lp, j);
- if (type == GLP_LO)
- { n3++;
- C3[n3].j = j;
- C3[n3].q = + glp_get_col_lb(lp, j);
- }
- else if (type == GLP_UP)
- { n3++;
- C3[n3].j = j;
- C3[n3].q = - glp_get_col_ub(lp, j);
- }
- }
- /* C4 is a set of structural variables having both (lower and
- upper) bounds */
- n4 = 0, C4 = C3 + n3;
- for (j = 1; j <= n; j++)
- { type = glp_get_col_type(lp, j);
- if (type == GLP_DB)
- { n4++;
- C4[n4].j = j;
- C4[n4].q = glp_get_col_lb(lp, j) - glp_get_col_ub(lp, j);
- }
- }
- /* compute gamma = max{|c[j]|: 1 <= j <= n} */
- gamma = 0.0;
- for (j = 1; j <= n; j++)
- { temp = fabs(glp_get_obj_coef(lp, j));
- if (gamma < temp) gamma = temp;
- }
- /* compute cmax */
- cmax = (gamma == 0.0 ? 1.0 : 1000.0 * gamma);
- /* compute final penalty for all structural variables within sets
- C2, C3, and C4 */
- switch (glp_get_obj_dir(lp))
- { case GLP_MIN: temp = +1.0; break;
- case GLP_MAX: temp = -1.0; break;
- default: xassert(lp != lp);
- }
- for (k = 1; k <= n2+n3+n4; k++)
- { j = C[k].j;
- C[k].q += (temp * glp_get_obj_coef(lp, j)) / cmax;
- }
- /* sort structural variables within C2, C3, and C4 in ascending
- order of penalty value */
- qsort(C2+1, n2, sizeof(struct var), fcmp);
- for (k = 1; k < n2; k++) xassert(C2[k].q <= C2[k+1].q);
- qsort(C3+1, n3, sizeof(struct var), fcmp);
- for (k = 1; k < n3; k++) xassert(C3[k].q <= C3[k+1].q);
- qsort(C4+1, n4, sizeof(struct var), fcmp);
- for (k = 1; k < n4; k++) xassert(C4[k].q <= C4[k+1].q);
- /*** STEP 1 ***/
- for (i = 1; i <= m; i++)
- { type = glp_get_row_type(lp, i);
- if (type != GLP_FX)
- { /* row i is either free or inequality constraint */
- glp_set_row_stat(lp, i, GLP_BS);
- I[i] = 1;
- r[i] = 1;
- }
- else
- { /* row i is equality constraint */
- I[i] = 0;
- r[i] = 0;
- }
- v[i] = +DBL_MAX;
- }
- /*** STEP 2 ***/
- for (k = 1; k <= n2+n3+n4; k++)
- { jk = C[k].j;
- len = get_column(lp, jk, ind, val);
- /* let alpha = max{|A[l,jk]|: r[l] = 0} and let l' be such
- that alpha = |A[l',jk]| */
- alpha = 0.0, ll = 0;
- for (t = 1; t <= len; t++)
- { l = ind[t];
- if (r[l] == 0 && alpha < fabs(val[t]))
- alpha = fabs(val[t]), ll = l;
- }
- if (alpha >= 0.99)
- { /* B := B union {jk} */
- glp_set_col_stat(lp, jk, GLP_BS);
- I[ll] = 1;
- v[ll] = alpha;
- /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
- for (t = 1; t <= len; t++)
- { l = ind[t];
- if (val[t] != 0.0) r[l]++;
- }
- /* continue to the next k */
- continue;
- }
- /* if |A[l,jk]| > 0.01 * v[l] for some l, continue to the
- next k */
- for (t = 1; t <= len; t++)
- { l = ind[t];
- if (fabs(val[t]) > 0.01 * v[l]) break;
- }
- if (t <= len) continue;
- /* otherwise, let alpha = max{|A[l,jk]|: I[l] = 0} and let l'
- be such that alpha = |A[l',jk]| */
- alpha = 0.0, ll = 0;
- for (t = 1; t <= len; t++)
- { l = ind[t];
- if (I[l] == 0 && alpha < fabs(val[t]))
- alpha = fabs(val[t]), ll = l;
- }
- /* if alpha = 0, continue to the next k */
- if (alpha == 0.0) continue;
- /* B := B union {jk} */
- glp_set_col_stat(lp, jk, GLP_BS);
- I[ll] = 1;
- v[ll] = alpha;
- /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
- for (t = 1; t <= len; t++)
- { l = ind[t];
- if (val[t] != 0.0) r[l]++;
- }
- }
- /*** STEP 3 ***/
- /* add an artificial variable (auxiliary variable for equality
- constraint) to cover each remaining uncovered row */
- for (i = 1; i <= m; i++)
- if (I[i] == 0) glp_set_row_stat(lp, i, GLP_BS);
- /* free working arrays */
- xfree(C);
- xfree(I);
- xfree(r);
- xfree(v);
- xfree(ind);
- xfree(val);
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_cpx_basis - construct Bixby's initial LP basis
- *
- * SYNOPSIS
- *
- * void glp_cpx_basis(glp_prob *lp);
- *
- * DESCRIPTION
- *
- * The routine glp_cpx_basis constructs an advanced initial basis for
- * the specified problem object.
- *
- * The routine is based on Bixby's algorithm described in the paper:
- *
- * Robert E. Bixby. Implementing the Simplex Method: The Initial Basis.
- * ORSA Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84. */
- void glp_cpx_basis(glp_prob *lp)
- { if (lp->m == 0 || lp->n == 0)
- glp_std_basis(lp);
- else
- cpx_basis(lp);
- return;
- }
- /* eof */
|