123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- /* glpini01.c */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpapi.h"
- /*----------------------------------------------------------------------
- -- triang - find maximal triangular part of a rectangular matrix.
- --
- -- *Synopsis*
- --
- -- int triang(int m, int n,
- -- void *info, int (*mat)(void *info, int k, int ndx[]),
- -- int rn[], int cn[]);
- --
- -- *Description*
- --
- -- For a given rectangular (sparse) matrix A with m rows and n columns
- -- the routine triang tries to find such permutation matrices P and Q
- -- that the first rows and columns of the matrix B = P*A*Q form a lower
- -- triangular submatrix of as greatest size as possible:
- --
- -- 1 n
- -- 1 * . . . . . . x x x x x x
- -- * * . . . . . x x x x x x
- -- * * * . . . . x x x x x x
- -- * * * * . . . x x x x x x
- -- B = P*A*Q = * * * * * . . x x x x x x
- -- * * * * * * . x x x x x x
- -- * * * * * * * x x x x x x
- -- x x x x x x x x x x x x x
- -- x x x x x x x x x x x x x
- -- m x x x x x x x x x x x x x
- --
- -- where: '*' - elements of the lower triangular part, '.' - structural
- -- zeros, 'x' - other (either non-zero or zero) elements.
- --
- -- The parameter info is a transit pointer passed to the formal routine
- -- mat (see below).
- --
- -- The formal routine mat specifies the given matrix A in both row- and
- -- column-wise formats. In order to obtain an i-th row of the matrix A
- -- the routine triang calls the routine mat with the parameter k = +i,
- -- 1 <= i <= m. In response the routine mat should store column indices
- -- of (non-zero) elements of the i-th row to the locations ndx[1], ...,
- -- ndx[len], where len is number of non-zeros in the i-th row returned
- -- on exit. Analogously, in order to obtain a j-th column of the matrix
- -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n,
- -- and should return pattern of the j-th column in the same way as for
- -- row patterns. Note that the routine mat may be called more than once
- -- for the same rows and columns.
- --
- -- On exit the routine computes two resultant arrays rn and cn, which
- -- define the permutation matrices P and Q, respectively. The array rn
- -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m)
- -- means that i-th row of the original matrix A corresponds to i'-th row
- -- of the matrix B = P*A*Q. Similarly, the array cn should have at least
- -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column
- -- of the matrix A corresponds to j'-th column of the matrix B.
- --
- -- *Returns*
- --
- -- The routine triang returns the size of the lower tringular part of
- -- the matrix B = P*A*Q (see the figure above).
- --
- -- *Complexity*
- --
- -- The time complexity of the routine triang is O(nnz), where nnz is
- -- number of non-zeros in the given matrix A.
- --
- -- *Algorithm*
- --
- -- The routine triang starts from the matrix B = P*Q*A, where P and Q
- -- are unity matrices, so initially B = A.
- --
- -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially
- -- built a lower triangular submatrix, B2 is the active submatrix, and
- -- B3 is a submatrix that contains rejected columns. Thus, the current
- -- matrix B looks like follows (initially k1 = 1 and k2 = n):
- --
- -- 1 k1 k2 n
- -- 1 x . . . . . . . . . . . . . # # #
- -- x x . . . . . . . . . . . . # # #
- -- x x x . . . . . . . . . . # # # #
- -- x x x x . . . . . . . . . # # # #
- -- x x x x x . . . . . . . # # # # #
- -- k1 x x x x x * * * * * * * # # # # #
- -- x x x x x * * * * * * * # # # # #
- -- x x x x x * * * * * * * # # # # #
- -- x x x x x * * * * * * * # # # # #
- -- m x x x x x * * * * * * * # # # # #
- -- <--B1---> <----B2-----> <---B3-->
- --
- -- On each iteartion the routine looks for a singleton row, i.e. some
- -- row that has the only non-zero in the active submatrix B2. If such
- -- row exists and the corresponding non-zero is b[i,j], where (by the
- -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes
- -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in
- -- order to place the element in the position b[k1,k1]), removes the
- -- k1-th column from the active submatrix B2, and adds this column to
- -- the submatrix B1. If no row singletons exist, but B2 is not empty
- -- yet, the routine chooses a j-th column, which has maximal number of
- -- non-zeros among other columns of B2, removes this column from B2 and
- -- adds it to the submatrix B3 in the hope that new row singletons will
- -- appear in the active submatrix. */
- static int triang(int m, int n,
- void *info, int (*mat)(void *info, int k, int ndx[]),
- int rn[], int cn[])
- { int *ndx; /* int ndx[1+max(m,n)]; */
- /* this array is used for querying row and column patterns of the
- given matrix A (the third parameter to the routine mat) */
- int *rs_len; /* int rs_len[1+m]; */
- /* rs_len[0] is not used;
- rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row
- of the matrix A, which (non-zeros) belong to the current active
- submatrix */
- int *rs_head; /* int rs_head[1+n]; */
- /* rs_head[len], 0 <= len <= n, is the number i of the first row
- of the matrix A, for which rs_len[i] = len */
- int *rs_prev; /* int rs_prev[1+m]; */
- /* rs_prev[0] is not used;
- rs_prev[i], 1 <= i <= m, is a number i' of the previous row of
- the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the
- end of this linked list) */
- int *rs_next; /* int rs_next[1+m]; */
- /* rs_next[0] is not used;
- rs_next[i], 1 <= i <= m, is a number i' of the next row of the
- matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end
- this linked list) */
- int cs_head;
- /* is a number j of the first column of the matrix A, which has
- maximal number of non-zeros among other columns */
- int *cs_prev; /* cs_prev[1+n]; */
- /* cs_prev[0] is not used;
- cs_prev[j], 1 <= j <= n, is a number of the previous column of
- the matrix A with the same or greater number of non-zeros than
- in the j-th column (zero marks the end of this linked list) */
- int *cs_next; /* cs_next[1+n]; */
- /* cs_next[0] is not used;
- cs_next[j], 1 <= j <= n, is a number of the next column of
- the matrix A with the same or lesser number of non-zeros than
- in the j-th column (zero marks the end of this linked list) */
- int i, j, ii, jj, k1, k2, len, t, size = 0;
- int *head, *rn_inv, *cn_inv;
- if (!(m > 0 && n > 0))
- xerror("triang: m = %d; n = %d; invalid dimension\n", m, n);
- /* allocate working arrays */
- ndx = xcalloc(1+(m >= n ? m : n), sizeof(int));
- rs_len = xcalloc(1+m, sizeof(int));
- rs_head = xcalloc(1+n, sizeof(int));
- rs_prev = xcalloc(1+m, sizeof(int));
- rs_next = xcalloc(1+m, sizeof(int));
- cs_prev = xcalloc(1+n, sizeof(int));
- cs_next = xcalloc(1+n, sizeof(int));
- /* build linked lists of columns of the matrix A with the same
- number of non-zeros */
- head = rs_len; /* currently rs_len is used as working array */
- for (len = 0; len <= m; len ++) head[len] = 0;
- for (j = 1; j <= n; j++)
- { /* obtain length of the j-th column */
- len = mat(info, -j, ndx);
- xassert(0 <= len && len <= m);
- /* include the j-th column in the corresponding linked list */
- cs_prev[j] = head[len];
- head[len] = j;
- }
- /* merge all linked lists of columns in one linked list, where
- columns are ordered by descending of their lengths */
- cs_head = 0;
- for (len = 0; len <= m; len++)
- { for (j = head[len]; j != 0; j = cs_prev[j])
- { cs_next[j] = cs_head;
- cs_head = j;
- }
- }
- jj = 0;
- for (j = cs_head; j != 0; j = cs_next[j])
- { cs_prev[j] = jj;
- jj = j;
- }
- /* build initial doubly linked lists of rows of the matrix A with
- the same number of non-zeros */
- for (len = 0; len <= n; len++) rs_head[len] = 0;
- for (i = 1; i <= m; i++)
- { /* obtain length of the i-th row */
- rs_len[i] = len = mat(info, +i, ndx);
- xassert(0 <= len && len <= n);
- /* include the i-th row in the correspondng linked list */
- rs_prev[i] = 0;
- rs_next[i] = rs_head[len];
- if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
- rs_head[len] = i;
- }
- /* initially all rows and columns of the matrix A are active */
- for (i = 1; i <= m; i++) rn[i] = 0;
- for (j = 1; j <= n; j++) cn[j] = 0;
- /* set initial bounds of the active submatrix */
- k1 = 1, k2 = n;
- /* main loop starts here */
- while (k1 <= k2)
- { i = rs_head[1];
- if (i != 0)
- { /* the i-th row of the matrix A is a row singleton, since
- it has the only non-zero in the active submatrix */
- xassert(rs_len[i] == 1);
- /* determine the number j of an active column of the matrix
- A, in which this non-zero is placed */
- j = 0;
- t = mat(info, +i, ndx);
- xassert(0 <= t && t <= n);
- for (t = t; t >= 1; t--)
- { jj = ndx[t];
- xassert(1 <= jj && jj <= n);
- if (cn[jj] == 0)
- { xassert(j == 0);
- j = jj;
- }
- }
- xassert(j != 0);
- /* the singleton is a[i,j]; move a[i,j] to the position
- b[k1,k1] of the matrix B */
- rn[i] = cn[j] = k1;
- /* shift the left bound of the active submatrix */
- k1++;
- /* increase the size of the lower triangular part */
- size++;
- }
- else
- { /* the current active submatrix has no row singletons */
- /* remove an active column with maximal number of non-zeros
- from the active submatrix */
- j = cs_head;
- xassert(j != 0);
- cn[j] = k2;
- /* shift the right bound of the active submatrix */
- k2--;
- }
- /* the j-th column of the matrix A has been removed from the
- active submatrix */
- /* remove the j-th column from the linked list */
- if (cs_prev[j] == 0)
- cs_head = cs_next[j];
- else
- cs_next[cs_prev[j]] = cs_next[j];
- if (cs_next[j] == 0)
- /* nop */;
- else
- cs_prev[cs_next[j]] = cs_prev[j];
- /* go through non-zeros of the j-th columns and update active
- lengths of the corresponding rows */
- t = mat(info, -j, ndx);
- xassert(0 <= t && t <= m);
- for (t = t; t >= 1; t--)
- { i = ndx[t];
- xassert(1 <= i && i <= m);
- /* the non-zero a[i,j] has left the active submatrix */
- len = rs_len[i];
- xassert(len >= 1);
- /* remove the i-th row from the linked list of rows with
- active length len */
- if (rs_prev[i] == 0)
- rs_head[len] = rs_next[i];
- else
- rs_next[rs_prev[i]] = rs_next[i];
- if (rs_next[i] == 0)
- /* nop */;
- else
- rs_prev[rs_next[i]] = rs_prev[i];
- /* decrease the active length of the i-th row */
- rs_len[i] = --len;
- /* return the i-th row to the corresponding linked list */
- rs_prev[i] = 0;
- rs_next[i] = rs_head[len];
- if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
- rs_head[len] = i;
- }
- }
- /* other rows of the matrix A, which are still active, correspond
- to rows k1, ..., m of the matrix B (in arbitrary order) */
- for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++;
- /* but for columns this is not needed, because now the submatrix
- B2 has no columns */
- for (j = 1; j <= n; j++) xassert(cn[j] != 0);
- /* perform some optional checks */
- /* make sure that rn is a permutation of {1, ..., m} and cn is a
- permutation of {1, ..., n} */
- rn_inv = rs_len; /* used as working array */
- for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0;
- for (i = 1; i <= m; i++)
- { ii = rn[i];
- xassert(1 <= ii && ii <= m);
- xassert(rn_inv[ii] == 0);
- rn_inv[ii] = i;
- }
- cn_inv = rs_head; /* used as working array */
- for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0;
- for (j = 1; j <= n; j++)
- { jj = cn[j];
- xassert(1 <= jj && jj <= n);
- xassert(cn_inv[jj] == 0);
- cn_inv[jj] = j;
- }
- /* make sure that the matrix B = P*A*Q really has the form, which
- was declared */
- for (ii = 1; ii <= size; ii++)
- { int diag = 0;
- i = rn_inv[ii];
- t = mat(info, +i, ndx);
- xassert(0 <= t && t <= n);
- for (t = t; t >= 1; t--)
- { j = ndx[t];
- xassert(1 <= j && j <= n);
- jj = cn[j];
- if (jj <= size) xassert(jj <= ii);
- if (jj == ii)
- { xassert(!diag);
- diag = 1;
- }
- }
- xassert(diag);
- }
- /* free working arrays */
- xfree(ndx);
- xfree(rs_len);
- xfree(rs_head);
- xfree(rs_prev);
- xfree(rs_next);
- xfree(cs_prev);
- xfree(cs_next);
- /* return to the calling program */
- return size;
- }
- /*----------------------------------------------------------------------
- -- adv_basis - construct advanced initial LP basis.
- --
- -- *Synopsis*
- --
- -- #include "glpini.h"
- -- void adv_basis(glp_prob *lp);
- --
- -- *Description*
- --
- -- The routine adv_basis constructs an advanced initial basis for an LP
- -- problem object, which the parameter lp points to.
- --
- -- In order to build the initial basis the routine does the following:
- --
- -- 1) includes in the basis all non-fixed auxiliary variables;
- --
- -- 2) includes in the basis as many as possible non-fixed structural
- -- variables preserving triangular form of the basis matrix;
- --
- -- 3) includes in the basis appropriate (fixed) auxiliary variables
- -- in order to complete the basis.
- --
- -- As a result the initial basis has minimum of fixed variables and the
- -- corresponding basis matrix is triangular. */
- static int mat(void *info, int k, int ndx[])
- { /* this auxiliary routine returns the pattern of a given row or
- a given column of the augmented constraint matrix A~ = (I|-A),
- in which columns of fixed variables are implicitly cleared */
- LPX *lp = info;
- int m = lpx_get_num_rows(lp);
- int n = lpx_get_num_cols(lp);
- int typx, i, j, lll, len = 0;
- if (k > 0)
- { /* the pattern of the i-th row is required */
- i = +k;
- xassert(1 <= i && i <= m);
- #if 0 /* 22/XII-2003 */
- /* if the auxiliary variable x[i] is non-fixed, include its
- element (placed in the i-th column) in the pattern */
- lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
- if (typx != LPX_FX) ndx[++len] = i;
- /* include in the pattern elements placed in columns, which
- correspond to non-fixed structural varables */
- i_beg = aa_ptr[i];
- i_end = i_beg + aa_len[i] - 1;
- for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
- { j = m + sv_ndx[i_ptr];
- lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
- if (typx != LPX_FX) ndx[++len] = j;
- }
- #else
- lll = lpx_get_mat_row(lp, i, ndx, NULL);
- for (k = 1; k <= lll; k++)
- { lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL);
- if (typx != LPX_FX) ndx[++len] = m + ndx[k];
- }
- lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
- if (typx != LPX_FX) ndx[++len] = i;
- #endif
- }
- else
- { /* the pattern of the j-th column is required */
- j = -k;
- xassert(1 <= j && j <= m+n);
- /* if the (auxiliary or structural) variable x[j] is fixed,
- the pattern of its column is empty */
- if (j <= m)
- lpx_get_row_bnds(lp, j, &typx, NULL, NULL);
- else
- lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
- if (typx != LPX_FX)
- { if (j <= m)
- { /* x[j] is non-fixed auxiliary variable */
- ndx[++len] = j;
- }
- else
- { /* x[j] is non-fixed structural variables */
- #if 0 /* 22/XII-2003 */
- j_beg = aa_ptr[j];
- j_end = j_beg + aa_len[j] - 1;
- for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
- ndx[++len] = sv_ndx[j_ptr];
- #else
- len = lpx_get_mat_col(lp, j-m, ndx, NULL);
- #endif
- }
- }
- }
- /* return the length of the row/column pattern */
- return len;
- }
- static void adv_basis(glp_prob *lp)
- { int m = lpx_get_num_rows(lp);
- int n = lpx_get_num_cols(lp);
- int i, j, jj, k, size;
- int *rn, *cn, *rn_inv, *cn_inv;
- int typx, *tagx = xcalloc(1+m+n, sizeof(int));
- double lb, ub;
- xprintf("Constructing initial basis...\n");
- #if 0 /* 13/V-2009 */
- if (m == 0)
- xerror("glp_adv_basis: problem has no rows\n");
- if (n == 0)
- xerror("glp_adv_basis: problem has no columns\n");
- #else
- if (m == 0 || n == 0)
- { glp_std_basis(lp);
- return;
- }
- #endif
- /* use the routine triang (see above) to find maximal triangular
- part of the augmented constraint matrix A~ = (I|-A); in order
- to prevent columns of fixed variables to be included in the
- triangular part, such columns are implictly removed from the
- matrix A~ by the routine adv_mat */
- rn = xcalloc(1+m, sizeof(int));
- cn = xcalloc(1+m+n, sizeof(int));
- size = triang(m, m+n, lp, mat, rn, cn);
- if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
- xprintf("Size of triangular part = %d\n", size);
- /* the first size rows and columns of the matrix P*A~*Q (where
- P and Q are permutation matrices defined by the arrays rn and
- cn) form a lower triangular matrix; build the arrays (rn_inv
- and cn_inv), which define the matrices inv(P) and inv(Q) */
- rn_inv = xcalloc(1+m, sizeof(int));
- cn_inv = xcalloc(1+m+n, sizeof(int));
- for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
- for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
- /* include the columns of the matrix A~, which correspond to the
- first size columns of the matrix P*A~*Q, in the basis */
- for (k = 1; k <= m+n; k++) tagx[k] = -1;
- for (jj = 1; jj <= size; jj++)
- { j = cn_inv[jj];
- /* the j-th column of A~ is the jj-th column of P*A~*Q */
- tagx[j] = LPX_BS;
- }
- /* if size < m, we need to add appropriate columns of auxiliary
- variables to the basis */
- for (jj = size + 1; jj <= m; jj++)
- { /* the jj-th column of P*A~*Q should be replaced by the column
- of the auxiliary variable, for which the only unity element
- is placed in the position [jj,jj] */
- i = rn_inv[jj];
- /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
- i-th row of A~ the unity element belongs to the i-th column
- of A~; therefore the disired column corresponds to the i-th
- auxiliary variable (note that this column doesn't belong to
- the triangular part found by the routine triang) */
- xassert(1 <= i && i <= m);
- xassert(cn[i] > size);
- tagx[i] = LPX_BS;
- }
- /* free working arrays */
- xfree(rn);
- xfree(cn);
- xfree(rn_inv);
- xfree(cn_inv);
- /* build tags of non-basic variables */
- for (k = 1; k <= m+n; k++)
- { if (tagx[k] != LPX_BS)
- { if (k <= m)
- lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
- else
- lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
- switch (typx)
- { case LPX_FR:
- tagx[k] = LPX_NF; break;
- case LPX_LO:
- tagx[k] = LPX_NL; break;
- case LPX_UP:
- tagx[k] = LPX_NU; break;
- case LPX_DB:
- tagx[k] =
- (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
- break;
- case LPX_FX:
- tagx[k] = LPX_NS; break;
- default:
- xassert(typx != typx);
- }
- }
- }
- for (k = 1; k <= m+n; k++)
- { if (k <= m)
- lpx_set_row_stat(lp, k, tagx[k]);
- else
- lpx_set_col_stat(lp, k-m, tagx[k]);
- }
- xfree(tagx);
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_adv_basis - construct advanced initial LP basis
- *
- * SYNOPSIS
- *
- * void glp_adv_basis(glp_prob *lp, int flags);
- *
- * DESCRIPTION
- *
- * The routine glp_adv_basis constructs an advanced initial basis for
- * the specified problem object.
- *
- * The parameter flags is reserved for use in the future and must be
- * specified as zero. */
- void glp_adv_basis(glp_prob *lp, int flags)
- { if (flags != 0)
- xerror("glp_adv_basis: flags = %d; invalid flags\n", flags);
- if (lp->m == 0 || lp->n == 0)
- glp_std_basis(lp);
- else
- adv_basis(lp);
- return;
- }
- /* eof */
|