123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- /* glpfhv.h (LP basis factorization, FHV eta file version) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #ifndef GLPFHV_H
- #define GLPFHV_H
- #include "glpluf.h"
- /***********************************************************************
- * The structure FHV defines the factorization of the basis mxm-matrix
- * B, where m is the number of rows in corresponding problem instance.
- *
- * This factorization is the following sextet:
- *
- * [B] = (F, H, V, P0, P, Q), (1)
- *
- * where F, H, and V are such matrices that
- *
- * B = F * H * V, (2)
- *
- * and P0, P, and Q are such permutation matrices that the matrix
- *
- * L = P0 * F * inv(P0) (3)
- *
- * is lower triangular with unity diagonal, and the matrix
- *
- * U = P * V * Q (4)
- *
- * is upper triangular. All the matrices have the same order m, which
- * is the order of the basis matrix B.
- *
- * The matrices F, V, P, and Q are stored in the structure LUF (see the
- * module GLPLUF), which is a member of the structure FHV.
- *
- * The matrix H is stored in the form of eta file using row-like format
- * as follows:
- *
- * H = H[1] * H[2] * ... * H[nfs], (5)
- *
- * where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs
- * from the unity matrix only by one row, nfs is current number of row-
- * like factors. After the factorization has been built for some given
- * basis matrix B the matrix H has no factors and thus it is the unity
- * matrix. Then each time when the factorization is recomputed for an
- * adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built
- * and added to the end of the eta file H.
- *
- * Being sparse vectors non-trivial rows of the factors H[k] are stored
- * in the right part of the sparse vector area (SVA) in the same manner
- * as rows and columns of the matrix F.
- *
- * For more details see the program documentation. */
- typedef struct FHV FHV;
- struct FHV
- { /* LP basis factorization */
- int m_max;
- /* maximal value of m (increased automatically, if necessary) */
- int m;
- /* the order of matrices B, F, H, V, P0, P, Q */
- int valid;
- /* the factorization is valid only if this flag is set */
- LUF *luf;
- /* LU-factorization (contains the matrices F, V, P, Q) */
- /*--------------------------------------------------------------*/
- /* matrix H in the form of eta file */
- int hh_max;
- /* maximal number of row-like factors (which limits the number of
- updates of the factorization) */
- int hh_nfs;
- /* current number of row-like factors (0 <= hh_nfs <= hh_max) */
- int *hh_ind; /* int hh_ind[1+hh_max]; */
- /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row
- of factor H[k] */
- int *hh_ptr; /* int hh_ptr[1+hh_max]; */
- /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element
- of the non-trivial row of factor H[k] in the SVA */
- int *hh_len; /* int hh_len[1+hh_max]; */
- /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements
- in the non-trivial row of factor H[k] */
- /*--------------------------------------------------------------*/
- /* matrix P0 */
- int *p0_row; /* int p0_row[1+m_max]; */
- /* p0_row[i] = j means that p0[i,j] = 1 */
- int *p0_col; /* int p0_col[1+m_max]; */
- /* p0_col[j] = i means that p0[i,j] = 1 */
- /* if i-th row or column of the matrix F corresponds to i'-th row
- or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i
- and p0_col[i] = i' */
- /*--------------------------------------------------------------*/
- /* working arrays */
- int *cc_ind; /* int cc_ind[1+m_max]; */
- /* integer working array */
- double *cc_val; /* double cc_val[1+m_max]; */
- /* floating-point working array */
- /*--------------------------------------------------------------*/
- /* control parameters */
- double upd_tol;
- /* update tolerance; if after updating the factorization absolute
- value of some diagonal element u[k,k] of matrix U = P*V*Q is
- less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization
- is considered as inaccurate */
- /*--------------------------------------------------------------*/
- /* some statistics */
- int nnz_h;
- /* current number of non-zeros in all factors of matrix H */
- };
- /* return codes: */
- #define FHV_ESING 1 /* singular matrix */
- #define FHV_ECOND 2 /* ill-conditioned matrix */
- #define FHV_ECHECK 3 /* insufficient accuracy */
- #define FHV_ELIMIT 4 /* update limit reached */
- #define FHV_EROOM 5 /* SVA overflow */
- #define fhv_create_it _glp_fhv_create_it
- FHV *fhv_create_it(void);
- /* create LP basis factorization */
- #define fhv_factorize _glp_fhv_factorize
- int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,
- int ind[], double val[]), void *info);
- /* compute LP basis factorization */
- #define fhv_h_solve _glp_fhv_h_solve
- void fhv_h_solve(FHV *fhv, int tr, double x[]);
- /* solve system H*x = b or H'*x = b */
- #define fhv_ftran _glp_fhv_ftran
- void fhv_ftran(FHV *fhv, double x[]);
- /* perform forward transformation (solve system B*x = b) */
- #define fhv_btran _glp_fhv_btran
- void fhv_btran(FHV *fhv, double x[]);
- /* perform backward transformation (solve system B'*x = b) */
- #define fhv_update_it _glp_fhv_update_it
- int fhv_update_it(FHV *fhv, int j, int len, const int ind[],
- const double val[]);
- /* update LP basis factorization */
- #define fhv_delete_it _glp_fhv_delete_it
- void fhv_delete_it(FHV *fhv);
- /* delete LP basis factorization */
- #endif
- /* eof */
|