123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- /* glpapi13.c (branch-and-bound interface routines) */
- /***********************************************************************
- * This code is part of GLPK (GNU Linear Programming Kit).
- *
- * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- * 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
- * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
- * E-mail: <mao@gnu.org>.
- *
- * GLPK is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GLPK is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
- ***********************************************************************/
- #include "glpios.h"
- /***********************************************************************
- * NAME
- *
- * glp_ios_reason - determine reason for calling the callback routine
- *
- * SYNOPSIS
- *
- * glp_ios_reason(glp_tree *tree);
- *
- * RETURNS
- *
- * The routine glp_ios_reason returns a code, which indicates why the
- * user-defined callback routine is being called. */
- int glp_ios_reason(glp_tree *tree)
- { return
- tree->reason;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_get_prob - access the problem object
- *
- * SYNOPSIS
- *
- * glp_prob *glp_ios_get_prob(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_get_prob can be called from the user-defined
- * callback routine to access the problem object, which is used by the
- * MIP solver. It is the original problem object passed to the routine
- * glp_intopt if the MIP presolver is not used; otherwise it is an
- * internal problem object built by the presolver. If the current
- * subproblem exists, LP segment of the problem object corresponds to
- * its LP relaxation.
- *
- * RETURNS
- *
- * The routine glp_ios_get_prob returns a pointer to the problem object
- * used by the MIP solver. */
- glp_prob *glp_ios_get_prob(glp_tree *tree)
- { return
- tree->mip;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_tree_size - determine size of the branch-and-bound tree
- *
- * SYNOPSIS
- *
- * void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,
- * int *t_cnt);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_tree_size stores the following three counts which
- * characterize the current size of the branch-and-bound tree:
- *
- * a_cnt is the current number of active nodes, i.e. the current size of
- * the active list;
- *
- * n_cnt is the current number of all (active and inactive) nodes;
- *
- * t_cnt is the total number of nodes including those which have been
- * already removed from the tree. This count is increased whenever
- * a new node appears in the tree and never decreased.
- *
- * If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the
- * corresponding count is not stored. */
- void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,
- int *t_cnt)
- { if (a_cnt != NULL) *a_cnt = tree->a_cnt;
- if (n_cnt != NULL) *n_cnt = tree->n_cnt;
- if (t_cnt != NULL) *t_cnt = tree->t_cnt;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_curr_node - determine current active subproblem
- *
- * SYNOPSIS
- *
- * int glp_ios_curr_node(glp_tree *tree);
- *
- * RETURNS
- *
- * The routine glp_ios_curr_node returns the reference number of the
- * current active subproblem. However, if the current subproblem does
- * not exist, the routine returns zero. */
- int glp_ios_curr_node(glp_tree *tree)
- { IOSNPD *node;
- /* obtain pointer to the current subproblem */
- node = tree->curr;
- /* return its reference number */
- return node == NULL ? 0 : node->p;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_next_node - determine next active subproblem
- *
- * SYNOPSIS
- *
- * int glp_ios_next_node(glp_tree *tree, int p);
- *
- * RETURNS
- *
- * If the parameter p is zero, the routine glp_ios_next_node returns
- * the reference number of the first active subproblem. However, if the
- * tree is empty, zero is returned.
- *
- * If the parameter p is not zero, it must specify the reference number
- * of some active subproblem, in which case the routine returns the
- * reference number of the next active subproblem. However, if there is
- * no next active subproblem in the list, zero is returned.
- *
- * All subproblems in the active list are ordered chronologically, i.e.
- * subproblem A precedes subproblem B if A was created before B. */
- int glp_ios_next_node(glp_tree *tree, int p)
- { IOSNPD *node;
- if (p == 0)
- { /* obtain pointer to the first active subproblem */
- node = tree->head;
- }
- else
- { /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_next_node: p = %d; invalid subproblem refer"
- "ence number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* the specified subproblem must be active */
- if (node->count != 0)
- xerror("glp_ios_next_node: p = %d; subproblem not in the ac"
- "tive list\n", p);
- /* obtain pointer to the next active subproblem */
- node = node->next;
- }
- /* return the reference number */
- return node == NULL ? 0 : node->p;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_prev_node - determine previous active subproblem
- *
- * SYNOPSIS
- *
- * int glp_ios_prev_node(glp_tree *tree, int p);
- *
- * RETURNS
- *
- * If the parameter p is zero, the routine glp_ios_prev_node returns
- * the reference number of the last active subproblem. However, if the
- * tree is empty, zero is returned.
- *
- * If the parameter p is not zero, it must specify the reference number
- * of some active subproblem, in which case the routine returns the
- * reference number of the previous active subproblem. However, if there
- * is no previous active subproblem in the list, zero is returned.
- *
- * All subproblems in the active list are ordered chronologically, i.e.
- * subproblem A precedes subproblem B if A was created before B. */
- int glp_ios_prev_node(glp_tree *tree, int p)
- { IOSNPD *node;
- if (p == 0)
- { /* obtain pointer to the last active subproblem */
- node = tree->tail;
- }
- else
- { /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_prev_node: p = %d; invalid subproblem refer"
- "ence number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* the specified subproblem must be active */
- if (node->count != 0)
- xerror("glp_ios_prev_node: p = %d; subproblem not in the ac"
- "tive list\n", p);
- /* obtain pointer to the previous active subproblem */
- node = node->prev;
- }
- /* return the reference number */
- return node == NULL ? 0 : node->p;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_up_node - determine parent subproblem
- *
- * SYNOPSIS
- *
- * int glp_ios_up_node(glp_tree *tree, int p);
- *
- * RETURNS
- *
- * The parameter p must specify the reference number of some (active or
- * inactive) subproblem, in which case the routine iet_get_up_node
- * returns the reference number of its parent subproblem. However, if
- * the specified subproblem is the root of the tree and, therefore, has
- * no parent, the routine returns zero. */
- int glp_ios_up_node(glp_tree *tree, int p)
- { IOSNPD *node;
- /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_up_node: p = %d; invalid subproblem reference "
- "number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* obtain pointer to the parent subproblem */
- node = node->up;
- /* return the reference number */
- return node == NULL ? 0 : node->p;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_node_level - determine subproblem level
- *
- * SYNOPSIS
- *
- * int glp_ios_node_level(glp_tree *tree, int p);
- *
- * RETURNS
- *
- * The routine glp_ios_node_level returns the level of the subproblem,
- * whose reference number is p, in the branch-and-bound tree. (The root
- * subproblem has level 0, and the level of any other subproblem is the
- * level of its parent plus one.) */
- int glp_ios_node_level(glp_tree *tree, int p)
- { IOSNPD *node;
- /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen"
- "ce number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* return the node level */
- return node->level;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_node_bound - determine subproblem local bound
- *
- * SYNOPSIS
- *
- * double glp_ios_node_bound(glp_tree *tree, int p);
- *
- * RETURNS
- *
- * The routine glp_ios_node_bound returns the local bound for (active or
- * inactive) subproblem, whose reference number is p.
- *
- * COMMENTS
- *
- * The local bound for subproblem p is an lower (minimization) or upper
- * (maximization) bound for integer optimal solution to this subproblem
- * (not to the original problem). This bound is local in the sense that
- * only subproblems in the subtree rooted at node p cannot have better
- * integer feasible solutions.
- *
- * On creating a subproblem (due to the branching step) its local bound
- * is inherited from its parent and then may get only stronger (never
- * weaker). For the root subproblem its local bound is initially set to
- * -DBL_MAX (minimization) or +DBL_MAX (maximization) and then improved
- * as the root LP relaxation has been solved.
- *
- * Note that the local bound is not necessarily the optimal objective
- * value to corresponding LP relaxation; it may be stronger. */
- double glp_ios_node_bound(glp_tree *tree, int p)
- { IOSNPD *node;
- /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_node_bound: p = %d; invalid subproblem referen"
- "ce number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* return the node local bound */
- return node->bound;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_best_node - find active subproblem with best local bound
- *
- * SYNOPSIS
- *
- * int glp_ios_best_node(glp_tree *tree);
- *
- * RETURNS
- *
- * The routine glp_ios_best_node returns the reference number of the
- * active subproblem, whose local bound is best (i.e. smallest in case
- * of minimization or largest in case of maximization). However, if the
- * tree is empty, the routine returns zero.
- *
- * COMMENTS
- *
- * The best local bound is an lower (minimization) or upper
- * (maximization) bound for integer optimal solution to the original
- * MIP problem. */
- int glp_ios_best_node(glp_tree *tree)
- { return
- ios_best_node(tree);
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_mip_gap - compute relative MIP gap
- *
- * SYNOPSIS
- *
- * double glp_ios_mip_gap(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_mip_gap computes the relative MIP gap with the
- * following formula:
- *
- * gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON),
- *
- * where best_mip is the best integer feasible solution found so far,
- * best_bnd is the best (global) bound. If no integer feasible solution
- * has been found yet, gap is set to DBL_MAX.
- *
- * RETURNS
- *
- * The routine glp_ios_mip_gap returns the relative MIP gap. */
- double glp_ios_mip_gap(glp_tree *tree)
- { return
- ios_relative_gap(tree);
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_node_data - access subproblem application-specific data
- *
- * SYNOPSIS
- *
- * void *glp_ios_node_data(glp_tree *tree, int p);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_node_data allows the application accessing a
- * memory block allocated for the subproblem (which may be active or
- * inactive), whose reference number is p.
- *
- * The size of the block is defined by the control parameter cb_size
- * passed to the routine glp_intopt. The block is initialized by binary
- * zeros on creating corresponding subproblem, and its contents is kept
- * until the subproblem will be removed from the tree.
- *
- * The application may use these memory blocks to store specific data
- * for each subproblem.
- *
- * RETURNS
- *
- * The routine glp_ios_node_data returns a pointer to the memory block
- * for the specified subproblem. Note that if cb_size = 0, the routine
- * returns a null pointer. */
- void *glp_ios_node_data(glp_tree *tree, int p)
- { IOSNPD *node;
- /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen"
- "ce number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* return pointer to the application-specific data */
- return node->data;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_row_attr - retrieve additional row attributes
- *
- * SYNOPSIS
- *
- * void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_row_attr retrieves additional attributes of row
- * i and stores them in the structure glp_attr. */
- void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr)
- { GLPROW *row;
- if (!(1 <= i && i <= tree->mip->m))
- xerror("glp_ios_row_attr: i = %d; row number out of range\n",
- i);
- row = tree->mip->row[i];
- attr->level = row->level;
- attr->origin = row->origin;
- attr->klass = row->klass;
- return;
- }
- /**********************************************************************/
- int glp_ios_pool_size(glp_tree *tree)
- { /* determine current size of the cut pool */
- if (tree->reason != GLP_ICUTGEN)
- xerror("glp_ios_pool_size: operation not allowed\n");
- xassert(tree->local != NULL);
- return tree->local->size;
- }
- /**********************************************************************/
- int glp_ios_add_row(glp_tree *tree,
- const char *name, int klass, int flags, int len, const int ind[],
- const double val[], int type, double rhs)
- { /* add row (constraint) to the cut pool */
- int num;
- if (tree->reason != GLP_ICUTGEN)
- xerror("glp_ios_add_row: operation not allowed\n");
- xassert(tree->local != NULL);
- num = ios_add_row(tree, tree->local, name, klass, flags, len,
- ind, val, type, rhs);
- return num;
- }
- /**********************************************************************/
- void glp_ios_del_row(glp_tree *tree, int i)
- { /* remove row (constraint) from the cut pool */
- if (tree->reason != GLP_ICUTGEN)
- xerror("glp_ios_del_row: operation not allowed\n");
- ios_del_row(tree, tree->local, i);
- return;
- }
- /**********************************************************************/
- void glp_ios_clear_pool(glp_tree *tree)
- { /* remove all rows (constraints) from the cut pool */
- if (tree->reason != GLP_ICUTGEN)
- xerror("glp_ios_clear_pool: operation not allowed\n");
- ios_clear_pool(tree, tree->local);
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_can_branch - check if can branch upon specified variable
- *
- * SYNOPSIS
- *
- * int glp_ios_can_branch(glp_tree *tree, int j);
- *
- * RETURNS
- *
- * If j-th variable (column) can be used to branch upon, the routine
- * glp_ios_can_branch returns non-zero, otherwise zero. */
- int glp_ios_can_branch(glp_tree *tree, int j)
- { if (!(1 <= j && j <= tree->mip->n))
- xerror("glp_ios_can_branch: j = %d; column number out of range"
- "\n", j);
- return tree->non_int[j];
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_branch_upon - choose variable to branch upon
- *
- * SYNOPSIS
- *
- * void glp_ios_branch_upon(glp_tree *tree, int j, int sel);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_branch_upon can be called from the user-defined
- * callback routine in response to the reason GLP_IBRANCH to choose a
- * branching variable, whose ordinal number is j. Should note that only
- * variables, for which the routine glp_ios_can_branch returns non-zero,
- * can be used to branch upon.
- *
- * The parameter sel is a flag that indicates which branch (subproblem)
- * should be selected next to continue the search:
- *
- * GLP_DN_BRNCH - select down-branch;
- * GLP_UP_BRNCH - select up-branch;
- * GLP_NO_BRNCH - use general selection technique. */
- void glp_ios_branch_upon(glp_tree *tree, int j, int sel)
- { if (!(1 <= j && j <= tree->mip->n))
- xerror("glp_ios_branch_upon: j = %d; column number out of rang"
- "e\n", j);
- if (!(sel == GLP_DN_BRNCH || sel == GLP_UP_BRNCH ||
- sel == GLP_NO_BRNCH))
- xerror("glp_ios_branch_upon: sel = %d: invalid branch selectio"
- "n flag\n", sel);
- if (!(tree->non_int[j]))
- xerror("glp_ios_branch_upon: j = %d; variable cannot be used t"
- "o branch upon\n", j);
- if (tree->br_var != 0)
- xerror("glp_ios_branch_upon: branching variable already chosen"
- "\n");
- tree->br_var = j;
- tree->br_sel = sel;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_select_node - select subproblem to continue the search
- *
- * SYNOPSIS
- *
- * void glp_ios_select_node(glp_tree *tree, int p);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_select_node can be called from the user-defined
- * callback routine in response to the reason GLP_ISELECT to select an
- * active subproblem, whose reference number is p. The search will be
- * continued from the subproblem selected. */
- void glp_ios_select_node(glp_tree *tree, int p)
- { IOSNPD *node;
- /* obtain pointer to the specified subproblem */
- if (!(1 <= p && p <= tree->nslots))
- err: xerror("glp_ios_select_node: p = %d; invalid subproblem refere"
- "nce number\n", p);
- node = tree->slot[p].node;
- if (node == NULL) goto err;
- /* the specified subproblem must be active */
- if (node->count != 0)
- xerror("glp_ios_select_node: p = %d; subproblem not in the act"
- "ive list\n", p);
- /* no subproblem must be selected yet */
- if (tree->next_p != 0)
- xerror("glp_ios_select_node: subproblem already selected\n");
- /* select the specified subproblem to continue the search */
- tree->next_p = p;
- return;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_heur_sol - provide solution found by heuristic
- *
- * SYNOPSIS
- *
- * int glp_ios_heur_sol(glp_tree *tree, const double x[]);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_heur_sol can be called from the user-defined
- * callback routine in response to the reason GLP_IHEUR to provide an
- * integer feasible solution found by a primal heuristic.
- *
- * Primal values of *all* variables (columns) found by the heuristic
- * should be placed in locations x[1], ..., x[n], where n is the number
- * of columns in the original problem object. Note that the routine
- * glp_ios_heur_sol *does not* check primal feasibility of the solution
- * provided.
- *
- * Using the solution passed in the array x the routine computes value
- * of the objective function. If the objective value is better than the
- * best known integer feasible solution, the routine computes values of
- * auxiliary variables (rows) and stores all solution components in the
- * problem object.
- *
- * RETURNS
- *
- * If the provided solution is accepted, the routine glp_ios_heur_sol
- * returns zero. Otherwise, if the provided solution is rejected, the
- * routine returns non-zero. */
- int glp_ios_heur_sol(glp_tree *tree, const double x[])
- { glp_prob *mip = tree->mip;
- int m = tree->orig_m;
- int n = tree->n;
- int i, j;
- double obj;
- xassert(mip->m >= m);
- xassert(mip->n == n);
- /* check values of integer variables and compute value of the
- objective function */
- obj = mip->c0;
- for (j = 1; j <= n; j++)
- { GLPCOL *col = mip->col[j];
- if (col->kind == GLP_IV)
- { /* provided value must be integral */
- if (x[j] != floor(x[j])) return 1;
- }
- obj += col->coef * x[j];
- }
- /* check if the provided solution is better than the best known
- integer feasible solution */
- if (mip->mip_stat == GLP_FEAS)
- { switch (mip->dir)
- { case GLP_MIN:
- if (obj >= tree->mip->mip_obj) return 1;
- break;
- case GLP_MAX:
- if (obj <= tree->mip->mip_obj) return 1;
- break;
- default:
- xassert(mip != mip);
- }
- }
- /* it is better; store it in the problem object */
- if (tree->parm->msg_lev >= GLP_MSG_ON)
- xprintf("Solution found by heuristic: %.12g\n", obj);
- mip->mip_stat = GLP_FEAS;
- mip->mip_obj = obj;
- for (j = 1; j <= n; j++)
- mip->col[j]->mipx = x[j];
- for (i = 1; i <= m; i++)
- { GLPROW *row = mip->row[i];
- GLPAIJ *aij;
- row->mipx = 0.0;
- for (aij = row->ptr; aij != NULL; aij = aij->r_next)
- row->mipx += aij->val * aij->col->mipx;
- }
- return 0;
- }
- /***********************************************************************
- * NAME
- *
- * glp_ios_terminate - terminate the solution process.
- *
- * SYNOPSIS
- *
- * void glp_ios_terminate(glp_tree *tree);
- *
- * DESCRIPTION
- *
- * The routine glp_ios_terminate sets a flag indicating that the MIP
- * solver should prematurely terminate the search. */
- void glp_ios_terminate(glp_tree *tree)
- { if (tree->parm->msg_lev >= GLP_MSG_DBG)
- xprintf("The search is prematurely terminated due to applicati"
- "on request\n");
- tree->stop = 1;
- return;
- }
- /* eof */
|