1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843 |
- /* ========================================================================= */
- /* === AMD_2 =============================================================== */
- /* ========================================================================= */
- /* ------------------------------------------------------------------------- */
- /* AMD, Copyright (c) Timothy A. Davis, */
- /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
- /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
- /* web: http://www.cise.ufl.edu/research/sparse/amd */
- /* ------------------------------------------------------------------------- */
- /* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed
- * by a postordering (via depth-first search) of the assembly tree using the
- * AMD_postorder routine.
- */
- #include "amd_internal.h"
- /* ========================================================================= */
- /* === clear_flag ========================================================== */
- /* ========================================================================= */
- static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n)
- {
- Int x ;
- if (wflg < 2 || wflg >= wbig)
- {
- for (x = 0 ; x < n ; x++)
- {
- if (W [x] != 0) W [x] = 1 ;
- }
- wflg = 2 ;
- }
- /* at this point, W [0..n-1] < wflg holds */
- return (wflg) ;
- }
- /* ========================================================================= */
- /* === AMD_2 =============================================================== */
- /* ========================================================================= */
- GLOBAL void AMD_2
- (
- Int n, /* A is n-by-n, where n > 0 */
- Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */
- Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1]
- * holds the matrix on input */
- Int Len [ ], /* Len [0..n-1]: length for row/column i on input */
- Int iwlen, /* length of Iw. iwlen >= pfree + n */
- Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */
- /* 7 size-n workspaces, not defined on input: */
- Int Nv [ ], /* the size of each supernode on output */
- Int Next [ ], /* the output inverse permutation */
- Int Last [ ], /* the output permutation */
- Int Head [ ],
- Int Elen [ ], /* the size columns of L for each supernode */
- Int Degree [ ],
- Int W [ ],
- /* control parameters and output statistics */
- double Control [ ], /* array of size AMD_CONTROL */
- double Info [ ] /* array of size AMD_INFO */
- )
- {
- /*
- * Given a representation of the nonzero pattern of a symmetric matrix, A,
- * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style)
- * degree ordering to compute a pivot order such that the introduction of
- * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each
- * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style
- * upper-bound on the external degree. This routine can optionally perform
- * aggresive absorption (as done by MC47B in the Harwell Subroutine
- * Library).
- *
- * The approximate degree algorithm implemented here is the symmetric analog of
- * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern
- * MultiFrontal PACKage, both by Davis and Duff). The routine is based on the
- * MA27 minimum degree ordering algorithm by Iain Duff and John Reid.
- *
- * This routine is a translation of the original AMDBAR and MC47B routines,
- * in Fortran, with the following modifications:
- *
- * (1) dense rows/columns are removed prior to ordering the matrix, and placed
- * last in the output order. The presence of a dense row/column can
- * increase the ordering time by up to O(n^2), unless they are removed
- * prior to ordering.
- *
- * (2) the minimum degree ordering is followed by a postordering (depth-first
- * search) of the assembly tree. Note that mass elimination (discussed
- * below) combined with the approximate degree update can lead to the mass
- * elimination of nodes with lower exact degree than the current pivot
- * element. No additional fill-in is caused in the representation of the
- * Schur complement. The mass-eliminated nodes merge with the current
- * pivot element. They are ordered prior to the current pivot element.
- * Because they can have lower exact degree than the current element, the
- * merger of two or more of these nodes in the current pivot element can
- * lead to a single element that is not a "fundamental supernode". The
- * diagonal block can have zeros in it. Thus, the assembly tree used here
- * is not guaranteed to be the precise supernodal elemination tree (with
- * "funadmental" supernodes), and the postordering performed by this
- * routine is not guaranteed to be a precise postordering of the
- * elimination tree.
- *
- * (3) input parameters are added, to control aggressive absorption and the
- * detection of "dense" rows/columns of A.
- *
- * (4) additional statistical information is returned, such as the number of
- * nonzeros in L, and the flop counts for subsequent LDL' and LU
- * factorizations. These are slight upper bounds, because of the mass
- * elimination issue discussed above.
- *
- * (5) additional routines are added to interface this routine to MATLAB
- * to provide a simple C-callable user-interface, to check inputs for
- * errors, compute the symmetry of the pattern of A and the number of
- * nonzeros in each row/column of A+A', to compute the pattern of A+A',
- * to perform the assembly tree postordering, and to provide debugging
- * ouput. Many of these functions are also provided by the Fortran
- * Harwell Subroutine Library routine MC47A.
- *
- * (6) both int and UF_long versions are provided. In the descriptions below
- * and integer is and int or UF_long depending on which version is
- * being used.
- **********************************************************************
- ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ******
- **********************************************************************
- ** If you want error checking, a more versatile input format, and a **
- ** simpler user interface, use amd_order or amd_l_order instead. **
- ** This routine is not meant to be user-callable. **
- **********************************************************************
- * ----------------------------------------------------------------------------
- * References:
- * ----------------------------------------------------------------------------
- *
- * [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal
- * method for sparse LU factorization", SIAM J. Matrix Analysis and
- * Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38,
- * which first introduced the approximate minimum degree used by this
- * routine.
- *
- * [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate
- * minimum degree ordering algorithm," SIAM J. Matrix Analysis and
- * Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and
- * MC47B, which are the Fortran versions of this routine.
- *
- * [3] Alan George and Joseph Liu, "The evolution of the minimum degree
- * ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989.
- * We list below the features mentioned in that paper that this code
- * includes:
- *
- * mass elimination:
- * Yes. MA27 relied on supervariable detection for mass elimination.
- *
- * indistinguishable nodes:
- * Yes (we call these "supervariables"). This was also in the MA27
- * code - although we modified the method of detecting them (the
- * previous hash was the true degree, which we no longer keep track
- * of). A supervariable is a set of rows with identical nonzero
- * pattern. All variables in a supervariable are eliminated together.
- * Each supervariable has as its numerical name that of one of its
- * variables (its principal variable).
- *
- * quotient graph representation:
- * Yes. We use the term "element" for the cliques formed during
- * elimination. This was also in the MA27 code. The algorithm can
- * operate in place, but it will work more efficiently if given some
- * "elbow room."
- *
- * element absorption:
- * Yes. This was also in the MA27 code.
- *
- * external degree:
- * Yes. The MA27 code was based on the true degree.
- *
- * incomplete degree update and multiple elimination:
- * No. This was not in MA27, either. Our method of degree update
- * within MC47B is element-based, not variable-based. It is thus
- * not well-suited for use with incomplete degree update or multiple
- * elimination.
- *
- * Authors, and Copyright (C) 2004 by:
- * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid.
- *
- * Acknowledgements: This work (and the UMFPACK package) was supported by the
- * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270).
- * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog
- * which forms the basis of AMD, was developed while Tim Davis was supported by
- * CERFACS (Toulouse, France) in a post-doctoral position. This C version, and
- * the etree postorder, were written while Tim Davis was on sabbatical at
- * Stanford University and Lawrence Berkeley National Laboratory.
- * ----------------------------------------------------------------------------
- * INPUT ARGUMENTS (unaltered):
- * ----------------------------------------------------------------------------
- * n: The matrix order. Restriction: n >= 1.
- *
- * iwlen: The size of the Iw array. On input, the matrix is stored in
- * Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger
- * than what is required to hold the matrix, at least iwlen >= pfree + n.
- * Otherwise, excessive compressions will take place. The recommended
- * value of iwlen is 1.2 * pfree + n, which is the value used in the
- * user-callable interface to this routine (amd_order.c). The algorithm
- * will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n.
- * Note that this is slightly more restrictive than the actual minimum
- * (iwlen >= pfree), but AMD_2 will be very slow with no elbow room.
- * Thus, this routine enforces a bare minimum elbow room of size n.
- *
- * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty,
- * and the matrix is stored in Iw [0..pfree-1]. During execution,
- * additional data is placed in Iw, and pfree is modified so that
- * Iw [pfree..iwlen-1] is always the unused part of Iw.
- *
- * Control: A double array of size AMD_CONTROL containing input parameters
- * that affect how the ordering is computed. If NULL, then default
- * settings are used.
- *
- * Control [AMD_DENSE] is used to determine whether or not a given input
- * row is "dense". A row is "dense" if the number of entries in the row
- * exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or
- * fewer entries are never considered "dense". To turn off the detection
- * of dense rows, set Control [AMD_DENSE] to a negative number, or to a
- * number larger than sqrt (n). The default value of Control [AMD_DENSE]
- * is AMD_DEFAULT_DENSE, which is defined in amd.h as 10.
- *
- * Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive
- * absorption is to be performed. If nonzero, then aggressive absorption
- * is performed (this is the default).
- * ----------------------------------------------------------------------------
- * INPUT/OUPUT ARGUMENTS:
- * ----------------------------------------------------------------------------
- *
- * Pe: An integer array of size n. On input, Pe [i] is the index in Iw of
- * the start of row i. Pe [i] is ignored if row i has no off-diagonal
- * entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty
- * rows.
- *
- * During execution, it is used for both supervariables and elements:
- *
- * Principal supervariable i: index into Iw of the description of
- * supervariable i. A supervariable represents one or more rows of
- * the matrix with identical nonzero pattern. In this case,
- * Pe [i] >= 0.
- *
- * Non-principal supervariable i: if i has been absorbed into another
- * supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined
- * as (-(j)-2). Row j has the same pattern as row i. Note that j
- * might later be absorbed into another supervariable j2, in which
- * case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is
- * < EMPTY, where EMPTY is defined as (-1) in amd_internal.h.
- *
- * Unabsorbed element e: the index into Iw of the description of element
- * e, if e has not yet been absorbed by a subsequent element. Element
- * e is created when the supervariable of the same name is selected as
- * the pivot. In this case, Pe [i] >= 0.
- *
- * Absorbed element e: if element e is absorbed into element e2, then
- * Pe [e] = FLIP (e2). This occurs when the pattern of e (which we
- * refer to as Le) is found to be a subset of the pattern of e2 (that
- * is, Le2). In this case, Pe [i] < EMPTY. If element e is "null"
- * (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY,
- * and e is the root of an assembly subtree (or the whole tree if
- * there is just one such root).
- *
- * Dense variable i: if i is "dense", then Pe [i] = EMPTY.
- *
- * On output, Pe holds the assembly tree/forest, which implicitly
- * represents a pivot order with identical fill-in as the actual order
- * (via a depth-first search of the tree), as follows. If Nv [i] > 0,
- * then i represents a node in the assembly tree, and the parent of i is
- * Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i])
- * represents an edge in a subtree, the root of which is a node in the
- * assembly tree. Note that i refers to a row/column in the original
- * matrix, not the permuted matrix.
- *
- * Info: A double array of size AMD_INFO. If present, (that is, not NULL),
- * then statistics about the ordering are returned in the Info array.
- * See amd.h for a description.
- * ----------------------------------------------------------------------------
- * INPUT/MODIFIED (undefined on output):
- * ----------------------------------------------------------------------------
- *
- * Len: An integer array of size n. On input, Len [i] holds the number of
- * entries in row i of the matrix, excluding the diagonal. The contents
- * of Len are undefined on output.
- *
- * Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the
- * description of each row i in the matrix. The matrix must be symmetric,
- * and both upper and lower triangular parts must be present. The
- * diagonal must not be present. Row i is held as follows:
- *
- * Len [i]: the length of the row i data structure in the Iw array.
- * Iw [Pe [i] ... Pe [i] + Len [i] - 1]:
- * the list of column indices for nonzeros in row i (simple
- * supervariables), excluding the diagonal. All supervariables
- * start with one row/column each (supervariable i is just row i).
- * If Len [i] is zero on input, then Pe [i] is ignored on input.
- *
- * Note that the rows need not be in any particular order, and there
- * may be empty space between the rows.
- *
- * During execution, the supervariable i experiences fill-in. This is
- * represented by placing in i a list of the elements that cause fill-in
- * in supervariable i:
- *
- * Len [i]: the length of supervariable i in the Iw array.
- * Iw [Pe [i] ... Pe [i] + Elen [i] - 1]:
- * the list of elements that contain i. This list is kept short
- * by removing absorbed elements.
- * Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]:
- * the list of supervariables in i. This list is kept short by
- * removing nonprincipal variables, and any entry j that is also
- * contained in at least one of the elements (j in Le) in the list
- * for i (e in row i).
- *
- * When supervariable i is selected as pivot, we create an element e of
- * the same name (e=i):
- *
- * Len [e]: the length of element e in the Iw array.
- * Iw [Pe [e] ... Pe [e] + Len [e] - 1]:
- * the list of supervariables in element e.
- *
- * An element represents the fill-in that occurs when supervariable i is
- * selected as pivot (which represents the selection of row i and all
- * non-principal variables whose principal variable is i). We use the
- * term Le to denote the set of all supervariables in element e. Absorbed
- * supervariables and elements are pruned from these lists when
- * computationally convenient.
- *
- * CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION.
- * The contents of Iw are undefined on output.
- * ----------------------------------------------------------------------------
- * OUTPUT (need not be set on input):
- * ----------------------------------------------------------------------------
- *
- * Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to
- * the number of rows that are represented by the principal supervariable
- * i. If i is a nonprincipal or dense variable, then Nv [i] = 0.
- * Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a
- * principal variable in the pattern Lme of the current pivot element me.
- * After element me is constructed, Nv [i] is set back to a positive
- * value.
- *
- * On output, Nv [i] holds the number of pivots represented by super
- * row/column i of the original matrix, or Nv [i] = 0 for non-principal
- * rows/columns. Note that i refers to a row/column in the original
- * matrix, not the permuted matrix.
- *
- * Elen: An integer array of size n. See the description of Iw above. At the
- * start of execution, Elen [i] is set to zero for all rows i. During
- * execution, Elen [i] is the number of elements in the list for
- * supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is
- * set, where esize is the size of the element (the number of pivots, plus
- * the number of nonpivotal entries). Thus Elen [e] < EMPTY.
- * Elen (i) = EMPTY set when variable i becomes nonprincipal.
- *
- * For variables, Elen (i) >= EMPTY holds until just before the
- * postordering and permutation vectors are computed. For elements,
- * Elen [e] < EMPTY holds.
- *
- * On output, Elen [i] is the degree of the row/column in the Cholesky
- * factorization of the permuted matrix, corresponding to the original row
- * i, if i is a super row/column. It is equal to EMPTY if i is
- * non-principal. Note that i refers to a row/column in the original
- * matrix, not the permuted matrix.
- *
- * Note that the contents of Elen on output differ from the Fortran
- * version (Elen holds the inverse permutation in the Fortran version,
- * which is instead returned in the Next array in this C version,
- * described below).
- *
- * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY
- * if i is the head of the list. In a hash bucket, Last [i] is the hash
- * key for i.
- *
- * Last [Head [hash]] is also used as the head of a hash bucket if
- * Head [hash] contains a degree list (see the description of Head,
- * below).
- *
- * On output, Last [0..n-1] holds the permutation. That is, if
- * i = Last [k], then row i is the kth pivot row (where k ranges from 0 to
- * n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'.
- *
- * Next: Next [i] is the supervariable following i in a link list, or EMPTY if
- * i is the last in the list. Used for two kinds of lists: degree lists
- * and hash buckets (a supervariable can be in only one kind of list at a
- * time).
- *
- * On output Next [0..n-1] holds the inverse permutation. That is, if
- * k = Next [i], then row i is the kth pivot row. Row i of A appears as
- * the (Next[i])-th row in the permuted matrix, PAP'.
- *
- * Note that the contents of Next on output differ from the Fortran
- * version (Next is undefined on output in the Fortran version).
- * ----------------------------------------------------------------------------
- * LOCAL WORKSPACE (not input or output - used only during execution):
- * ----------------------------------------------------------------------------
- *
- * Degree: An integer array of size n. If i is a supervariable, then
- * Degree [i] holds the current approximation of the external degree of
- * row i (an upper bound). The external degree is the number of nonzeros
- * in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to
- * the exact external degree if Elen [i] is less than or equal to two.
- *
- * We also use the term "external degree" for elements e to refer to
- * |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the
- * degree of the off-diagonal part of the element e (not including the
- * diagonal part).
- *
- * Head: An integer array of size n. Head is used for degree lists.
- * Head [deg] is the first supervariable in a degree list. All
- * supervariables i in a degree list Head [deg] have the same approximate
- * degree, namely, deg = Degree [i]. If the list Head [deg] is empty then
- * Head [deg] = EMPTY.
- *
- * During supervariable detection Head [hash] also serves as a pointer to
- * a hash bucket. If Head [hash] >= 0, there is a degree list of degree
- * hash. The hash bucket head pointer is Last [Head [hash]]. If
- * Head [hash] = EMPTY, then the degree list and hash bucket are both
- * empty. If Head [hash] < EMPTY, then the degree list is empty, and
- * FLIP (Head [hash]) is the head of the hash bucket. After supervariable
- * detection is complete, all hash buckets are empty, and the
- * (Last [Head [hash]] = EMPTY) condition is restored for the non-empty
- * degree lists.
- *
- * W: An integer array of size n. The flag array W determines the status of
- * elements and variables, and the external degree of elements.
- *
- * for elements:
- * if W [e] = 0, then the element e is absorbed.
- * if W [e] >= wflg, then W [e] - wflg is the size of the set
- * |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for
- * each principal variable i that is both in the pattern of
- * element e and NOT in the pattern of the current pivot element,
- * me).
- * if wflg > W [e] > 0, then e is not absorbed and has not yet been
- * seen in the scan of the element lists in the computation of
- * |Le\Lme| in Scan 1 below.
- *
- * for variables:
- * during supervariable detection, if W [j] != wflg then j is
- * not in the pattern of variable i.
- *
- * The W array is initialized by setting W [i] = 1 for all i, and by
- * setting wflg = 2. It is reinitialized if wflg becomes too large (to
- * ensure that wflg+n does not cause integer overflow).
- * ----------------------------------------------------------------------------
- * LOCAL INTEGERS:
- * ----------------------------------------------------------------------------
- */
- Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j,
- jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft,
- nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa,
- dense, aggressive ;
- unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/
- /*
- * deg: the degree of a variable or element
- * degme: size, |Lme|, of the current element, me (= Degree [me])
- * dext: external degree, |Le \ Lme|, of some element e
- * lemax: largest |Le| seen so far (called dmax in Fortran version)
- * e: an element
- * elenme: the length, Elen [me], of element list of pivotal variable
- * eln: the length, Elen [...], of an element list
- * hash: the computed value of the hash function
- * i: a supervariable
- * ilast: the entry in a link list preceding i
- * inext: the entry in a link list following i
- * j: a supervariable
- * jlast: the entry in a link list preceding j
- * jnext: the entry in a link list, or path, following j
- * k: the pivot order of an element or variable
- * knt1: loop counter used during element construction
- * knt2: loop counter used during element construction
- * knt3: loop counter used during compression
- * lenj: Len [j]
- * ln: length of a supervariable list
- * me: current supervariable being eliminated, and the current
- * element created by eliminating that supervariable
- * mindeg: current minimum degree
- * nel: number of pivots selected so far
- * nleft: n - nel, the number of nonpivotal rows/columns remaining
- * nvi: the number of variables in a supervariable i (= Nv [i])
- * nvj: the number of variables in a supervariable j (= Nv [j])
- * nvpiv: number of pivots in current element
- * slenme: number of variables in variable list of pivotal variable
- * wbig: = INT_MAX - n for the int version, UF_long_max - n for the
- * UF_long version. wflg is not allowed to be >= wbig.
- * we: W [e]
- * wflg: used for flagging the W array. See description of Iw.
- * wnvi: wflg - Nv [i]
- * x: either a supervariable or an element
- *
- * ok: true if supervariable j can be absorbed into i
- * ndense: number of "dense" rows/columns
- * dense: rows/columns with initial degree > dense are considered "dense"
- * aggressive: true if aggressive absorption is being performed
- * ncmpa: number of garbage collections
- * ----------------------------------------------------------------------------
- * LOCAL DOUBLES, used for statistical output only (except for alpha):
- * ----------------------------------------------------------------------------
- */
- double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ;
- /*
- * f: nvpiv
- * r: degme + nvpiv
- * ndiv: number of divisions for LU or LDL' factorizations
- * s: number of multiply-subtract pairs for LU factorization, for the
- * current element me
- * nms_lu number of multiply-subtract pairs for LU factorization
- * nms_ldl number of multiply-subtract pairs for LDL' factorization
- * dmax: the largest number of entries in any column of L, including the
- * diagonal
- * alpha: "dense" degree ratio
- * lnz: the number of nonzeros in L (excluding the diagonal)
- * lnzme: the number of nonzeros in L (excl. the diagonal) for the
- * current element me
- * ----------------------------------------------------------------------------
- * LOCAL "POINTERS" (indices into the Iw array)
- * ----------------------------------------------------------------------------
- */
- Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ;
- /*
- * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for
- * Pointer) is an index into Iw, and all indices into Iw use variables starting
- * with "p." The only exception to this rule is the iwlen input argument.
- *
- * p: pointer into lots of things
- * p1: Pe [i] for some variable i (start of element list)
- * p2: Pe [i] + Elen [i] - 1 for some variable i
- * p3: index of first supervariable in clean list
- * p4:
- * pdst: destination pointer, for compression
- * pend: end of memory to compress
- * pj: pointer into an element or variable
- * pme: pointer into the current element (pme1...pme2)
- * pme1: the current element, me, is stored in Iw [pme1...pme2]
- * pme2: the end of the current element
- * pn: pointer into a "clean" variable, also used to compress
- * psrc: source pointer, for compression
- */
- /* ========================================================================= */
- /* INITIALIZATIONS */
- /* ========================================================================= */
- /* Note that this restriction on iwlen is slightly more restrictive than
- * what is actually required in AMD_2. AMD_2 can operate with no elbow
- * room at all, but it will be slow. For better performance, at least
- * size-n elbow room is enforced. */
- ASSERT (iwlen >= pfree + n) ;
- ASSERT (n > 0) ;
- /* initialize output statistics */
- lnz = 0 ;
- ndiv = 0 ;
- nms_lu = 0 ;
- nms_ldl = 0 ;
- dmax = 1 ;
- me = EMPTY ;
- mindeg = 0 ;
- ncmpa = 0 ;
- nel = 0 ;
- lemax = 0 ;
- /* get control parameters */
- if (Control != (double *) NULL)
- {
- alpha = Control [AMD_DENSE] ;
- aggressive = (Control [AMD_AGGRESSIVE] != 0) ;
- }
- else
- {
- alpha = AMD_DEFAULT_DENSE ;
- aggressive = AMD_DEFAULT_AGGRESSIVE ;
- }
- /* Note: if alpha is NaN, this is undefined: */
- if (alpha < 0)
- {
- /* only remove completely dense rows/columns */
- dense = n-2 ;
- }
- else
- {
- dense = alpha * sqrt ((double) n) ;
- }
- dense = MAX (16, dense) ;
- dense = MIN (n, dense) ;
- AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n",
- alpha, aggressive)) ;
- for (i = 0 ; i < n ; i++)
- {
- Last [i] = EMPTY ;
- Head [i] = EMPTY ;
- Next [i] = EMPTY ;
- /* if separate Hhead array is used for hash buckets: *
- Hhead [i] = EMPTY ;
- */
- Nv [i] = 1 ;
- W [i] = 1 ;
- Elen [i] = 0 ;
- Degree [i] = Len [i] ;
- }
- #ifndef NDEBUG
- AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ;
- AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last,
- Head, Elen, Degree, W, -1) ;
- #endif
- /* initialize wflg */
- wbig = Int_MAX - n ;
- wflg = clear_flag (0, wbig, W, n) ;
- /* --------------------------------------------------------------------- */
- /* initialize degree lists and eliminate dense and empty rows */
- /* --------------------------------------------------------------------- */
- ndense = 0 ;
- for (i = 0 ; i < n ; i++)
- {
- deg = Degree [i] ;
- ASSERT (deg >= 0 && deg < n) ;
- if (deg == 0)
- {
- /* -------------------------------------------------------------
- * we have a variable that can be eliminated at once because
- * there is no off-diagonal non-zero in its row. Note that
- * Nv [i] = 1 for an empty variable i. It is treated just
- * the same as an eliminated element i.
- * ------------------------------------------------------------- */
- Elen [i] = FLIP (1) ;
- nel++ ;
- Pe [i] = EMPTY ;
- W [i] = 0 ;
- }
- else if (deg > dense)
- {
- /* -------------------------------------------------------------
- * Dense variables are not treated as elements, but as unordered,
- * non-principal variables that have no parent. They do not take
- * part in the postorder, since Nv [i] = 0. Note that the Fortran
- * version does not have this option.
- * ------------------------------------------------------------- */
- AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ;
- ndense++ ;
- Nv [i] = 0 ; /* do not postorder this node */
- Elen [i] = EMPTY ;
- nel++ ;
- Pe [i] = EMPTY ;
- }
- else
- {
- /* -------------------------------------------------------------
- * place i in the degree list corresponding to its degree
- * ------------------------------------------------------------- */
- inext = Head [deg] ;
- ASSERT (inext >= EMPTY && inext < n) ;
- if (inext != EMPTY) Last [inext] = i ;
- Next [i] = inext ;
- Head [deg] = i ;
- }
- }
- /* ========================================================================= */
- /* WHILE (selecting pivots) DO */
- /* ========================================================================= */
- while (nel < n)
- {
- #ifndef NDEBUG
- AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ;
- if (AMD_debug >= 2)
- {
- AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next,
- Last, Head, Elen, Degree, W, nel) ;
- }
- #endif
- /* ========================================================================= */
- /* GET PIVOT OF MINIMUM DEGREE */
- /* ========================================================================= */
- /* ----------------------------------------------------------------- */
- /* find next supervariable for elimination */
- /* ----------------------------------------------------------------- */
- ASSERT (mindeg >= 0 && mindeg < n) ;
- for (deg = mindeg ; deg < n ; deg++)
- {
- me = Head [deg] ;
- if (me != EMPTY) break ;
- }
- mindeg = deg ;
- ASSERT (me >= 0 && me < n) ;
- AMD_DEBUG1 (("=================me: "ID"\n", me)) ;
- /* ----------------------------------------------------------------- */
- /* remove chosen variable from link list */
- /* ----------------------------------------------------------------- */
- inext = Next [me] ;
- ASSERT (inext >= EMPTY && inext < n) ;
- if (inext != EMPTY) Last [inext] = EMPTY ;
- Head [deg] = inext ;
- /* ----------------------------------------------------------------- */
- /* me represents the elimination of pivots nel to nel+Nv[me]-1. */
- /* place me itself as the first in this set. */
- /* ----------------------------------------------------------------- */
- elenme = Elen [me] ;
- nvpiv = Nv [me] ;
- ASSERT (nvpiv > 0) ;
- nel += nvpiv ;
- /* ========================================================================= */
- /* CONSTRUCT NEW ELEMENT */
- /* ========================================================================= */
- /* -----------------------------------------------------------------
- * At this point, me is the pivotal supervariable. It will be
- * converted into the current element. Scan list of the pivotal
- * supervariable, me, setting tree pointers and constructing new list
- * of supervariables for the new element, me. p is a pointer to the
- * current position in the old list.
- * ----------------------------------------------------------------- */
- /* flag the variable "me" as being in Lme by negating Nv [me] */
- Nv [me] = -nvpiv ;
- degme = 0 ;
- ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
- if (elenme == 0)
- {
- /* ------------------------------------------------------------- */
- /* construct the new element in place */
- /* ------------------------------------------------------------- */
- pme1 = Pe [me] ;
- pme2 = pme1 - 1 ;
- for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++)
- {
- i = Iw [p] ;
- ASSERT (i >= 0 && i < n && Nv [i] >= 0) ;
- nvi = Nv [i] ;
- if (nvi > 0)
- {
- /* ----------------------------------------------------- */
- /* i is a principal variable not yet placed in Lme. */
- /* store i in new list */
- /* ----------------------------------------------------- */
- /* flag i as being in Lme by negating Nv [i] */
- degme += nvi ;
- Nv [i] = -nvi ;
- Iw [++pme2] = i ;
- /* ----------------------------------------------------- */
- /* remove variable i from degree list. */
- /* ----------------------------------------------------- */
- ilast = Last [i] ;
- inext = Next [i] ;
- ASSERT (ilast >= EMPTY && ilast < n) ;
- ASSERT (inext >= EMPTY && inext < n) ;
- if (inext != EMPTY) Last [inext] = ilast ;
- if (ilast != EMPTY)
- {
- Next [ilast] = inext ;
- }
- else
- {
- /* i is at the head of the degree list */
- ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
- Head [Degree [i]] = inext ;
- }
- }
- }
- }
- else
- {
- /* ------------------------------------------------------------- */
- /* construct the new element in empty space, Iw [pfree ...] */
- /* ------------------------------------------------------------- */
- p = Pe [me] ;
- pme1 = pfree ;
- slenme = Len [me] - elenme ;
- for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++)
- {
- if (knt1 > elenme)
- {
- /* search the supervariables in me. */
- e = me ;
- pj = p ;
- ln = slenme ;
- AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ;
- }
- else
- {
- /* search the elements in me. */
- e = Iw [p++] ;
- ASSERT (e >= 0 && e < n) ;
- pj = Pe [e] ;
- ln = Len [e] ;
- AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ;
- ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ;
- }
- ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ;
- /* ---------------------------------------------------------
- * search for different supervariables and add them to the
- * new list, compressing when necessary. this loop is
- * executed once for each element in the list and once for
- * all the supervariables in the list.
- * --------------------------------------------------------- */
- for (knt2 = 1 ; knt2 <= ln ; knt2++)
- {
- i = Iw [pj++] ;
- ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY));
- nvi = Nv [i] ;
- AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n",
- i, Elen [i], Nv [i], wflg)) ;
- if (nvi > 0)
- {
- /* ------------------------------------------------- */
- /* compress Iw, if necessary */
- /* ------------------------------------------------- */
- if (pfree >= iwlen)
- {
- AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ;
- /* prepare for compressing Iw by adjusting pointers
- * and lengths so that the lists being searched in
- * the inner and outer loops contain only the
- * remaining entries. */
- Pe [me] = p ;
- Len [me] -= knt1 ;
- /* check if nothing left of supervariable me */
- if (Len [me] == 0) Pe [me] = EMPTY ;
- Pe [e] = pj ;
- Len [e] = ln - knt2 ;
- /* nothing left of element e */
- if (Len [e] == 0) Pe [e] = EMPTY ;
- ncmpa++ ; /* one more garbage collection */
- /* store first entry of each object in Pe */
- /* FLIP the first entry in each object */
- for (j = 0 ; j < n ; j++)
- {
- pn = Pe [j] ;
- if (pn >= 0)
- {
- ASSERT (pn >= 0 && pn < iwlen) ;
- Pe [j] = Iw [pn] ;
- Iw [pn] = FLIP (j) ;
- }
- }
- /* psrc/pdst point to source/destination */
- psrc = 0 ;
- pdst = 0 ;
- pend = pme1 - 1 ;
- while (psrc <= pend)
- {
- /* search for next FLIP'd entry */
- j = FLIP (Iw [psrc++]) ;
- if (j >= 0)
- {
- AMD_DEBUG2 (("Got object j: "ID"\n", j)) ;
- Iw [pdst] = Pe [j] ;
- Pe [j] = pdst++ ;
- lenj = Len [j] ;
- /* copy from source to destination */
- for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++)
- {
- Iw [pdst++] = Iw [psrc++] ;
- }
- }
- }
- /* move the new partially-constructed element */
- p1 = pdst ;
- for (psrc = pme1 ; psrc <= pfree-1 ; psrc++)
- {
- Iw [pdst++] = Iw [psrc] ;
- }
- pme1 = p1 ;
- pfree = pdst ;
- pj = Pe [e] ;
- p = Pe [me] ;
- }
- /* ------------------------------------------------- */
- /* i is a principal variable not yet placed in Lme */
- /* store i in new list */
- /* ------------------------------------------------- */
- /* flag i as being in Lme by negating Nv [i] */
- degme += nvi ;
- Nv [i] = -nvi ;
- Iw [pfree++] = i ;
- AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i]));
- /* ------------------------------------------------- */
- /* remove variable i from degree link list */
- /* ------------------------------------------------- */
- ilast = Last [i] ;
- inext = Next [i] ;
- ASSERT (ilast >= EMPTY && ilast < n) ;
- ASSERT (inext >= EMPTY && inext < n) ;
- if (inext != EMPTY) Last [inext] = ilast ;
- if (ilast != EMPTY)
- {
- Next [ilast] = inext ;
- }
- else
- {
- /* i is at the head of the degree list */
- ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
- Head [Degree [i]] = inext ;
- }
- }
- }
- if (e != me)
- {
- /* set tree pointer and flag to indicate element e is
- * absorbed into new element me (the parent of e is me) */
- AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ;
- Pe [e] = FLIP (me) ;
- W [e] = 0 ;
- }
- }
- pme2 = pfree - 1 ;
- }
- /* ----------------------------------------------------------------- */
- /* me has now been converted into an element in Iw [pme1..pme2] */
- /* ----------------------------------------------------------------- */
- /* degme holds the external degree of new element */
- Degree [me] = degme ;
- Pe [me] = pme1 ;
- Len [me] = pme2 - pme1 + 1 ;
- ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
- Elen [me] = FLIP (nvpiv + degme) ;
- /* FLIP (Elen (me)) is now the degree of pivot (including
- * diagonal part). */
- #ifndef NDEBUG
- AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ;
- for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme]));
- AMD_DEBUG3 (("\n")) ;
- #endif
- /* ----------------------------------------------------------------- */
- /* make sure that wflg is not too large. */
- /* ----------------------------------------------------------------- */
- /* With the current value of wflg, wflg+n must not cause integer
- * overflow */
- wflg = clear_flag (wflg, wbig, W, n) ;
- /* ========================================================================= */
- /* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */
- /* ========================================================================= */
- /* -----------------------------------------------------------------
- * Scan 1: compute the external degrees of previous elements with
- * respect to the current element. That is:
- * (W [e] - wflg) = |Le \ Lme|
- * for each element e that appears in any supervariable in Lme. The
- * notation Le refers to the pattern (list of supervariables) of a
- * previous element e, where e is not yet absorbed, stored in
- * Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme
- * refers to the pattern of the current element (stored in
- * Iw [pme1..pme2]). If aggressive absorption is enabled, and
- * (W [e] - wflg) becomes zero, then the element e will be absorbed
- * in Scan 2.
- * ----------------------------------------------------------------- */
- AMD_DEBUG2 (("me: ")) ;
- for (pme = pme1 ; pme <= pme2 ; pme++)
- {
- i = Iw [pme] ;
- ASSERT (i >= 0 && i < n) ;
- eln = Elen [i] ;
- AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ;
- if (eln > 0)
- {
- /* note that Nv [i] has been negated to denote i in Lme: */
- nvi = -Nv [i] ;
- ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ;
- wnvi = wflg - nvi ;
- for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++)
- {
- e = Iw [p] ;
- ASSERT (e >= 0 && e < n) ;
- we = W [e] ;
- AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ;
- if (we >= wflg)
- {
- /* unabsorbed element e has been seen in this loop */
- AMD_DEBUG4 ((" unabsorbed, first time seen")) ;
- we -= nvi ;
- }
- else if (we != 0)
- {
- /* e is an unabsorbed element */
- /* this is the first we have seen e in all of Scan 1 */
- AMD_DEBUG4 ((" unabsorbed")) ;
- we = Degree [e] + wnvi ;
- }
- AMD_DEBUG4 (("\n")) ;
- W [e] = we ;
- }
- }
- }
- AMD_DEBUG2 (("\n")) ;
- /* ========================================================================= */
- /* DEGREE UPDATE AND ELEMENT ABSORPTION */
- /* ========================================================================= */
- /* -----------------------------------------------------------------
- * Scan 2: for each i in Lme, sum up the degree of Lme (which is
- * degme), plus the sum of the external degrees of each Le for the
- * elements e appearing within i, plus the supervariables in i.
- * Place i in hash list.
- * ----------------------------------------------------------------- */
- for (pme = pme1 ; pme <= pme2 ; pme++)
- {
- i = Iw [pme] ;
- ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ;
- AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i]));
- p1 = Pe [i] ;
- p2 = p1 + Elen [i] - 1 ;
- pn = p1 ;
- hash = 0 ;
- deg = 0 ;
- ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ;
- /* ------------------------------------------------------------- */
- /* scan the element list associated with supervariable i */
- /* ------------------------------------------------------------- */
- /* UMFPACK/MA38-style approximate degree: */
- if (aggressive)
- {
- for (p = p1 ; p <= p2 ; p++)
- {
- e = Iw [p] ;
- ASSERT (e >= 0 && e < n) ;
- we = W [e] ;
- if (we != 0)
- {
- /* e is an unabsorbed element */
- /* dext = | Le \ Lme | */
- dext = we - wflg ;
- if (dext > 0)
- {
- deg += dext ;
- Iw [pn++] = e ;
- hash += e ;
- AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
- }
- else
- {
- /* external degree of e is zero, absorb e into me*/
- AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n",
- e, me)) ;
- ASSERT (dext == 0) ;
- Pe [e] = FLIP (me) ;
- W [e] = 0 ;
- }
- }
- }
- }
- else
- {
- for (p = p1 ; p <= p2 ; p++)
- {
- e = Iw [p] ;
- ASSERT (e >= 0 && e < n) ;
- we = W [e] ;
- if (we != 0)
- {
- /* e is an unabsorbed element */
- dext = we - wflg ;
- ASSERT (dext >= 0) ;
- deg += dext ;
- Iw [pn++] = e ;
- hash += e ;
- AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
- }
- }
- }
- /* count the number of elements in i (including me): */
- Elen [i] = pn - p1 + 1 ;
- /* ------------------------------------------------------------- */
- /* scan the supervariables in the list associated with i */
- /* ------------------------------------------------------------- */
- /* The bulk of the AMD run time is typically spent in this loop,
- * particularly if the matrix has many dense rows that are not
- * removed prior to ordering. */
- p3 = pn ;
- p4 = p1 + Len [i] ;
- for (p = p2 + 1 ; p < p4 ; p++)
- {
- j = Iw [p] ;
- ASSERT (j >= 0 && j < n) ;
- nvj = Nv [j] ;
- if (nvj > 0)
- {
- /* j is unabsorbed, and not in Lme. */
- /* add to degree and add to new list */
- deg += nvj ;
- Iw [pn++] = j ;
- hash += j ;
- AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n",
- j, hash, nvj)) ;
- }
- }
- /* ------------------------------------------------------------- */
- /* update the degree and check for mass elimination */
- /* ------------------------------------------------------------- */
- /* with aggressive absorption, deg==0 is identical to the
- * Elen [i] == 1 && p3 == pn test, below. */
- ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ;
- if (Elen [i] == 1 && p3 == pn)
- {
- /* --------------------------------------------------------- */
- /* mass elimination */
- /* --------------------------------------------------------- */
- /* There is nothing left of this node except for an edge to
- * the current pivot element. Elen [i] is 1, and there are
- * no variables adjacent to node i. Absorb i into the
- * current pivot element, me. Note that if there are two or
- * more mass eliminations, fillin due to mass elimination is
- * possible within the nvpiv-by-nvpiv pivot block. It is this
- * step that causes AMD's analysis to be an upper bound.
- *
- * The reason is that the selected pivot has a lower
- * approximate degree than the true degree of the two mass
- * eliminated nodes. There is no edge between the two mass
- * eliminated nodes. They are merged with the current pivot
- * anyway.
- *
- * No fillin occurs in the Schur complement, in any case,
- * and this effect does not decrease the quality of the
- * ordering itself, just the quality of the nonzero and
- * flop count analysis. It also means that the post-ordering
- * is not an exact elimination tree post-ordering. */
- AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ;
- Pe [i] = FLIP (me) ;
- nvi = -Nv [i] ;
- degme -= nvi ;
- nvpiv += nvi ;
- nel += nvi ;
- Nv [i] = 0 ;
- Elen [i] = EMPTY ;
- }
- else
- {
- /* --------------------------------------------------------- */
- /* update the upper-bound degree of i */
- /* --------------------------------------------------------- */
- /* the following degree does not yet include the size
- * of the current element, which is added later: */
- Degree [i] = MIN (Degree [i], deg) ;
- /* --------------------------------------------------------- */
- /* add me to the list for i */
- /* --------------------------------------------------------- */
- /* move first supervariable to end of list */
- Iw [pn] = Iw [p3] ;
- /* move first element to end of element part of list */
- Iw [p3] = Iw [p1] ;
- /* add new element, me, to front of list. */
- Iw [p1] = me ;
- /* store the new length of the list in Len [i] */
- Len [i] = pn - p1 + 1 ;
- /* --------------------------------------------------------- */
- /* place in hash bucket. Save hash key of i in Last [i]. */
- /* --------------------------------------------------------- */
- /* NOTE: this can fail if hash is negative, because the ANSI C
- * standard does not define a % b when a and/or b are negative.
- * That's why hash is defined as an unsigned Int, to avoid this
- * problem. */
- hash = hash % n ;
- ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ;
- /* if the Hhead array is not used: */
- j = Head [hash] ;
- if (j <= EMPTY)
- {
- /* degree list is empty, hash head is FLIP (j) */
- Next [i] = FLIP (j) ;
- Head [hash] = FLIP (i) ;
- }
- else
- {
- /* degree list is not empty, use Last [Head [hash]] as
- * hash head. */
- Next [i] = Last [j] ;
- Last [j] = i ;
- }
- /* if a separate Hhead array is used: *
- Next [i] = Hhead [hash] ;
- Hhead [hash] = i ;
- */
- Last [i] = hash ;
- }
- }
- Degree [me] = degme ;
- /* ----------------------------------------------------------------- */
- /* Clear the counter array, W [...], by incrementing wflg. */
- /* ----------------------------------------------------------------- */
- /* make sure that wflg+n does not cause integer overflow */
- lemax = MAX (lemax, degme) ;
- wflg += lemax ;
- wflg = clear_flag (wflg, wbig, W, n) ;
- /* at this point, W [0..n-1] < wflg holds */
- /* ========================================================================= */
- /* SUPERVARIABLE DETECTION */
- /* ========================================================================= */
- AMD_DEBUG1 (("Detecting supervariables:\n")) ;
- for (pme = pme1 ; pme <= pme2 ; pme++)
- {
- i = Iw [pme] ;
- ASSERT (i >= 0 && i < n) ;
- AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ;
- if (Nv [i] < 0)
- {
- /* i is a principal variable in Lme */
- /* ---------------------------------------------------------
- * examine all hash buckets with 2 or more variables. We do
- * this by examing all unique hash keys for supervariables in
- * the pattern Lme of the current element, me
- * --------------------------------------------------------- */
- /* let i = head of hash bucket, and empty the hash bucket */
- ASSERT (Last [i] >= 0 && Last [i] < n) ;
- hash = Last [i] ;
- /* if Hhead array is not used: */
- j = Head [hash] ;
- if (j == EMPTY)
- {
- /* hash bucket and degree list are both empty */
- i = EMPTY ;
- }
- else if (j < EMPTY)
- {
- /* degree list is empty */
- i = FLIP (j) ;
- Head [hash] = EMPTY ;
- }
- else
- {
- /* degree list is not empty, restore Last [j] of head j */
- i = Last [j] ;
- Last [j] = EMPTY ;
- }
- /* if separate Hhead array is used: *
- i = Hhead [hash] ;
- Hhead [hash] = EMPTY ;
- */
- ASSERT (i >= EMPTY && i < n) ;
- AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ;
- while (i != EMPTY && Next [i] != EMPTY)
- {
- /* -----------------------------------------------------
- * this bucket has one or more variables following i.
- * scan all of them to see if i can absorb any entries
- * that follow i in hash bucket. Scatter i into w.
- * ----------------------------------------------------- */
- ln = Len [i] ;
- eln = Elen [i] ;
- ASSERT (ln >= 0 && eln >= 0) ;
- ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ;
- /* do not flag the first element in the list (me) */
- for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++)
- {
- ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
- W [Iw [p]] = wflg ;
- }
- /* ----------------------------------------------------- */
- /* scan every other entry j following i in bucket */
- /* ----------------------------------------------------- */
- jlast = i ;
- j = Next [i] ;
- ASSERT (j >= EMPTY && j < n) ;
- while (j != EMPTY)
- {
- /* ------------------------------------------------- */
- /* check if j and i have identical nonzero pattern */
- /* ------------------------------------------------- */
- AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ;
- /* check if i and j have the same Len and Elen */
- ASSERT (Len [j] >= 0 && Elen [j] >= 0) ;
- ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ;
- ok = (Len [j] == ln) && (Elen [j] == eln) ;
- /* skip the first element in the list (me) */
- for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++)
- {
- ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
- if (W [Iw [p]] != wflg) ok = 0 ;
- }
- if (ok)
- {
- /* --------------------------------------------- */
- /* found it! j can be absorbed into i */
- /* --------------------------------------------- */
- AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i));
- Pe [j] = FLIP (i) ;
- /* both Nv [i] and Nv [j] are negated since they */
- /* are in Lme, and the absolute values of each */
- /* are the number of variables in i and j: */
- Nv [i] += Nv [j] ;
- Nv [j] = 0 ;
- Elen [j] = EMPTY ;
- /* delete j from hash bucket */
- ASSERT (j != Next [j]) ;
- j = Next [j] ;
- Next [jlast] = j ;
- }
- else
- {
- /* j cannot be absorbed into i */
- jlast = j ;
- ASSERT (j != Next [j]) ;
- j = Next [j] ;
- }
- ASSERT (j >= EMPTY && j < n) ;
- }
- /* -----------------------------------------------------
- * no more variables can be absorbed into i
- * go to next i in bucket and clear flag array
- * ----------------------------------------------------- */
- wflg++ ;
- i = Next [i] ;
- ASSERT (i >= EMPTY && i < n) ;
- }
- }
- }
- AMD_DEBUG2 (("detect done\n")) ;
- /* ========================================================================= */
- /* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */
- /* ========================================================================= */
- p = pme1 ;
- nleft = n - nel ;
- for (pme = pme1 ; pme <= pme2 ; pme++)
- {
- i = Iw [pme] ;
- ASSERT (i >= 0 && i < n) ;
- nvi = -Nv [i] ;
- AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ;
- if (nvi > 0)
- {
- /* i is a principal variable in Lme */
- /* restore Nv [i] to signify that i is principal */
- Nv [i] = nvi ;
- /* --------------------------------------------------------- */
- /* compute the external degree (add size of current element) */
- /* --------------------------------------------------------- */
- deg = Degree [i] + degme - nvi ;
- deg = MIN (deg, nleft - nvi) ;
- ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ;
- /* --------------------------------------------------------- */
- /* place the supervariable at the head of the degree list */
- /* --------------------------------------------------------- */
- inext = Head [deg] ;
- ASSERT (inext >= EMPTY && inext < n) ;
- if (inext != EMPTY) Last [inext] = i ;
- Next [i] = inext ;
- Last [i] = EMPTY ;
- Head [deg] = i ;
- /* --------------------------------------------------------- */
- /* save the new degree, and find the minimum degree */
- /* --------------------------------------------------------- */
- mindeg = MIN (mindeg, deg) ;
- Degree [i] = deg ;
- /* --------------------------------------------------------- */
- /* place the supervariable in the element pattern */
- /* --------------------------------------------------------- */
- Iw [p++] = i ;
- }
- }
- AMD_DEBUG2 (("restore done\n")) ;
- /* ========================================================================= */
- /* FINALIZE THE NEW ELEMENT */
- /* ========================================================================= */
- AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ;
- Nv [me] = nvpiv ;
- /* save the length of the list for the new element me */
- Len [me] = p - pme1 ;
- if (Len [me] == 0)
- {
- /* there is nothing left of the current pivot element */
- /* it is a root of the assembly tree */
- Pe [me] = EMPTY ;
- W [me] = 0 ;
- }
- if (elenme != 0)
- {
- /* element was not constructed in place: deallocate part of */
- /* it since newly nonprincipal variables may have been removed */
- pfree = p ;
- }
- /* The new element has nvpiv pivots and the size of the contribution
- * block for a multifrontal method is degme-by-degme, not including
- * the "dense" rows/columns. If the "dense" rows/columns are included,
- * the frontal matrix is no larger than
- * (degme+ndense)-by-(degme+ndense).
- */
- if (Info != (double *) NULL)
- {
- f = nvpiv ;
- r = degme + ndense ;
- dmax = MAX (dmax, f + r) ;
- /* number of nonzeros in L (excluding the diagonal) */
- lnzme = f*r + (f-1)*f/2 ;
- lnz += lnzme ;
- /* number of divide operations for LDL' and for LU */
- ndiv += lnzme ;
- /* number of multiply-subtract pairs for LU */
- s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ;
- nms_lu += s ;
- /* number of multiply-subtract pairs for LDL' */
- nms_ldl += (s + lnzme)/2 ;
- }
- #ifndef NDEBUG
- AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ;
- for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++)
- {
- AMD_DEBUG3 ((" "ID"", Iw [pme])) ;
- }
- AMD_DEBUG3 (("\n")) ;
- #endif
- }
- /* ========================================================================= */
- /* DONE SELECTING PIVOTS */
- /* ========================================================================= */
- if (Info != (double *) NULL)
- {
- /* count the work to factorize the ndense-by-ndense submatrix */
- f = ndense ;
- dmax = MAX (dmax, (double) ndense) ;
- /* number of nonzeros in L (excluding the diagonal) */
- lnzme = (f-1)*f/2 ;
- lnz += lnzme ;
- /* number of divide operations for LDL' and for LU */
- ndiv += lnzme ;
- /* number of multiply-subtract pairs for LU */
- s = (f-1)*f*(2*f-1)/6 ;
- nms_lu += s ;
- /* number of multiply-subtract pairs for LDL' */
- nms_ldl += (s + lnzme)/2 ;
- /* number of nz's in L (excl. diagonal) */
- Info [AMD_LNZ] = lnz ;
- /* number of divide ops for LU and LDL' */
- Info [AMD_NDIV] = ndiv ;
- /* number of multiply-subtract pairs for LDL' */
- Info [AMD_NMULTSUBS_LDL] = nms_ldl ;
- /* number of multiply-subtract pairs for LU */
- Info [AMD_NMULTSUBS_LU] = nms_lu ;
- /* number of "dense" rows/columns */
- Info [AMD_NDENSE] = ndense ;
- /* largest front is dmax-by-dmax */
- Info [AMD_DMAX] = dmax ;
- /* number of garbage collections in AMD */
- Info [AMD_NCMPA] = ncmpa ;
- /* successful ordering */
- Info [AMD_STATUS] = AMD_OK ;
- }
- /* ========================================================================= */
- /* POST-ORDERING */
- /* ========================================================================= */
- /* -------------------------------------------------------------------------
- * Variables at this point:
- *
- * Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]),
- * or EMPTY if j is a root. The tree holds both elements and
- * non-principal (unordered) variables absorbed into them.
- * Dense variables are non-principal and unordered.
- *
- * Elen: holds the size of each element, including the diagonal part.
- * FLIP (Elen [e]) > 0 if e is an element. For unordered
- * variables i, Elen [i] is EMPTY.
- *
- * Nv: Nv [e] > 0 is the number of pivots represented by the element e.
- * For unordered variables i, Nv [i] is zero.
- *
- * Contents no longer needed:
- * W, Iw, Len, Degree, Head, Next, Last.
- *
- * The matrix itself has been destroyed.
- *
- * n: the size of the matrix.
- * No other scalars needed (pfree, iwlen, etc.)
- * ------------------------------------------------------------------------- */
- /* restore Pe */
- for (i = 0 ; i < n ; i++)
- {
- Pe [i] = FLIP (Pe [i]) ;
- }
- /* restore Elen, for output information, and for postordering */
- for (i = 0 ; i < n ; i++)
- {
- Elen [i] = FLIP (Elen [i]) ;
- }
- /* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0
- * is the size of element e. Elen [i] is EMPTY for unordered variable i. */
- #ifndef NDEBUG
- AMD_DEBUG2 (("\nTree:\n")) ;
- for (i = 0 ; i < n ; i++)
- {
- AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ;
- ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ;
- if (Nv [i] > 0)
- {
- /* this is an element */
- e = i ;
- AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ;
- ASSERT (Elen [e] > 0) ;
- }
- AMD_DEBUG2 (("\n")) ;
- }
- AMD_DEBUG2 (("\nelements:\n")) ;
- for (e = 0 ; e < n ; e++)
- {
- if (Nv [e] > 0)
- {
- AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e,
- Elen [e], Nv [e])) ;
- }
- }
- AMD_DEBUG2 (("\nvariables:\n")) ;
- for (i = 0 ; i < n ; i++)
- {
- Int cnt ;
- if (Nv [i] == 0)
- {
- AMD_DEBUG3 (("i unordered: "ID"\n", i)) ;
- j = Pe [i] ;
- cnt = 0 ;
- AMD_DEBUG3 ((" j: "ID"\n", j)) ;
- if (j == EMPTY)
- {
- AMD_DEBUG3 ((" i is a dense variable\n")) ;
- }
- else
- {
- ASSERT (j >= 0 && j < n) ;
- while (Nv [j] == 0)
- {
- AMD_DEBUG3 ((" j : "ID"\n", j)) ;
- j = Pe [j] ;
- AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
- cnt++ ;
- if (cnt > n) break ;
- }
- e = j ;
- AMD_DEBUG3 ((" got to e: "ID"\n", e)) ;
- }
- }
- }
- #endif
- /* ========================================================================= */
- /* compress the paths of the variables */
- /* ========================================================================= */
- for (i = 0 ; i < n ; i++)
- {
- if (Nv [i] == 0)
- {
- /* -------------------------------------------------------------
- * i is an un-ordered row. Traverse the tree from i until
- * reaching an element, e. The element, e, was the principal
- * supervariable of i and all nodes in the path from i to when e
- * was selected as pivot.
- * ------------------------------------------------------------- */
- AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ;
- j = Pe [i] ;
- ASSERT (j >= EMPTY && j < n) ;
- AMD_DEBUG3 ((" j: "ID"\n", j)) ;
- if (j == EMPTY)
- {
- /* Skip a dense variable. It has no parent. */
- AMD_DEBUG3 ((" i is a dense variable\n")) ;
- continue ;
- }
- /* while (j is a variable) */
- while (Nv [j] == 0)
- {
- AMD_DEBUG3 ((" j : "ID"\n", j)) ;
- j = Pe [j] ;
- AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
- ASSERT (j >= 0 && j < n) ;
- }
- /* got to an element e */
- e = j ;
- AMD_DEBUG3 (("got to e: "ID"\n", e)) ;
- /* -------------------------------------------------------------
- * traverse the path again from i to e, and compress the path
- * (all nodes point to e). Path compression allows this code to
- * compute in O(n) time.
- * ------------------------------------------------------------- */
- j = i ;
- /* while (j is a variable) */
- while (Nv [j] == 0)
- {
- jnext = Pe [j] ;
- AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ;
- Pe [j] = e ;
- j = jnext ;
- ASSERT (j >= 0 && j < n) ;
- }
- }
- }
- /* ========================================================================= */
- /* postorder the assembly tree */
- /* ========================================================================= */
- AMD_postorder (n, Pe, Nv, Elen,
- W, /* output order */
- Head, Next, Last) ; /* workspace */
- /* ========================================================================= */
- /* compute output permutation and inverse permutation */
- /* ========================================================================= */
- /* W [e] = k means that element e is the kth element in the new
- * order. e is in the range 0 to n-1, and k is in the range 0 to
- * the number of elements. Use Head for inverse order. */
- for (k = 0 ; k < n ; k++)
- {
- Head [k] = EMPTY ;
- Next [k] = EMPTY ;
- }
- for (e = 0 ; e < n ; e++)
- {
- k = W [e] ;
- ASSERT ((k == EMPTY) == (Nv [e] == 0)) ;
- if (k != EMPTY)
- {
- ASSERT (k >= 0 && k < n) ;
- Head [k] = e ;
- }
- }
- /* construct output inverse permutation in Next,
- * and permutation in Last */
- nel = 0 ;
- for (k = 0 ; k < n ; k++)
- {
- e = Head [k] ;
- if (e == EMPTY) break ;
- ASSERT (e >= 0 && e < n && Nv [e] > 0) ;
- Next [e] = nel ;
- nel += Nv [e] ;
- }
- ASSERT (nel == n - ndense) ;
- /* order non-principal variables (dense, & those merged into supervar's) */
- for (i = 0 ; i < n ; i++)
- {
- if (Nv [i] == 0)
- {
- e = Pe [i] ;
- ASSERT (e >= EMPTY && e < n) ;
- if (e != EMPTY)
- {
- /* This is an unordered variable that was merged
- * into element e via supernode detection or mass
- * elimination of i when e became the pivot element.
- * Place i in order just before e. */
- ASSERT (Next [i] == EMPTY && Nv [e] > 0) ;
- Next [i] = Next [e] ;
- Next [e]++ ;
- }
- else
- {
- /* This is a dense unordered variable, with no parent.
- * Place it last in the output order. */
- Next [i] = nel++ ;
- }
- }
- }
- ASSERT (nel == n) ;
- AMD_DEBUG2 (("\n\nPerm:\n")) ;
- for (i = 0 ; i < n ; i++)
- {
- k = Next [i] ;
- ASSERT (k >= 0 && k < n) ;
- Last [k] = i ;
- AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ;
- }
- }
|