1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105 |
- /*
- * Copyright (C) 2008 by Jonathan Duddington
- * email: jonsd@users.sourceforge.net
- * Copyright (C) 2013-2016 Reece H. Dunn
- *
- * Based on a re-implementation by:
- * (c) 1993,94 Jon Iles and Nick Ing-Simmons
- * of the Klatt cascade-parallel formant synthesizer
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, see: <http://www.gnu.org/licenses/>.
- */
- // See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz
- #include "config.h"
- #include <math.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include "espeak_ng.h"
- #include "speak_lib.h"
- #include "speech.h"
- #include "klatt.h"
- extern unsigned char *out_ptr;
- extern unsigned char *out_start;
- extern unsigned char *out_end;
- extern WGEN_DATA wdata;
- static int nsamples;
- static int sample_count;
- #ifdef _MSC_VER
- #define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min))
- #else
- #define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min))
- #endif
- // function prototypes for functions private to this file
- static void flutter(klatt_frame_ptr);
- static double sampled_source(int);
- static double impulsive_source(void);
- static double natural_source(void);
- static void pitch_synch_par_reset(klatt_frame_ptr);
- static double gen_noise(double);
- static double DBtoLIN(long);
- static void frame_init(klatt_frame_ptr);
- static void setabc(long, long, resonator_ptr);
- static void setzeroabc(long, long, resonator_ptr);
- static klatt_frame_t kt_frame;
- static klatt_global_t kt_globals;
- #define NUMBER_OF_SAMPLES 100
- static int scale_wav_tab[] = { 45, 38, 45, 45, 55 }; // scale output from different voicing sources
- // For testing, this can be overwritten in KlattInit()
- static short natural_samples2[256] = {
- 2583, 2516, 2450, 2384, 2319, 2254, 2191, 2127,
- 2067, 2005, 1946, 1890, 1832, 1779, 1726, 1675,
- 1626, 1579, 1533, 1491, 1449, 1409, 1372, 1336,
- 1302, 1271, 1239, 1211, 1184, 1158, 1134, 1111,
- 1089, 1069, 1049, 1031, 1013, 996, 980, 965,
- 950, 936, 921, 909, 895, 881, 869, 855,
- 843, 830, 818, 804, 792, 779, 766, 754,
- 740, 728, 715, 702, 689, 676, 663, 651,
- 637, 626, 612, 601, 588, 576, 564, 552,
- 540, 530, 517, 507, 496, 485, 475, 464,
- 454, 443, 434, 424, 414, 404, 394, 385,
- 375, 366, 355, 347, 336, 328, 317, 308,
- 299, 288, 280, 269, 260, 250, 240, 231,
- 220, 212, 200, 192, 181, 172, 161, 152,
- 142, 133, 123, 113, 105, 94, 86, 76,
- 67, 57, 49, 39, 30, 22, 11, 4,
- -5, -14, -23, -32, -41, -50, -60, -69,
- -78, -87, -96, -107, -115, -126, -134, -144,
- -154, -164, -174, -183, -193, -203, -213, -222,
- -233, -242, -252, -262, -271, -281, -291, -301,
- -310, -320, -330, -339, -349, -357, -368, -377,
- -387, -397, -406, -417, -426, -436, -446, -456,
- -467, -477, -487, -499, -509, -521, -532, -543,
- -555, -567, -579, -591, -603, -616, -628, -641,
- -653, -666, -679, -692, -705, -717, -732, -743,
- -758, -769, -783, -795, -808, -820, -834, -845,
- -860, -872, -885, -898, -911, -926, -939, -955,
- -968, -986, -999, -1018, -1034, -1054, -1072, -1094,
- -1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307,
- -1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631,
- -1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072,
- -2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589,
- };
- static short natural_samples[100] = {
- -310, -400, 530, 356, 224, 89, 23, -10, -58, -16, 461, 599, 536, 701, 770,
- 605, 497, 461, 560, 404, 110, 224, 131, 104, -97, 155, 278, -154, -1165,
- -598, 737, 125, -592, 41, 11, -247, -10, 65, 92, 80, -304, 71, 167, -1, 122,
- 233, 161, -43, 278, 479, 485, 407, 266, 650, 134, 80, 236, 68, 260, 269, 179,
- 53, 140, 275, 293, 296, 104, 257, 152, 311, 182, 263, 245, 125, 314, 140, 44,
- 203, 230, -235, -286, 23, 107, 92, -91, 38, 464, 443, 176, 98, -784, -2449,
- -1891, -1045, -1600, -1462, -1384, -1261, -949, -730
- };
- /*
- function RESONATOR
- This is a generic resonator function. Internal memory for the resonator
- is stored in the globals structure.
- */
- static double resonator(resonator_ptr r, double input)
- {
- double x;
- x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
- r->p2 = (double)r->p1;
- r->p1 = (double)x;
- return (double)x;
- }
- static double resonator2(resonator_ptr r, double input)
- {
- double x;
- x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
- r->p2 = (double)r->p1;
- r->p1 = (double)x;
- r->a += r->a_inc;
- r->b += r->b_inc;
- r->c += r->c_inc;
- return (double)x;
- }
- static double antiresonator2(resonator_ptr r, double input)
- {
- double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2;
- r->p2 = (double)r->p1;
- r->p1 = (double)input;
- r->a += r->a_inc;
- r->b += r->b_inc;
- r->c += r->c_inc;
- return (double)x;
- }
- /*
- function FLUTTER
- This function adds F0 flutter, as specified in:
- "Analysis, synthesis and perception of voice quality variations among
- female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
- Flutter is added by applying a quasi-random element constructed from three
- slowly varying sine waves.
- */
- static void flutter(klatt_frame_ptr frame)
- {
- static int time_count;
- double delta_f0;
- double fla, flb, flc, fld, fle;
- fla = (double)kt_globals.f0_flutter / 50;
- flb = (double)kt_globals.original_f0 / 100;
- flc = sin(M_PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS
- fld = sin(M_PI*7.1*time_count);
- fle = sin(M_PI*4.7*time_count);
- delta_f0 = fla * flb * (flc + fld + fle) * 10;
- frame->F0hz10 = frame->F0hz10 + (long)delta_f0;
- time_count++;
- }
- /*
- function SAMPLED_SOURCE
- Allows the use of a glottal excitation waveform sampled from a real
- voice.
- */
- static double sampled_source(int source_num)
- {
- int itemp;
- double ftemp;
- double result;
- double diff_value;
- int current_value;
- int next_value;
- double temp_diff;
- short *samples;
- if (source_num == 0) {
- samples = natural_samples;
- kt_globals.num_samples = 100;
- } else {
- samples = natural_samples2;
- kt_globals.num_samples = 256;
- }
- if (kt_globals.T0 != 0) {
- ftemp = (double)kt_globals.nper;
- ftemp = ftemp / kt_globals.T0;
- ftemp = ftemp * kt_globals.num_samples;
- itemp = (int)ftemp;
- temp_diff = ftemp - (double)itemp;
- current_value = samples[itemp];
- next_value = samples[itemp+1];
- diff_value = (double)next_value - (double)current_value;
- diff_value = diff_value * temp_diff;
- result = samples[itemp] + diff_value;
- result = result * kt_globals.sample_factor;
- } else
- result = 0;
- return result;
- }
- /*
- function PARWAVE
- Converts synthesis parameters to a waveform.
- */
- static int parwave(klatt_frame_ptr frame)
- {
- double temp;
- int value;
- double outbypas;
- double out;
- long n4;
- double frics;
- double glotout;
- double aspiration;
- double casc_next_in;
- double par_glotout;
- static double noise;
- static double voicing;
- static double vlast;
- static double glotlast;
- static double sourc;
- int ix;
- flutter(frame); // add f0 flutter
- // MAIN LOOP, for each output sample of current frame:
- for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) {
- // Get low-passed random number for aspiration and frication noise
- noise = gen_noise(noise);
- // Amplitude modulate noise (reduce noise amplitude during
- // second half of glottal period) if voicing simultaneously present.
- if (kt_globals.nper > kt_globals.nmod)
- noise *= (double)0.5;
- // Compute frication noise
- frics = kt_globals.amp_frica * noise;
- // Compute voicing waveform. Run glottal source simulation at 4
- // times normal sample rate to minimize quantization noise in
- // period of female voice.
- for (n4 = 0; n4 < 4; n4++) {
- switch (kt_globals.glsource)
- {
- case IMPULSIVE:
- voicing = impulsive_source();
- break;
- case NATURAL:
- voicing = natural_source();
- break;
- case SAMPLED:
- voicing = sampled_source(0);
- break;
- case SAMPLED2:
- voicing = sampled_source(1);
- break;
- }
- // Reset period when counter 'nper' reaches T0
- if (kt_globals.nper >= kt_globals.T0) {
- kt_globals.nper = 0;
- pitch_synch_par_reset(frame);
- }
- // Low-pass filter voicing waveform before downsampling from 4*samrate
- // to samrate samples/sec. Resonator f=.09*samrate, bw=.06*samrate
- voicing = resonator(&(kt_globals.rsn[RLP]), voicing);
- // Increment counter that keeps track of 4*samrate samples per sec
- kt_globals.nper++;
- }
- // Tilt spectrum of voicing source down by soft low-pass filtering, amount
- // of tilt determined by TLTdb
- voicing = (voicing * kt_globals.onemd) + (vlast * kt_globals.decay);
- vlast = voicing;
- // Add breathiness during glottal open phase. Amount of breathiness
- // determined by parameter Aturb Use nrand rather than noise because
- // noise is low-passed.
- if (kt_globals.nper < kt_globals.nopen)
- voicing += kt_globals.amp_breth * kt_globals.nrand;
- // Set amplitude of voicing
- glotout = kt_globals.amp_voice * voicing;
- par_glotout = kt_globals.par_amp_voice * voicing;
- // Compute aspiration amplitude and add to voicing source
- aspiration = kt_globals.amp_aspir * noise;
- glotout += aspiration;
- par_glotout += aspiration;
- // Cascade vocal tract, excited by laryngeal sources.
- // Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
- out = 0;
- if (kt_globals.synthesis_model != ALL_PARALLEL) {
- casc_next_in = antiresonator2(&(kt_globals.rsn[Rnz]), glotout);
- casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in);
- casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in);
- casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in);
- casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in);
- casc_next_in = resonator2(&(kt_globals.rsn[R5c]), casc_next_in);
- casc_next_in = resonator2(&(kt_globals.rsn[R4c]), casc_next_in);
- casc_next_in = resonator2(&(kt_globals.rsn[R3c]), casc_next_in);
- casc_next_in = resonator2(&(kt_globals.rsn[R2c]), casc_next_in);
- out = resonator2(&(kt_globals.rsn[R1c]), casc_next_in);
- }
- // Excite parallel F1 and FNP by voicing waveform
- sourc = par_glotout; // Source is voicing plus aspiration
- // Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
- // outputs added with alternating sign. Sound source for other
- // parallel resonators is frication plus first difference of
- // voicing waveform.
- out += resonator(&(kt_globals.rsn[R1p]), sourc);
- out += resonator(&(kt_globals.rsn[Rnpp]), sourc);
- sourc = frics + par_glotout - glotlast;
- glotlast = par_glotout;
- for (ix = R2p; ix <= R6p; ix++)
- out = resonator(&(kt_globals.rsn[ix]), sourc) - out;
- outbypas = kt_globals.amp_bypas * sourc;
- out = outbypas - out;
- out = resonator(&(kt_globals.rsn[Rout]), out);
- temp = (int)(out * wdata.amplitude * kt_globals.amp_gain0); // Convert back to integer
- // mix with a recorded WAV if required for this phoneme
- signed char c;
- int sample;
- if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
- if (wdata.mix_wave_scale == 0) {
- // a 16 bit sample
- c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1];
- sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256);
- wdata.mix_wavefile_ix += 2;
- } else {
- // a 8 bit sample, scaled
- sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
- }
- int z2 = sample * wdata.amplitude_v / 1024;
- z2 = (z2 * wdata.mix_wave_amp)/40;
- temp += z2;
- }
- // if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis
- if (kt_globals.fadeout > 0) {
- kt_globals.fadeout--;
- temp = (temp * kt_globals.fadeout) / 64;
- }
- value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8);
- if (echo_tail >= N_ECHO_BUF)
- echo_tail = 0;
- if (value < -32768)
- value = -32768;
- if (value > 32767)
- value = 32767;
- *out_ptr++ = value;
- *out_ptr++ = value >> 8;
- echo_buf[echo_head++] = value;
- if (echo_head >= N_ECHO_BUF)
- echo_head = 0;
- sample_count++;
- if (out_ptr >= out_end)
- return 1;
- }
- return 0;
- }
- void KlattReset(int control)
- {
- int r_ix;
- if (control == 2) {
- // Full reset
- kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000;
- kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000;
- kt_globals.minus_pi_t = -M_PI / kt_globals.samrate;
- kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t;
- setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP]));
- }
- if (control > 0) {
- kt_globals.nper = 0;
- kt_globals.T0 = 0;
- kt_globals.nopen = 0;
- kt_globals.nmod = 0;
- for (r_ix = RGL; r_ix < N_RSN; r_ix++) {
- kt_globals.rsn[r_ix].p1 = 0;
- kt_globals.rsn[r_ix].p2 = 0;
- }
- }
- for (r_ix = 0; r_ix <= R6p; r_ix++) {
- kt_globals.rsn[r_ix].p1 = 0;
- kt_globals.rsn[r_ix].p2 = 0;
- }
- }
- /*
- function FRAME_INIT
- Use parameters from the input frame to set up resonator coefficients.
- */
- static void frame_init(klatt_frame_ptr frame)
- {
- double amp_par[7];
- static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 };
- long Gain0_tmp;
- int ix;
- kt_globals.original_f0 = frame->F0hz10 / 10;
- frame->AVdb_tmp = frame->AVdb - 7;
- if (frame->AVdb_tmp < 0)
- frame->AVdb_tmp = 0;
- kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05;
- kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25;
- kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb);
- kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05;
- for (ix = 0; ix <= 6; ix++) {
- // parallel amplitudes F1 to F6, and parallel nasal pole
- amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix];
- }
- Gain0_tmp = frame->Gain0 - 3;
- if (Gain0_tmp <= 0)
- Gain0_tmp = 57;
- kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav;
- // Set coefficients of variable cascade resonators
- for (ix = 1; ix <= 9; ix++) {
- // formants 1 to 8, plus nasal pole
- setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix]));
- if (ix <= 5) {
- setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix]));
- kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0;
- kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0;
- kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0;
- }
- }
- // nasal zero anti-resonator
- setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz]));
- setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz]));
- kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0;
- kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0;
- kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0;
- // Set coefficients of parallel resonators, and amplitude of outputs
- for (ix = 0; ix <= 6; ix++) {
- setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix]));
- kt_globals.rsn[Rparallel+ix].a *= amp_par[ix];
- }
- // output low-pass filter
- setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout]));
- }
- /*
- function IMPULSIVE_SOURCE
- Generate a low pass filtered train of impulses as an approximation of
- a natural excitation waveform. Low-pass filter the differentiated impulse
- with a critically-damped second-order filter, time constant proportional
- to Kopen.
- */
- static double impulsive_source()
- {
- static double doublet[] = { 0.0, 13000000.0, -13000000.0 };
- static double vwave;
- if (kt_globals.nper < 3)
- vwave = doublet[kt_globals.nper];
- else
- vwave = 0.0;
- return resonator(&(kt_globals.rsn[RGL]), vwave);
- }
- /*
- function NATURAL_SOURCE
- Vwave is the differentiated glottal flow waveform, there is a weak
- spectral zero around 800 Hz, magic constants a,b reset pitch synchronously.
- */
- static double natural_source()
- {
- double lgtemp;
- static double vwave;
- if (kt_globals.nper < kt_globals.nopen) {
- kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b;
- vwave += kt_globals.pulse_shape_a;
- lgtemp = vwave * 0.028;
- return lgtemp;
- }
- vwave = 0.0;
- return 0.0;
- }
- /*
- function PITCH_SYNC_PAR_RESET
- Reset selected parameters pitch-synchronously.
- Constant B0 controls shape of glottal pulse as a function
- of desired duration of open phase N0
- (Note that N0 is specified in terms of 40,000 samples/sec of speech)
- Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3
- If the radiation characterivative, a temporal derivative
- is folded in, and we go from continuous time to discrete
- integers n: dV/dt = vwave[n]
- = sum over i=1,2,...,n of { a - (i * b) }
- = a n - b/2 n**2
- where the constants a and b control the detailed shape
- and amplitude of the voicing waveform over the open
- potion of the voicing cycle "nopen".
- Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3
- Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
- meaning as nopen gets bigger, V has bigger peak proportional to n
- Thus, to generate the table below for 40 <= nopen <= 263:
- B0[nopen - 40] = 1920000 / (nopen * nopen)
- */
- static void pitch_synch_par_reset(klatt_frame_ptr frame)
- {
- long temp;
- double temp1;
- static long skew;
- static short B0[224] = {
- 1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
- 634, 612, 590, 570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
- 391, 380, 370, 360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
- 265, 259, 253, 247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
- 192, 188, 184, 180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
- 145, 142, 140, 137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
- 113, 111, 110, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93, 92, 91, 90,
- 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 75, 74, 73, 72, 71,
- 70, 69, 68, 68, 67, 66, 65, 64, 64, 63, 62, 61, 61, 60, 59, 59, 58, 57,
- 57, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48,
- 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
- 39, 39, 38, 38, 38, 38, 37, 37, 36, 36, 36, 36, 35, 35, 35, 35, 34, 34, 33,
- 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29,
- 28, 28, 28, 28, 27, 27
- };
- if (frame->F0hz10 > 0) {
- // T0 is 4* the number of samples in one pitch period
- kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10;
- kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp);
- // Duration of period before amplitude modulation
- kt_globals.nmod = kt_globals.T0;
- if (frame->AVdb_tmp > 0)
- kt_globals.nmod >>= 1;
- // Breathiness of voicing waveform
- kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1;
- // Set open phase of glottal period where 40 <= open phase <= 263
- kt_globals.nopen = 4 * frame->Kopen;
- if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263))
- kt_globals.nopen = 263;
- if (kt_globals.nopen >= (kt_globals.T0-1))
- kt_globals.nopen = kt_globals.T0 - 2;
- if (kt_globals.nopen < 40) {
- // F0 max = 1000 Hz
- kt_globals.nopen = 40;
- }
- // Reset a & b, which determine shape of "natural" glottal waveform
- kt_globals.pulse_shape_b = B0[kt_globals.nopen-40];
- kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333;
- // Reset width of "impulsive" glottal pulse
- temp = kt_globals.samrate / kt_globals.nopen;
- setabc((long)0, temp, &(kt_globals.rsn[RGL]));
- // Make gain at F1 about constant
- temp1 = kt_globals.nopen *.00833;
- kt_globals.rsn[RGL].a *= temp1 * temp1;
- // Truncate skewness so as not to exceed duration of closed phase
- // of glottal period.
- temp = kt_globals.T0 - kt_globals.nopen;
- if (frame->Kskew > temp)
- frame->Kskew = temp;
- if (skew >= 0)
- skew = frame->Kskew;
- else
- skew = -frame->Kskew;
- // Add skewness to closed portion of voicing period
- kt_globals.T0 = kt_globals.T0 + skew;
- skew = -skew;
- } else {
- kt_globals.T0 = 4; // Default for f0 undefined
- kt_globals.amp_voice = 0.0;
- kt_globals.nmod = kt_globals.T0;
- kt_globals.amp_breth = 0.0;
- kt_globals.pulse_shape_a = 0.0;
- kt_globals.pulse_shape_b = 0.0;
- }
- // Reset these pars pitch synchronously or at update rate if f0=0
- if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) {
- // Set one-pole low-pass filter that tilts glottal source
- kt_globals.decay = (0.033 * frame->TLTdb);
- if (kt_globals.decay > 0.0)
- kt_globals.onemd = 1.0 - kt_globals.decay;
- else
- kt_globals.onemd = 1.0;
- }
- }
- /*
- function SETABC
- Convert formant freqencies and bandwidth into resonator difference
- equation constants.
- */
- static void setabc(long int f, long int bw, resonator_ptr rp)
- {
- double r;
- double arg;
- // Let r = exp(-pi bw t)
- arg = kt_globals.minus_pi_t * bw;
- r = exp(arg);
- // Let c = -r**2
- rp->c = -(r * r);
- // Let b = r * 2*cos(2 pi f t)
- arg = kt_globals.two_pi_t * f;
- rp->b = r * cos(arg) * 2.0;
- // Let a = 1.0 - b - c
- rp->a = 1.0 - rp->b - rp->c;
- }
- /*
- function SETZEROABC
- Convert formant freqencies and bandwidth into anti-resonator difference
- equation constants.
- */
- static void setzeroabc(long int f, long int bw, resonator_ptr rp)
- {
- double r;
- double arg;
- f = -f;
- // First compute ordinary resonator coefficients
- // Let r = exp(-pi bw t)
- arg = kt_globals.minus_pi_t * bw;
- r = exp(arg);
- // Let c = -r**2
- rp->c = -(r * r);
- // Let b = r * 2*cos(2 pi f t)
- arg = kt_globals.two_pi_t * f;
- rp->b = r * cos(arg) * 2.;
- // Let a = 1.0 - b - c
- rp->a = 1.0 - rp->b - rp->c;
- // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
- // If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to
- // INF, causing an audible sound spike when triggered (e.g. apiration with the
- // nasal register set to f=0, bw=0).
- if (rp->a != 0) {
- // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
- rp->a = 1.0 / rp->a;
- rp->c *= -rp->a;
- rp->b *= -rp->a;
- }
- }
- /*
- function GEN_NOISE
- Random number generator (return a number between -8191 and +8191)
- Noise spectrum is tilted down by soft low-pass filter having a pole near
- the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
- */
- static double gen_noise(double noise)
- {
- static double nlast = 0.0;
- long temp = (long)getrandom(-8191, 8191);
- kt_globals.nrand = (long)temp;
- noise = kt_globals.nrand + (0.75 * nlast);
- nlast = noise;
- return noise;
- }
- /*
- function DBTOLIN
- Convert from decibels to a linear scale factor
- Conversion table, db to linear, 87 dB --> 32767
- 86 dB --> 29491 (1 dB down = 0.5**1/6)
- ...
- 81 dB --> 16384 (6 dB down = 0.5)
- ...
- 0 dB --> 0
- The just noticeable difference for a change in intensity of a vowel
- is approximately 1 dB. Thus all amplitudes are quantized to 1 dB
- steps.
- */
- static double DBtoLIN(long dB)
- {
- static short amptable[88] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7,
- 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 32,
- 35, 40, 45, 51, 57, 64, 71, 80, 90, 101, 114, 128,
- 142, 159, 179, 202, 227, 256, 284, 318, 359, 405,
- 455, 512, 568, 638, 719, 881, 911, 1024, 1137, 1276,
- 1438, 1622, 1823, 2048, 2273, 2552, 2875, 3244, 3645,
- 4096, 4547, 5104, 5751, 6488, 7291, 8192, 9093, 10207,
- 11502, 12976, 14582, 16384, 18350, 20644, 23429,
- 26214, 29491, 32767
- };
- if ((dB < 0) || (dB > 87))
- return 0;
- return (double)(amptable[dB]) * 0.001;
- }
- extern voice_t *wvoice;
- static klatt_peaks_t peaks[N_PEAKS];
- static int end_wave;
- static int klattp[N_KLATTP];
- static double klattp1[N_KLATTP];
- static double klattp_inc[N_KLATTP];
- static int Wavegen_Klatt(int resume)
- {
- int pk;
- int x;
- int ix;
- int fade;
- if (resume == 0)
- sample_count = 0;
- while (sample_count < nsamples) {
- kt_frame.F0hz10 = (wdata.pitch * 10) / 4096;
- // formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit()
- // but F6 is used for parallel resonator
- // F0 is used for the nasal zero
- for (ix = 0; ix < 6; ix++) {
- kt_frame.Fhz[ix] = peaks[ix].freq;
- if (ix < 4)
- kt_frame.Bhz[ix] = peaks[ix].bw;
- }
- for (ix = 1; ix < 7; ix++)
- kt_frame.Ap[ix] = peaks[ix].ap;
- kt_frame.AVdb = klattp[KLATT_AV];
- kt_frame.AVpdb = klattp[KLATT_AVp];
- kt_frame.AF = klattp[KLATT_Fric];
- kt_frame.AB = klattp[KLATT_FricBP];
- kt_frame.ASP = klattp[KLATT_Aspr];
- kt_frame.Aturb = klattp[KLATT_Turb];
- kt_frame.Kskew = klattp[KLATT_Skew];
- kt_frame.TLTdb = klattp[KLATT_Tilt];
- kt_frame.Kopen = klattp[KLATT_Kopen];
- // advance formants
- for (pk = 0; pk < N_PEAKS; pk++) {
- peaks[pk].freq1 += peaks[pk].freq_inc;
- peaks[pk].freq = (int)peaks[pk].freq1;
- peaks[pk].bw1 += peaks[pk].bw_inc;
- peaks[pk].bw = (int)peaks[pk].bw1;
- peaks[pk].bp1 += peaks[pk].bp_inc;
- peaks[pk].bp = (int)peaks[pk].bp1;
- peaks[pk].ap1 += peaks[pk].ap_inc;
- peaks[pk].ap = (int)peaks[pk].ap1;
- }
- // advance other parameters
- for (ix = 0; ix < N_KLATTP; ix++) {
- klattp1[ix] += klattp_inc[ix];
- klattp[ix] = (int)klattp1[ix];
- }
- for (ix = 0; ix <= 6; ix++) {
- kt_frame.Fhz_next[ix] = peaks[ix].freq;
- if (ix < 4)
- kt_frame.Bhz_next[ix] = peaks[ix].bw;
- }
- // advance the pitch
- wdata.pitch_ix += wdata.pitch_inc;
- if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
- x = wdata.pitch_env[ix] * wdata.pitch_range;
- wdata.pitch = (x>>8) + wdata.pitch_base;
- kt_globals.nspfr = (nsamples - sample_count);
- if (kt_globals.nspfr > STEPSIZE)
- kt_globals.nspfr = STEPSIZE;
- frame_init(&kt_frame); // get parameters for next frame of speech
- if (parwave(&kt_frame) == 1)
- return 1; // output buffer is full
- }
- if (end_wave > 0) {
- fade = 64; // not followed by formant synthesis
- // fade out to avoid a click
- kt_globals.fadeout = fade;
- end_wave = 0;
- sample_count -= fade;
- kt_globals.nspfr = fade;
- if (parwave(&kt_frame) == 1)
- return 1; // output buffer is full
- }
- return 0;
- }
- static void SetSynth_Klatt(int length, frame_t *fr1, frame_t *fr2, voice_t *v, int control)
- {
- int ix;
- DOUBLEX next;
- int qix;
- int cmd;
- frame_t *fr3;
- static frame_t prev_fr;
- if (wvoice != NULL) {
- if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 4 )) {
- kt_globals.glsource = wvoice->klattv[0];
- kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
- }
- kt_globals.f0_flutter = wvoice->flutter/32;
- }
- end_wave = 0;
- if (control & 2)
- end_wave = 1; // fadeout at the end
- if (control & 1) {
- end_wave = 1;
- for (qix = wcmdq_head+1;; qix++) {
- if (qix >= N_WCMDQ) qix = 0;
- if (qix == wcmdq_tail) break;
- cmd = wcmdq[qix][0];
- if (cmd == WCMD_KLATT) {
- end_wave = 0; // next wave generation is from another spectrum
- fr3 = (frame_t *)wcmdq[qix][2];
- for (ix = 1; ix < 6; ix++) {
- if (fr3->ffreq[ix] != fr2->ffreq[ix]) {
- // there is a discontinuity in formants
- end_wave = 2;
- break;
- }
- }
- break;
- }
- if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
- break; // next is not from spectrum, so continue until end of wave cycle
- }
- }
- if (control & 1) {
- for (ix = 1; ix < 6; ix++) {
- if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) {
- // Discontinuity in formants.
- // end_wave was set in SetSynth_Klatt() to fade out the previous frame
- KlattReset(0);
- break;
- }
- }
- memcpy(&prev_fr, fr2, sizeof(prev_fr));
- }
- for (ix = 0; ix < N_KLATTP; ix++) {
- if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) {
- klattp1[ix] = klattp[ix] = 0;
- klattp_inc[ix] = 0;
- } else {
- klattp1[ix] = klattp[ix] = fr1->klattp[ix];
- klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length;
- }
- }
- nsamples = length;
- for (ix = 1; ix < 6; ix++) {
- peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
- peaks[ix].freq = (int)peaks[ix].freq1;
- next = (fr2->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
- peaks[ix].freq_inc = ((next - peaks[ix].freq1) * STEPSIZE) / length;
- if (ix < 4) {
- // klatt bandwidth for f1, f2, f3 (others are fixed)
- peaks[ix].bw1 = fr1->bw[ix] * 2;
- peaks[ix].bw = (int)peaks[ix].bw1;
- next = fr2->bw[ix] * 2;
- peaks[ix].bw_inc = ((next - peaks[ix].bw1) * STEPSIZE) / length;
- }
- }
- // nasal zero frequency
- peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2;
- if (peaks[0].freq1 == 0)
- peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole
- peaks[0].freq = (int)peaks[0].freq1;
- next = fr2->klattp[KLATT_FNZ] * 2;
- if (next == 0)
- next = kt_frame.Fhz[F_NP];
- peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length;
- peaks[0].bw1 = 89;
- peaks[0].bw = 89;
- peaks[0].bw_inc = 0;
- if (fr1->frflags & FRFLAG_KLATT) {
- // the frame contains additional parameters for parallel resonators
- for (ix = 1; ix < 7; ix++) {
- peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth
- peaks[ix].bp = (int)peaks[ix].bp1;
- next = fr2->klatt_bp[ix] * 4;
- peaks[ix].bp_inc = ((next - peaks[ix].bp1) * STEPSIZE) / length;
- peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude
- peaks[ix].ap = (int)peaks[ix].ap1;
- next = fr2->klatt_ap[ix];
- peaks[ix].ap_inc = ((next - peaks[ix].ap1) * STEPSIZE) / length;
- }
- }
- }
- int Wavegen_Klatt2(int length, int resume, frame_t *fr1, frame_t *fr2)
- {
- if (resume == 0)
- SetSynth_Klatt(length, fr1, fr2, wvoice, 1);
- return Wavegen_Klatt(resume);
- }
- void KlattInit()
- {
- static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 };
- static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 };
- static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 };
- static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 };
- int ix;
- sample_count = 0;
- kt_globals.synthesis_model = CASCADE_PARALLEL;
- kt_globals.samrate = 22050;
- kt_globals.glsource = IMPULSIVE;
- kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
- kt_globals.natural_samples = natural_samples;
- kt_globals.num_samples = NUMBER_OF_SAMPLES;
- kt_globals.sample_factor = 3.0;
- kt_globals.nspfr = (kt_globals.samrate * 10) / 1000;
- kt_globals.outsl = 0;
- kt_globals.f0_flutter = 20;
- KlattReset(2);
- // set default values for frame parameters
- for (ix = 0; ix <= 9; ix++) {
- kt_frame.Fhz[ix] = formant_hz[ix];
- kt_frame.Bhz[ix] = bandwidth[ix];
- kt_frame.Ap[ix] = parallel_amp[ix];
- kt_frame.Bphz[ix] = parallel_bw[ix];
- }
- kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ];
- kt_frame.F0hz10 = 1000;
- kt_frame.AVdb = 59;
- kt_frame.ASP = 0;
- kt_frame.Kopen = 40;
- kt_frame.Aturb = 0;
- kt_frame.TLTdb = 0;
- kt_frame.AF = 50;
- kt_frame.Kskew = 0;
- kt_frame.AB = 0;
- kt_frame.AVpdb = 0;
- kt_frame.Gain0 = 62;
- }
|