123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463 |
- /* Eigen.cpp
- *
- * Copyright (C) 1993-2018 David Weenink
- *
- * This code is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This code is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this work. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- djmw 20010719
- djmw 20020402 GPL header.
- djmw 20030701 Modified sorting in Eigen_initFromSquareRootPair.
- djmw 20030703 Added Eigens_alignEigenvectors.
- djmw 20030708 Corrected syntax error in Eigens_alignEigenvectors.
- djmw 20030812 Corrected memory bug in Eigen_initFromSymmetricMatrix.
- djmw 20030825 Removed praat_USE_LAPACK external variable.
- djmw 20031101 Documentation
- djmw 20031107 Moved NUMdmatrix_transpose to NUM2.c
- djmw 20031210 Added rowLabels to Eigen_drawEigenvector and Eigen_Strings_drawEigenvector
- djmw 20030322 Extra test in Eigen_initFromSquareRootPair.
- djmw 20040329 Added fractionOfTotal and cumulative parameters in Eigen_drawEigenvalues_scree.
- djmw 20040622 Less horizontal labels in Eigen_drawEigenvector.
- djmw 20050706 Shortened horizontal offsets in Eigen_drawEigenvalues from 1 to 0.5
- djmw 20051204 Eigen_initFromSquareRoot adapted for nrows < ncols
- djmw 20071012 Added: oo_CAN_WRITE_AS_ENCODING.h
- djmw 20110304 Thing_new
- */
- #include "Eigen.h"
- #include "MAT_numerics.h"
- #include "NUMmachar.h"
- #include "NUMclapack.h"
- #include "NUM2.h"
- #include "SVD.h"
- #include "oo_DESTROY.h"
- #include "Eigen_def.h"
- #include "oo_COPY.h"
- #include "Eigen_def.h"
- #include "oo_EQUAL.h"
- #include "Eigen_def.h"
- #include "oo_CAN_WRITE_AS_ENCODING.h"
- #include "Eigen_def.h"
- #include "oo_WRITE_TEXT.h"
- #include "Eigen_def.h"
- #include "oo_READ_TEXT.h"
- #include "Eigen_def.h"
- #include "oo_WRITE_BINARY.h"
- #include "Eigen_def.h"
- #include "oo_READ_BINARY.h"
- #include "Eigen_def.h"
- #include "oo_DESCRIPTION.h"
- #include "Eigen_def.h"
- Thing_implement (Eigen, Daata, 0);
- static void Graphics_ticks (Graphics g, double min, double max, bool hasNumber, bool hasTick, bool hasDottedLine, bool integers) {
- double range = max - min, scale = 1.0, tick = min, dtick = 1.0;
- if (range == 0.0) {
- return;
- } else if (range > 1.0) {
- while (range / scale > 10.0) {
- scale *= 10.0;
- }
- range /= scale;
- } else {
- while (range / scale < 10.0) {
- scale /= 10.0;
- }
- range *= scale;
- }
- if (range < 3.0) {
- dtick = 0.5;
- }
- dtick *= scale;
- tick = dtick * Melder_roundDown (min / dtick);
- if (tick < min) {
- tick += dtick;
- }
- while (tick <= max) {
- double num = integers ? round (tick) : tick;
- Graphics_markBottom (g, num, hasNumber, hasTick, hasDottedLine, nullptr);
- tick += dtick;
- }
- }
- void Eigen_init (Eigen me, integer numberOfEigenvalues, integer dimension) {
- my numberOfEigenvalues = numberOfEigenvalues;
- my dimension = dimension;
- my eigenvalues = VECzero (numberOfEigenvalues);
- my eigenvectors = MATzero (numberOfEigenvalues, dimension);
- }
- /*
- Solve: (A'A - lambda)x = 0 for eigenvalues lambda and eigenvectors x.
- svd(A) = UDV' => A'A = (UDV')'(UDV') = VD^2V'
- (VD^2V'-lambda)x = 0 => (D^2 - lambda)V'x = 0 => solution V'x = I => x = V
- Eigenvectors: the columns of the matrix V
- Eigenvalues: D_i^2
- */
- void Eigen_initFromSquareRoot (Eigen me, constMAT a) {
- Melder_assert (a.nrow >= 1);
- integer numberOfZeroed, numberOfEigenvalues;
- integer nsv = std::min (a.nrow, a.ncol);
- my dimension = a.ncol;
- autoSVD svd = SVD_createFromGeneralMatrix (a);
- /*
- Make sv's that are too small zero. These values occur automatically
- when the rank of A'A < a.ncol. This could occur when for
- example numberOfRows <= a.ncol.
- (n points in an n-dimensional space define maximally an n-1
- dimensional surface for which we maximally need an n-1 dimensional
- basis.)
- */
- numberOfZeroed = SVD_zeroSmallSingularValues (svd.get(), 0.0);
- numberOfEigenvalues = nsv - numberOfZeroed;
- Eigen_init (me, numberOfEigenvalues, a.ncol);
- integer k = 0;
- for (integer i = 1; i <= nsv; i ++) {
- double t = svd -> d [i];
- if (t > 0.0) {
- my eigenvalues [++ k] = t * t;
- for (integer j = 1; j <= a.ncol; j ++) {
- my eigenvectors [k] [j] = svd -> v [j] [i];
- }
- }
- }
- Eigen_sort (me);
- }
- void Eigen_initFromSquareRootPair (Eigen me, constMAT a, constMAT b) {
- //Melder_assert (a.nrow >= a.ncol && b.nrow >= b.ncol); // pggb: this cannot be an assert, and seems too strict anyway
- Melder_require (a.ncol == b.ncol,
- U"The numbers of columns should be equal, not ", a.ncol, U" and ", b.ncol, U".");
- // Eigen has not been inited yet.
- double *u = nullptr, *v = nullptr, maxsv2 = -10.0;
- char jobu = 'N', jobv = 'N', jobq = 'Q';
- integer k, ll, m = a.nrow, n = a.ncol, p = b.nrow;
- integer lda = m, ldb = p, ldu = lda, ldv = ldb, ldq = n;
- integer lwork = std::max (std::max (3 * n, m), p) + n, info;
- /* Melder_assert (numberOfRows >= numberOfColumns || numberOfRows_b >= numberOfColumns);*/
- my dimension = a.ncol;
- autoVEC alpha = VECraw (n);
- autoVEC beta = VECraw (n);
- autoVEC work = VECraw (lwork);
- autoINTVEC iwork = INTVECzero (n);
- autoMAT q = MATraw (n, n);
- autoMAT ac = MATtranspose (a);
- autoMAT bc = MATtranspose (b);
- (void) NUMlapack_dggsvd (& jobu, & jobv, & jobq, & m, & n, & p, & k, & ll,
- & ac [1][1], & lda, & bc [1][1], & ldb, alpha.begin(), beta.begin(), u, & ldu,
- v, & ldv, & q [1][1], & ldq, work.begin(), iwork.begin(), & info);
- Melder_require (info == 0, U"dggsvd fails with code ", info, U".");
- // Calculate the eigenvalues (alpha[i]/beta[i])^2 and store in alpha[i].
- maxsv2 = -1.0;
- for (integer i = k + 1; i <= k + ll; i ++) {
- double t = alpha [i] / beta [i];
- alpha [i] = t * t;
- if (alpha [i] > maxsv2) {
- maxsv2 = alpha [i];
- }
- }
- // Deselect the eigenvalues < eps * max_eigenvalue by making them -1.0
- integer numberOfDeselected = 0;
- for (integer i = k + 1; i <= k + ll; i ++) {
- if (alpha [i] < NUMfpp -> eps * maxsv2) {
- numberOfDeselected ++;
- alpha [i] = -1.0;
- }
- }
- Melder_require (ll - numberOfDeselected > 0, U"No eigenvectors can be found. Matrix too singular.");
- Eigen_init (me, ll - numberOfDeselected, a.ncol);
- integer numberOfEigenvalues = 0;
- for (integer i = k + 1; i <= k + ll; i ++) {
- if (alpha [i] == -1.0) continue;
- my eigenvalues [++ numberOfEigenvalues] = alpha [i];
- for (integer j = 1; j <= a.ncol; j ++)
- my eigenvectors [numberOfEigenvalues] [j] = q [i] [j];
- }
- Eigen_sort (me);
- MATnormalizeRows_inplace (my eigenvectors.get(), 2.0, 1.0);
- }
- void Eigen_initFromSymmetricMatrix (Eigen me, constMAT a) {
- Melder_assert (a.ncol == a.nrow);
- if (! my eigenvectors.at) {
- Eigen_init (me, a.ncol, a.ncol);
- }
- MATtranspose_preallocated (my eigenvectors.get(), a);
- MAT_getEigenSystemFromSymmetricMatrix_inplace (my eigenvectors.get(), true, my eigenvalues.get(), false);
- }
- autoEigen Eigen_create (integer numberOfEigenvalues, integer dimension) {
- try {
- autoEigen me = Thing_new (Eigen);
- Eigen_init (me.get(), numberOfEigenvalues, dimension);
- return me;
- } catch (MelderError) {
- Melder_throw (U"Eigen not created.");
- }
- }
- integer Eigen_getNumberOfEigenvectors (Eigen me) {
- return my numberOfEigenvalues;
- }
- double Eigen_getEigenvectorElement (Eigen me, integer ivec, integer element) {
- if (ivec > my numberOfEigenvalues || element < 1 || element > my dimension) {
- return undefined;
- }
- return my eigenvectors[ivec][element];
- }
- integer Eigen_getDimensionOfComponents (Eigen me) {
- return my dimension;
- }
- double Eigen_getSumOfEigenvalues (Eigen me, integer from, integer to) {
- if (from < 1) from = 1;
- if (to < 1) to = my numberOfEigenvalues;
- if (to > my numberOfEigenvalues || from > to)
- return undefined;
- return NUMsum (my eigenvalues.subview (from, to));
- }
- double Eigen_getCumulativeContributionOfComponents (Eigen me, integer from, integer to) {
- longdouble partial = 0.0, sum = 0.0;
- if (to == 0) {
- to = my numberOfEigenvalues;
- }
- if (from > 0 && to <= my numberOfEigenvalues && from <= to) {
- for (integer i = 1; i <= my numberOfEigenvalues; i ++) {
- sum += my eigenvalues [i];
- if (i >= from && i <= to) {
- partial += my eigenvalues [i];
- }
- }
- }
- return sum > 0.0 ? partial / sum : 0.0;
- }
- integer Eigen_getDimensionOfFraction (Eigen me, double fraction) {
- double sum = Eigen_getSumOfEigenvalues (me, 0, 0);
- if (sum == 0.0) {
- return 1;
- }
- integer n = 1;
- longdouble p = my eigenvalues [1];
- while (p / sum < fraction && n < my numberOfEigenvalues) {
- p += my eigenvalues [++ n];
- }
- return n;
- }
- void Eigen_sort (Eigen me) {
- double *e = my eigenvalues.at, **v = my eigenvectors.at;
- for (integer i = 1; i < my numberOfEigenvalues; i ++) {
- integer k;
- double emax = e [k = i];
- for (integer j = i + 1; j <= my numberOfEigenvalues; j ++) {
- if (e [j] > emax) {
- emax = e [k = j];
- }
- }
- if (k != i) {
- // Swap eigenvalues and eigenvectors
- std::swap (e [i], e [k]);
- for (integer j = 1; j <= my dimension; j ++)
- std::swap (v [i] [j], v [k] [j]);
- }
- }
- }
- void Eigen_invertEigenvector (Eigen me, integer ivec) {
- if (ivec < 1 || ivec > my numberOfEigenvalues) {
- return;
- }
- for (integer j = 1; j <= my dimension; j ++) {
- my eigenvectors [ivec] [j] = - my eigenvectors [ivec] [j];
- }
- }
- void Eigen_drawEigenvalues (Eigen me, Graphics g, integer first, integer last, double ymin, double ymax, bool fractionOfTotal, bool cumulative, double size_mm, conststring32 mark, bool garnish) {
- double xmin = first, xmax = last, scale = 1.0, sumOfEigenvalues = 0.0;
- if (first < 1) first = 1;
- if (last < 1 || last > my numberOfEigenvalues) last = my numberOfEigenvalues;
- if (last <= first) {
- first = 1;
- last = my numberOfEigenvalues;
- }
- xmin = first - 0.5; xmax = last + 0.5;
- if (fractionOfTotal || cumulative) {
- sumOfEigenvalues = Eigen_getSumOfEigenvalues (me, 0, 0);
- if (sumOfEigenvalues <= 0.0)
- sumOfEigenvalues = 1.0;
- scale = sumOfEigenvalues;
- }
- if (ymax <= ymin) {
- ymax = Eigen_getSumOfEigenvalues (me, ( cumulative ? 1 : first ), first) / scale;
- ymin = Eigen_getSumOfEigenvalues (me, ( cumulative ? 1 : last ), last) / scale;
- if (ymin > ymax) {
- double tmp = ymin;
- ymin = ymax; ymax = tmp;
- }
- if (ymin == ymax) { // only one eigenvalue
- ymin -= 0.1 * ymin;
- ymax += 0.1 * ymax;
- }
- }
- Graphics_setInner (g);
- Graphics_setWindow (g, xmin, xmax, ymin, ymax);
- for (integer i = first; i <= last; i ++) {
- double accu = Eigen_getSumOfEigenvalues (me, (cumulative ? 1 : i), i);
- Graphics_mark (g, i, accu / scale, size_mm, mark);
- }
- Graphics_unsetInner (g);
- if (garnish) {
- Graphics_drawInnerBox (g);
- Graphics_textLeft (g, true, (fractionOfTotal ? (cumulative ? U"Cumulative fractional eigenvalue" : U"Fractional eigenvalue" ) :
- ( cumulative ? U"Cumulative eigenvalue" : U"Eigenvalue" ) ));
- Graphics_ticks (g, first, last, true, true, false, true);
- Graphics_marksLeft (g, 2, true, true, false);
- Graphics_textBottom (g, true, U"Index");
- }
- }
- void Eigen_drawEigenvector (Eigen me, Graphics g, integer ivec, integer first, integer last,
- double ymin, double ymax, bool weigh, double size_mm, conststring32 mark, bool connect, char32 **rowLabels, bool garnish)
- {
- double xmin = first, xmax = last;
- if (ivec < 1 || ivec > my numberOfEigenvalues) return;
- if (last <= first) {
- first = 1;
- last = my dimension;
- xmin = 0.5;
- xmax = last + 0.5;
- }
- double *vec = my eigenvectors [ivec];
- double w = weigh ? sqrt (my eigenvalues [ivec]) : 1.0;
- // If ymax < ymin the eigenvector will automatically be drawn inverted.
- if (ymax == ymin) {
- NUMvector_extrema (vec, first, last, & ymin, & ymax);
- ymax *= w; ymin *= w;
- }
- Graphics_setInner (g);
- Graphics_setWindow (g, xmin, xmax, ymin, ymax);
- for (integer i = first; i <= last; i ++) {
- Graphics_mark (g, i, w * vec [i], size_mm, mark);
- if (connect && i > first)
- Graphics_line (g, i - 1.0, w * vec [i - 1], i, w * vec [i]);
- }
- Graphics_unsetInner (g);
- if (garnish) {
- Graphics_markBottom (g, first, false, true, false, rowLabels ? rowLabels [first] : Melder_integer (first));
- Graphics_markBottom (g, last, false, true, false, rowLabels ? rowLabels [last] : Melder_integer (last));
- Graphics_drawInnerBox (g);
- if (ymin * ymax < 0.0)
- Graphics_markLeft (g, 0.0, true, true, true, nullptr);
- Graphics_marksLeft (g, 2, true, true, false);
- if (! rowLabels)
- Graphics_textBottom (g, true, U"Element number");
- }
- }
- void Eigens_alignEigenvectors (OrderedOf<structEigen>* me) {
- if (my size < 2) return;
- Eigen e1 = my at [1];
- integer nev1 = e1 -> numberOfEigenvalues;
- integer dimension = e1 -> dimension;
- for (integer i = 2; i <= my size; i ++)
- Melder_require (my at [i] -> dimension == dimension,
- U"The dimension of the eigenvectors should be equal (offending object is ", i, U").");
- /*
- Correlate eigenvectors.
- If r < 0 then mirror the eigenvector.
- */
- for (integer i = 2; i <= my size; i ++) {
- Eigen e2 = my at [i];
- for (integer j = 1; j <= std::min (nev1, e2 -> numberOfEigenvalues); j ++) {
- double ip = NUMinner (e1 -> eigenvectors.row(j), e2 -> eigenvectors.row(j));
- if (ip < 0.0)
- for (integer k = 1; k <= dimension; k ++)
- e2 -> eigenvectors [j] [k] = - e2 -> eigenvectors [j] [k];
- }
- }
- }
- static autoVEC Eigens_getAnglesBetweenSubspaces (Eigen me, Eigen thee, integer ivec_from, integer ivec_to) {
- integer nvectors = ivec_to - ivec_from + 1;
- integer nmin = my numberOfEigenvalues < thy numberOfEigenvalues ? my numberOfEigenvalues : thy numberOfEigenvalues;
- Melder_require (my dimension == thy dimension, U"The eigenvectors should have equal dimensions.");
- Melder_require (ivec_from > 0 && ivec_from <= ivec_to && ivec_to <= nmin, U"Eigenvector range too large.");
- /*
- Algorithm 12.4.3 Golub & van Loan
- Because we deal with eigenvectors we don't have to do the QR decomposition,
- the columns in the Q's are the eigenvectors.
- Compute C.
- */
- autoVEC angles_degrees = VECraw (nvectors);
- autoMAT c = MATmul_nt (my eigenvectors.horizontalBand (ivec_from, ivec_to), thy eigenvectors.horizontalBand (ivec_from, ivec_to));
- autoSVD svd = SVD_createFromGeneralMatrix (c.get());
- for (integer i = 1; i <= nvectors; i ++) {
- angles_degrees [i] = acos (svd -> d [i]) * 180.0 / NUMpi;
- }
- return angles_degrees;
- }
- double Eigens_getAngleBetweenEigenplanes_degrees (Eigen me, Eigen thee) {
- autoVEC angles_degrees = Eigens_getAnglesBetweenSubspaces (me, thee, 1, 2);
- return angles_degrees [2];
- }
- /* End of file Eigen.cpp */
|