123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- /* Regression.cpp
- *
- * Copyright (C) 2005-2011,2014,2015,2016,2017 Paul Boersma
- *
- * This code is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This code is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this work. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "Regression.h"
- #include "NUM2.h"
- #include "oo_DESTROY.h"
- #include "Regression_def.h"
- #include "oo_COPY.h"
- #include "Regression_def.h"
- #include "oo_EQUAL.h"
- #include "Regression_def.h"
- #include "oo_CAN_WRITE_AS_ENCODING.h"
- #include "Regression_def.h"
- #include "oo_WRITE_TEXT.h"
- #include "Regression_def.h"
- #include "oo_WRITE_BINARY.h"
- #include "Regression_def.h"
- #include "oo_READ_TEXT.h"
- #include "Regression_def.h"
- #include "oo_READ_BINARY.h"
- #include "Regression_def.h"
- #include "oo_DESCRIPTION.h"
- #include "Regression_def.h"
- Thing_implement (RegressionParameter, Daata, 0);
- void structRegression :: v_info () {
- Regression_Parent :: v_info ();
- MelderInfo_writeLine (U"Factors:");
- MelderInfo_writeLine (U" Number of factors: ", our parameters.size);
- for (integer ivar = 1; ivar <= our parameters.size; ivar ++) {
- RegressionParameter parm = our parameters.at [ivar];
- MelderInfo_writeLine (U" Factor ", ivar, U": ", parm -> label.get());
- }
- MelderInfo_writeLine (U"Fitted coefficients:");
- MelderInfo_writeLine (U" Intercept: ", intercept);
- for (integer ivar = 1; ivar <= our parameters.size; ivar ++) {
- RegressionParameter parm = our parameters.at [ivar];
- MelderInfo_writeLine (U" Coefficient of factor ", parm -> label.get(), U": ", parm -> value);
- }
- MelderInfo_writeLine (U"Ranges of values:");
- for (integer ivar = 1; ivar <= our parameters.size; ivar ++) {
- RegressionParameter parm = our parameters.at [ivar];
- MelderInfo_writeLine (U" Range of factor ", parm -> label.get(), U": minimum ",
- parm -> minimum, U", maximum ", parm -> maximum);
- }
- }
- Thing_implement (Regression, Daata, 0);
- void Regression_init (Regression me) {
- //my parameters = Ordered_create ();
- }
- void Regression_addParameter (Regression me, conststring32 label, double minimum, double maximum, double value) {
- try {
- autoRegressionParameter thee = Thing_new (RegressionParameter);
- thy label = Melder_dup (label);
- thy minimum = minimum;
- thy maximum = maximum;
- thy value = value;
- my parameters.addItem_move (thee.move());
- } catch (MelderError) {
- Melder_throw (me, U": parameter not added.");
- }
- }
- integer Regression_getFactorIndexFromFactorName_e (Regression me, conststring32 factorName) {
- for (integer iparm = 1; iparm <= my parameters.size; iparm ++) {
- RegressionParameter parm = my parameters.at [iparm];
- if (Melder_equ (factorName, parm -> label.get())) return iparm;
- }
- Melder_throw (me, U" has no parameter named \"", factorName, U"\".");
- }
- Thing_implement (LinearRegression, Regression, 0);
- autoLinearRegression LinearRegression_create () {
- try {
- autoLinearRegression me = Thing_new (LinearRegression);
- Regression_init (me.get());
- return me;
- } catch (MelderError) {
- Melder_throw (U"LinearRegression not created.");
- }
- }
- autoLinearRegression Table_to_LinearRegression (Table me) {
- try {
- integer numberOfIndependentVariables = my numberOfColumns - 1, numberOfParameters = my numberOfColumns;
- if (numberOfParameters < 1) // includes intercept
- Melder_throw (U"Not enough columns (has to be more than 1).");
- integer numberOfCells = my rows.size;
- if (numberOfCells == 0)
- Melder_throw (U"Not enough rows (0).");
- if (numberOfCells < numberOfParameters) {
- Melder_warning (U"Solution is not unique (more parameters than cases).");
- }
- autoMAT u = MATraw (numberOfCells, numberOfParameters);
- autoVEC b = VECraw (numberOfCells);
- autoLinearRegression thee = LinearRegression_create ();
- for (integer ivar = 1; ivar <= numberOfIndependentVariables; ivar ++) {
- double minimum = Table_getMinimum (me, ivar);
- double maximum = Table_getMaximum (me, ivar);
- Regression_addParameter (thee.get(), my columnHeaders [ivar]. label.get(), minimum, maximum, 0.0);
- }
- for (integer icell = 1; icell <= numberOfCells; icell ++) {
- for (integer ivar = 1; ivar < numberOfParameters; ivar ++) {
- u [icell] [ivar] = Table_getNumericValue_Assert (me, icell, ivar);
- }
- u [icell] [numberOfParameters] = 1.0; // for the intercept
- b [icell] = Table_getNumericValue_Assert (me, icell, my numberOfColumns); // the dependent variable
- }
- autoVEC x = NUMsolveEquation (u.get(), b.get(), NUMeps * numberOfCells);
- thy intercept = x [numberOfParameters];
- for (integer ivar = 1; ivar <= numberOfIndependentVariables; ivar ++) {
- RegressionParameter parm = thy parameters.at [ivar];
- parm -> value = x [ivar];
- }
- return thee;
- } catch (MelderError) {
- Melder_throw (me, U": linear regression not performed.");
- }
- }
- /* End of file Regression.cpp */
|