gsl_multimin__vector_bfgs2.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /* multimin/vector_bfgs2.c
  2. *
  3. * Copyright (C) 2007 Brian Gough
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 3 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  18. * 02110-1301, USA.
  19. */
  20. /* vector_bfgs2.c -- Fletcher's implementation of the BFGS method,
  21. from R.Fletcher, "Practical Method's of Optimization", Second
  22. Edition, ISBN 0471915475. Algorithms 2.6.2 and 2.6.4. */
  23. /* Thanks to Alan Irwin irwin@beluga.phys.uvic.ca. for suggesting this
  24. algorithm and providing sample fortran benchmarks */
  25. #include "gsl__config.h"
  26. #include "gsl_multimin.h"
  27. #include "gsl_blas.h"
  28. #include "gsl_multimin__linear_minimize.c"
  29. #include "gsl_multimin__linear_wrapper.c"
  30. typedef struct
  31. {
  32. int iter;
  33. double step;
  34. double g0norm;
  35. double pnorm;
  36. double delta_f;
  37. double fp0; /* f'(0) for f(x-alpha*p) */
  38. gsl_vector *x0;
  39. gsl_vector *g0;
  40. gsl_vector *p;
  41. /* work space */
  42. gsl_vector *dx0;
  43. gsl_vector *dg0;
  44. gsl_vector *x_alpha;
  45. gsl_vector *g_alpha;
  46. /* wrapper function */
  47. wrapper_t wrap;
  48. /* minimization parameters */
  49. double rho;
  50. double sigma;
  51. double tau1;
  52. double tau2;
  53. double tau3;
  54. int order;
  55. }
  56. vector_bfgs2_state_t;
  57. static int
  58. vector_bfgs2_alloc (void *vstate, size_t n)
  59. {
  60. vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
  61. state->p = gsl_vector_calloc (n);
  62. if (state->p == 0)
  63. {
  64. GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM);
  65. }
  66. state->x0 = gsl_vector_calloc (n);
  67. if (state->x0 == 0)
  68. {
  69. gsl_vector_free (state->p);
  70. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  71. }
  72. state->g0 = gsl_vector_calloc (n);
  73. if (state->g0 == 0)
  74. {
  75. gsl_vector_free (state->x0);
  76. gsl_vector_free (state->p);
  77. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  78. }
  79. state->dx0 = gsl_vector_calloc (n);
  80. if (state->dx0 == 0)
  81. {
  82. gsl_vector_free (state->g0);
  83. gsl_vector_free (state->x0);
  84. gsl_vector_free (state->p);
  85. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  86. }
  87. state->dg0 = gsl_vector_calloc (n);
  88. if (state->dg0 == 0)
  89. {
  90. gsl_vector_free (state->dx0);
  91. gsl_vector_free (state->g0);
  92. gsl_vector_free (state->x0);
  93. gsl_vector_free (state->p);
  94. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  95. }
  96. state->x_alpha = gsl_vector_calloc (n);
  97. if (state->x_alpha == 0)
  98. {
  99. gsl_vector_free (state->dg0);
  100. gsl_vector_free (state->dx0);
  101. gsl_vector_free (state->g0);
  102. gsl_vector_free (state->x0);
  103. gsl_vector_free (state->p);
  104. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  105. }
  106. state->g_alpha = gsl_vector_calloc (n);
  107. if (state->g_alpha == 0)
  108. {
  109. gsl_vector_free (state->x_alpha);
  110. gsl_vector_free (state->dg0);
  111. gsl_vector_free (state->dx0);
  112. gsl_vector_free (state->g0);
  113. gsl_vector_free (state->x0);
  114. gsl_vector_free (state->p);
  115. GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
  116. }
  117. return GSL_SUCCESS;
  118. }
  119. static int
  120. vector_bfgs2_set (void *vstate, gsl_multimin_function_fdf * fdf,
  121. const gsl_vector * x, double *f, gsl_vector * gradient,
  122. double step_size, double tol)
  123. {
  124. vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
  125. state->iter = 0;
  126. state->step = step_size;
  127. state->delta_f = 0;
  128. GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient);
  129. /* Use the gradient as the initial direction */
  130. gsl_vector_memcpy (state->x0, x);
  131. gsl_vector_memcpy (state->g0, gradient);
  132. state->g0norm = gsl_blas_dnrm2 (state->g0);
  133. gsl_vector_memcpy (state->p, gradient);
  134. gsl_blas_dscal (-1 / state->g0norm, state->p);
  135. state->pnorm = gsl_blas_dnrm2 (state->p); /* should be 1 */
  136. state->fp0 = -state->g0norm;
  137. /* Prepare the wrapper */
  138. prepare_wrapper (&state->wrap, fdf,
  139. state->x0, *f, state->g0,
  140. state->p, state->x_alpha, state->g_alpha);
  141. /* Prepare 1d minimisation parameters */
  142. state->rho = 0.01;
  143. state->sigma = tol;
  144. state->tau1 = 9;
  145. state->tau2 = 0.05;
  146. state->tau3 = 0.5;
  147. state->order = 3; /* use cubic interpolation where possible */
  148. return GSL_SUCCESS;
  149. }
  150. static void
  151. vector_bfgs2_free (void *vstate)
  152. {
  153. vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
  154. gsl_vector_free (state->x_alpha);
  155. gsl_vector_free (state->g_alpha);
  156. gsl_vector_free (state->dg0);
  157. gsl_vector_free (state->dx0);
  158. gsl_vector_free (state->g0);
  159. gsl_vector_free (state->x0);
  160. gsl_vector_free (state->p);
  161. }
  162. static int
  163. vector_bfgs2_restart (void *vstate)
  164. {
  165. vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
  166. state->iter = 0;
  167. return GSL_SUCCESS;
  168. }
  169. static int
  170. vector_bfgs2_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
  171. gsl_vector * x, double *f,
  172. gsl_vector * gradient, gsl_vector * dx)
  173. {
  174. vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
  175. double alpha = 0.0, alpha1;
  176. gsl_vector *x0 = state->x0;
  177. gsl_vector *g0 = state->g0;
  178. gsl_vector *p = state->p;
  179. double g0norm = state->g0norm;
  180. double pnorm = state->pnorm;
  181. double delta_f = state->delta_f;
  182. double pg, dir;
  183. int status;
  184. double f0 = *f;
  185. if (pnorm == 0.0 || g0norm == 0.0 || state->fp0 == 0)
  186. {
  187. gsl_vector_set_zero (dx);
  188. return GSL_ENOPROG;
  189. }
  190. if (delta_f < 0)
  191. {
  192. double del = GSL_MAX_DBL (-delta_f, 10 * GSL_DBL_EPSILON * fabs(f0));
  193. alpha1 = GSL_MIN_DBL (1.0, 2.0 * del / (-state->fp0));
  194. }
  195. else
  196. {
  197. alpha1 = fabs(state->step);
  198. }
  199. /* line minimisation, with cubic interpolation (order = 3) */
  200. status = minimize (&state->wrap.fdf_linear, state->rho, state->sigma,
  201. state->tau1, state->tau2, state->tau3, state->order,
  202. alpha1, &alpha);
  203. if (status != GSL_SUCCESS)
  204. {
  205. return status;
  206. }
  207. update_position (&(state->wrap), alpha, x, f, gradient);
  208. state->delta_f = *f - f0;
  209. /* Choose a new direction for the next step */
  210. {
  211. /* This is the BFGS update: */
  212. /* p' = g1 - A dx - B dg */
  213. /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
  214. /* B = dx.g/dx.dg */
  215. gsl_vector *dx0 = state->dx0;
  216. gsl_vector *dg0 = state->dg0;
  217. double dxg, dgg, dxdg, dgnorm, A, B;
  218. /* dx0 = x - x0 */
  219. gsl_vector_memcpy (dx0, x);
  220. gsl_blas_daxpy (-1.0, x0, dx0);
  221. gsl_vector_memcpy (dx, dx0); /* keep a copy */
  222. /* dg0 = g - g0 */
  223. gsl_vector_memcpy (dg0, gradient);
  224. gsl_blas_daxpy (-1.0, g0, dg0);
  225. gsl_blas_ddot (dx0, gradient, &dxg);
  226. gsl_blas_ddot (dg0, gradient, &dgg);
  227. gsl_blas_ddot (dx0, dg0, &dxdg);
  228. dgnorm = gsl_blas_dnrm2 (dg0);
  229. if (dxdg != 0)
  230. {
  231. B = dxg / dxdg;
  232. A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
  233. }
  234. else
  235. {
  236. B = 0;
  237. A = 0;
  238. }
  239. gsl_vector_memcpy (p, gradient);
  240. gsl_blas_daxpy (-A, dx0, p);
  241. gsl_blas_daxpy (-B, dg0, p);
  242. }
  243. gsl_vector_memcpy (g0, gradient);
  244. gsl_vector_memcpy (x0, x);
  245. state->g0norm = gsl_blas_dnrm2 (g0);
  246. state->pnorm = gsl_blas_dnrm2 (p);
  247. /* update direction and fp0 */
  248. gsl_blas_ddot (p, gradient, &pg);
  249. dir = (pg >= 0.0) ? -1.0 : +1.0;
  250. gsl_blas_dscal (dir / state->pnorm, p);
  251. state->pnorm = gsl_blas_dnrm2 (p);
  252. gsl_blas_ddot (p, g0, &state->fp0);
  253. change_direction (&state->wrap);
  254. return GSL_SUCCESS;
  255. }
  256. static const gsl_multimin_fdfminimizer_type vector_bfgs2_type = {
  257. "vector_bfgs2", /* name */
  258. sizeof (vector_bfgs2_state_t),
  259. &vector_bfgs2_alloc,
  260. &vector_bfgs2_set,
  261. &vector_bfgs2_iterate,
  262. &vector_bfgs2_restart,
  263. &vector_bfgs2_free
  264. };
  265. const gsl_multimin_fdfminimizer_type
  266. * gsl_multimin_fdfminimizer_vector_bfgs2 = &vector_bfgs2_type;