research.html 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. <!DOCTYPE html>
  2. <html lang="en">
  3. <!--Copyright (C) 2018 E. Blåsten
  4. Permission is granted to copy, distribute and/or modify this
  5. document under the terms of the GNU Free Documentation License,
  6. Version 1.3 or any later version published by the Free Software
  7. Foundation; with no Invariant Sections, no Front-Cover Texts, and
  8. no Back-Cover Texts. A copy of the license is included in the file
  9. "LICENSE.html". -->
  10. <head>
  11. <meta charset="utf-8" />
  12. <title>Research by E. Blåsten</title>
  13. <meta name="viewport" content="width=device-width, initial-scale=1.0">
  14. <link rel="stylesheet" href="include/mathstyles.css">
  15. <link rel="stylesheet" href="include/homepage.css">
  16. </head>
  17. <body>
  18. <nav>
  19. <ul class="navbar">
  20. <li><a href="index.html">Home</a></li>
  21. <li><a href="contact.html">Contact</a></li>
  22. <li><a href="research.html" class="active">Research</a></li>
  23. <ul class="navsubbar">
  24. <li><a href="#topics">Topics</a></li>
  25. <li><a href="#publications">Publications</a></li>
  26. <li><a href="#descriptions">Descriptions</a></li>
  27. <li><a href="#talks">Talks</a></li>
  28. </ul>
  29. <li><a href="photos/">Photos</a></li>
  30. <li><a href="trans/index.html">
  31. <span style="line-height:100%">&nbsp;⚧ &nbsp;</span>
  32. </a></li>
  33. <li class="logo"><a href="index.html">Dr Blåsten</a></li>
  34. </ul>
  35. </nav>
  36. <div class="paper">
  37. <section class="content">
  38. <h1>Mathematics</h1>
  39. <section>
  40. <a class="anchor" id="topics"></a>
  41. <h2>Research topics</h2>
  42. <p>
  43. I deal with
  44. mathematical <a href="https://en.wikipedia.org/wiki/Inverse_problem">inverse
  45. problems</a>
  46. and <a href="https://en.wikipedia.org/wiki/Scattering_theory">scattering
  47. theory</a>. The latter is a subfield of partial
  48. differential equations where the purpose is to study
  49. phenomena which occur <em>after a wave hits an
  50. obstacle</em>. The field of inverse problems is related to
  51. mathematical modeling. In traditional or <em>direct</em>
  52. modeling, the goal is to predict the effects from the
  53. causes. On the other hand, in <em>inverse problems</em>,
  54. one is interested in finding the model, or causes, when a
  55. set of observations is given. Famous examples include
  56. <ul>
  57. <li><em>electrical impedance tomography</em>: find the
  58. electrical conductivity at various points in the
  59. interior of an object by doing voltage&ndash;current
  60. measurements on its surface,</li>
  61. <li><em>travel-time tomography</em>: calculate the
  62. density of the Earth by observing the travel times of
  63. earthquakes,</li>
  64. <li><em>3D X-ray tomography</em>: determine the 3D
  65. structure of a body by taking X-ray pictures from
  66. various directions around it (CT-scan).</li>
  67. </ul>
  68. All of these examples involve tomography, which means
  69. imaging an object by sending waves into it. This is
  70. related to non-destructive testing by not having to cut
  71. the object open.
  72. </p>
  73. </section>
  74. <section>
  75. <a class="anchor" id="publications"></a>
  76. <h2>List of
  77. Publications <a href="pdf/blasten_publications.pdf">PDF</a></h2>
  78. <ul class="navsubbar">
  79. <li><a href="#pubs_submitted">Submitted</a></li>
  80. <li><a href="#pubs_accepted">Accepted</a></li>
  81. <li><a href="#pubs_proceedings">Proceedings</a></li>
  82. <li><a href="#pubs_theses">Theses</a></li>
  83. <li><a href="#pubs_others">Others</a></li>
  84. </ul>
  85. <p style="clear:left">
  86. <a class="anchor" id="pubs_submitted"></a>
  87. <h3>Submitted</h3>
  88. <ol reversed>
  89. <li>
  90. <a class="anchor" id="Blasten-Li-Liu-Wang-2018"></a>
  91. <span class="ref-authors">E. Blåsten, H. Li, H. Liu, Y. Wang,</span>
  92. <span class="ref-title">Localization and
  93. geometrization in plasmon resonances and geometric
  94. structures of Neumann-Poincaré
  95. eigenfunctions.</span>
  96. <div class="ref-links">
  97. <a href="#desc_Blasten-Li-Liu-Wang-2018">Description</a>
  98. <a href="https://arxiv.org/abs/1809.08533">Preprint</a>
  99. </div>
  100. </li>
  101. <li>
  102. <a class="anchor" id="Blasten-Vesalainen-2018"></a>
  103. <span class="ref-authors">E. Blåsten, E. V. Vesalainen,</span>
  104. <span class="ref-title">Non-Scattering Energies and Transmission Eigenvalues in
  105. <i>H<sup>n</sup></i>.</span>
  106. <div class="ref-links">
  107. <a href="#desc_Blasten-Vesalainen-2018">Description</a>
  108. <a href="http://arxiv.org/abs/1809.04426/">Preprint</a>
  109. </div>
  110. </li>
  111. <li>
  112. <a class="anchor" id="Blasten-Liu-2018"></a>
  113. <span class="ref-authors">E. Blåsten, H. Liu,</span>
  114. <span class="ref-title">Scattering by curvatures,
  115. radiationless sources, transmission eigenfunctions and
  116. inverse scattering problems.</span>
  117. <div class="ref-links">
  118. <a href="#desc_Blasten-Liu-2018">Description</a>
  119. <a href="https://arxiv.org/abs/1808.01425">Preprint</a>
  120. </div>
  121. </li>
  122. <li>
  123. <a class="anchor" id="BlastenLiu2017b"></a>
  124. <span class="ref-authors">E. Blåsten, H. Liu,</span>
  125. <span class="ref-title">Recovering piecewise constant
  126. refractive indices by a single far-field
  127. pattern.</span>
  128. <div class="ref-links">
  129. <a href="#desc_BlastenLiu2017b">Description</a>
  130. <a href="https://arxiv.org/abs/1705.00815">Preprint</a>
  131. </div>
  132. </li>
  133. <li>
  134. <a class="anchor" id="BlastenTzouWang2017"></a>
  135. <span class="ref-authors">E. Blåsten, L. Tzou,
  136. J. Wang,</span>
  137. <span class="ref-title">Uniqueness for the inverse
  138. boundary value problem with singular potentials in
  139. 2D.</span>
  140. <div class="ref-links">
  141. <a href="#desc_BlastenTzouWang2017">Description</a>
  142. <a href="https://arxiv.org/abs/1704.06397">Preprint</a>
  143. </div>
  144. </li>
  145. <li>
  146. <a class="anchor" id="BlastenLiu2016"></a>
  147. <span class="ref-authors">E. Blåsten, H. Liu,</span>
  148. <span class="ref-title"> On corners scattering stably
  149. and stable shape determination by a single far-field
  150. pattern.</span>
  151. <div class="ref-links">
  152. <a href="#desc_BlastenLiu2016">Description</a>
  153. <a href="https://arxiv.org/abs/1611.03647">Preprint</a>
  154. </div>
  155. </li>
  156. </ol>
  157. </p>
  158. <p>
  159. <a class="anchor" id="pubs_accepted"></a>
  160. <h3>Accepted in Peer-Reviewed Journals</h3>
  161. <ol reversed>
  162. <li>
  163. <a class="anchor" id="Blasten2018"></a>
  164. <span class="ref-authors">E. Blåsten,</span>
  165. <span class="ref-title">Nonradiating sources and
  166. transmission eigenfunctions vanish at corners and
  167. edges.</span>
  168. <div class="ref-links">
  169. <a href="#desc_Blasten2018">Description</a>
  170. <a href="https://doi.org/10.1137/18M1182048">Publication</a>
  171. <a href="http://arxiv.org/abs/1803.10917/">Preprint</a>
  172. </div>
  173. </li>
  174. <li>
  175. <a class="anchor" id="Pipes1"></a>
  176. <span class="ref-authors">F. Zouari, E. Blåsten,
  177. M. Louati, and M.&nbsp;S. Ghidaoui,</span>
  178. <span class="ref-title">Internal pipe area
  179. reconstruction as a tool for blockage
  180. detection.</span>
  181. <span class="ref-journal">Journal of Hydraulic
  182. Engineering, ASCE,</span>
  183. <span class="ref-year">accepted 2018.</span>
  184. <div class="ref-links">
  185. <a href="#desc_Pipes1">Description</a>
  186. </div>
  187. </li>
  188. <li>
  189. <a class="anchor" id="BlastenLin2018"></a>
  190. <span class="ref-authors">E. Blåsten, Y.-H. Lin</span>
  191. <span class="ref-title">Radiating and non-radiating
  192. sources in elasticity.</span>
  193. <span class="ref-journal">Inverse Problems,</span>
  194. <span class="ref-year">accepted (2018).</span>
  195. <div class="ref-links">
  196. <a href="#desc_BlastenLin2018">Description</a>
  197. <a href="https://doi.org/10.1088/1361-6420/aae99e">Publication</a>
  198. <a href="http://arxiv.org/abs/1807.07225/">Preprint</a>
  199. </div>
  200. </li>
  201. <li>
  202. <a class="anchor" id="Blasten2017"></a>
  203. <span class="ref-authors">E. Blåsten,</span>
  204. <span class="ref-title">Well-posedness of the Goursat
  205. problem and stability for point source inverse
  206. backscattering,</span>
  207. <span class="ref-journal">Inverse Problems,</span>
  208. <span class="ref-volume">33,</span>
  209. <span class="ref-issue">12,</span>
  210. <span class="ref-year">(2017)</span>
  211. <span class="ref-pages">125003.</span>
  212. <div class="ref-links">
  213. <a href="#desc_Blasten2017">Description</a>
  214. <a href="https://doi.org/10.1088/1361-6420/aa941f">Publication</a>
  215. <a href="https://arxiv.org/abs/1705.09442">Preprint</a>
  216. </div>
  217. </li>
  218. <li>
  219. <a class="anchor" id="BlastenLiu2017a"></a>
  220. <span class="ref-authors">E. Blåsten, H. Liu,</span>
  221. <span class="ref-title">On vanishing near corners of
  222. transmission eigenfunctions,</span>
  223. <span class="ref-journal">Journal of Functional
  224. Analysis,</span>
  225. <span class="ref-volume">273,</span>
  226. <span class="ref-issue">11</span>
  227. <span class="ref-year">(2017),</span>
  228. <span class="ref-pages">3616&ndash;3632.</span>
  229. <div class="ref-links">
  230. <a href="#desc_BlastenLiu2017a">Description</a>
  231. <a href="https://doi.org/10.1016/j.jfa.2017.08.023">Publication</a>
  232. <a href="https://arxiv.org/abs/1701.07957">Preprint</a>
  233. </div>
  234. </li>
  235. <li>
  236. <a class="anchor" id="BlastenLiLiuWang2017"></a>
  237. <span class="ref-authors">E. Blåsten, X. Li, H. Liu,
  238. Y. Wang,</span>
  239. <span class="ref-title"> On vanishing and localizing
  240. of transmission eigenfunctions near singular points:
  241. A numerical study,</span>
  242. <span class="ref-journal">Inverse Problems,</span>
  243. <span class="ref-volume">33,</span>
  244. <span class="ref-issue">10</span>
  245. <span class="ref-year">(2017),</span>
  246. <span class="ref-pages">105001.</span>
  247. <div class="ref-links">
  248. <a href="#desc_BlastenLiLiuWang2017">Description</a>
  249. <a href="https://doi.org/10.1088/1361-6420/aa8826">Publication</a>
  250. <a href="https://arxiv.org/abs/1704.01885">Preprint</a>
  251. </div>
  252. </li>
  253. <li>
  254. <a class="anchor" id="BlastenSylvester2016"></a>
  255. <span class="ref-authors">E. Blåsten, J. Sylvester,</span>
  256. <span class="ref-title">Translation-Invariant
  257. Estimates for Operators with Simple
  258. Characteristics,</span>
  259. <span class="ref-journal">Journal of Differential
  260. Equations,</span>
  261. <span class="ref-volume">263,</span>
  262. <span class="ref-issue">9</span>
  263. <span class="ref-year">(2017),</span>
  264. <span class="ref-pages">5656&ndash;5695.</span>
  265. <div class="ref-links">
  266. <a href="#desc_BlastenSylvester2016">Description</a>
  267. <a href="https://doi.org/10.1016/j.jde.2017.06.033">Publication</a>
  268. <a href="http://arxiv.org/abs/1607.06214">Preprint</a>
  269. </div>
  270. </li>
  271. <li>
  272. <a class="anchor" id="BlastenImanuvilovYamamoto2015"></a>
  273. <span class="ref-authors">E. Blåsten,
  274. O. Yu. Imanuvilov, M. Yamamoto,</span>
  275. <span class="ref-title">Stability and uniqueness for a
  276. two-dimensional inverse boundary value problem for
  277. less regular potentials,</span>
  278. <span class="ref-journal">Inverse Problems and
  279. Imaging,</span>
  280. <span class="ref-volume">9,</span>
  281. <span class="ref-issue">3</span>
  282. <span class="ref-year">(2015),</span>
  283. <span class="ref-pages">709&ndash;723.</span>
  284. <div class="ref-links">
  285. <a href="#desc_BlastenImanuvilovYamamoto2015">Description</a>
  286. <a href="http://dx.doi.org/10.3934/ipi.2015.9.709">Publication</a>
  287. <a href="http://arxiv.org/abs/1504.02207">Preprint</a>
  288. </div>
  289. </li>
  290. <li>
  291. <a class="anchor" id="BlastenPaivarintaSylvester2014"></a>
  292. <span class="ref-authors">E. Blåsten, L. Päivärinta,
  293. J. Sylvester,</span>
  294. <span class="ref-title">Corners Always Scatter,</span>
  295. <span class="ref-journal">Communications in
  296. Mathematical Physics,</span>
  297. <span class="ref-volume">331,</span>
  298. <span class="ref-issue">2</span>
  299. <span class="ref-year">(2014),</span>
  300. <span class="PUGpages">725&ndash;753.</span>
  301. <div class="ref-links">
  302. <a href="#desc_BlastenPaivarintaSylvester2014">Description</a>
  303. <a href="http://dx.doi.org/10.1007/s00220-014-2030-0">Publication</a>
  304. <a href="http://arxiv.org/abs/1211.1848">Preprint</a>
  305. </div>
  306. </li>
  307. <li>
  308. <a class="anchor" id="BlastenPaivarinta2013"></a>
  309. <span class="ref-authors">E. Blåsten,
  310. L. Päivärinta,</span>
  311. <span class="ref-title">Completeness of generalized
  312. transmission eigenstates,</span>
  313. <span class="ref-journal">Inverse Problems,</span>
  314. <span class="ref-volume">29,</span>
  315. <span class="ref-issue">10</span>
  316. <span class="ref-year">(2013),</span>
  317. <span class="ref-pages">104002.</span>
  318. <div class="ref-links">
  319. <a href="#desc_BlastenPaivarinta2013">Description</a>
  320. <a href="http://dx.doi.org/10.1088/0266-5611/29/10/104002">Publication</a>
  321. <a href="http://arxiv.org/abs/1307.4863">Preprint</a>
  322. </div>
  323. </li>
  324. </ol>
  325. </p>
  326. <p>
  327. <a class="anchor" id="pubs_proceedings"></a>
  328. <h3>Conference Proceedings</h3>
  329. <ol reversed>
  330. <li>
  331. <a class="anchor" id="PipesProceedings1"></a>
  332. <span class="ref-authors">F. Zouari, M. Louati,
  333. E. Blåsten, and M.&nbsp;S. Ghidaoui,</span>
  334. <span class="ref-title">Multiple defects detection and
  335. characterization in pipes.</span>
  336. <span class="ref-journal">13<sup>th</sup> International Conference on
  337. <span style="font-variant: small-caps">Pressure
  338. Surges</span>,</span>
  339. <span class="ref-year">Bordeaux, France,
  340. 14<sup>th</sup>&ndash;16<sup>th</sup> November
  341. 2018.</span>
  342. <div class="ref-links">
  343. <a href="#desc_PipesProceedings1">Description</a>
  344. </div>
  345. </li>
  346. </ol>
  347. </p>
  348. <p>
  349. <a class="anchor" id="pubs_theses"></a>
  350. <h3>Theses</h3>
  351. <ol reversed>
  352. <li>
  353. <a class="anchor" id="Blasten2013"></a>
  354. <span class="ref-authors">E. Blåsten,</span>
  355. <span class="ref-title">On the Gel’Fand-Calderón
  356. inverse problem in two dimensions,</span>
  357. <span class="ref-journal">Doctoral thesis, University
  358. of Helsinki, Faculty of Science, Department of
  359. Mathematics and Statistics,</span>
  360. <span class="ref-year">2013.</span>
  361. <div class="ref-links">
  362. <a href="#desc_Blasten2013">Description</a>
  363. <a href="http://urn.fi/URN:ISBN:978-952-10-8699-1">Publication</a>
  364. <a href="http://arxiv.org/abs/1307.4870">Preprint</a>
  365. </div>
  366. </li>
  367. <li>
  368. <a class="anchor" id="Blasten2010"></a>
  369. <span class="ref-authors">E. Blåsten,</span>
  370. <span class="ref-title">The Inverse Problem of the
  371. Schrödinger Equation in the Plane: A Dissection of
  372. Bukhgeim's Result,</span>
  373. <span class="ref-journal">Licentiate thesis,
  374. University of Helsinki, Faculty of Science,
  375. Department of Mathematics and Statistics,</span>
  376. <span class="ref-year">2010.</span>
  377. <div class="ref-links">
  378. <a href="#desc_Blasten2010">Description</a>
  379. <a href="http://arxiv.org/abs/1103.6200">arXiv version</a>
  380. </div>
  381. </li>
  382. <li>
  383. <a class="anchor" id="Blasten2008"></a>
  384. <span class="ref-authors">E. Blåsten,</span>
  385. <span class="ref-title">Distribuutioteorian alkeet ja
  386. sovellutuksia,</span>
  387. <span class="ref-journal">Master’s thesis, University
  388. of Helsinki, Faculty of Science, Department of
  389. Mathematics and Statistics,</span>
  390. <span class="ref-year">2008.</span>
  391. <div class="ref-links">
  392. <a href="#desc_Blasten2008">Description</a>
  393. <a href="pdf/blasten_master.pdf">PDF (in Finnish)</a>
  394. </div>
  395. </li>
  396. </ol>
  397. </p>
  398. <p>
  399. <a class="anchor" id="pubs_others"></a>
  400. <h3>Other publications</h3>
  401. <ol reversed>
  402. <li>
  403. <span class="ref-authors">E. Blåsten, H. Liu,</span>
  404. <span class="ref-title">Addendum to: "On vanishing
  405. near corners of transmission eigenfunctions",</span>
  406. <span class="ref-journal">arXiv:</span>
  407. <span class="ref-pages">1710.08089.</span>
  408. <div class="ref-links">
  409. <a href="https://arxiv.org/abs/1710.08089">Addendum</a>
  410. </div>
  411. </li>
  412. <li>
  413. <span class="ref-authors">E. Blåsten,</span>
  414. <span class="ref-title">Matematiikkaa
  415. Venäjällä,</span>
  416. <span class="ref-journal">Solmu:
  417. matematiikkalehti,</span>
  418. <span class="ref-issue">3</span>
  419. <span class="ref-year">(2007).</span>
  420. <div class="ref-links">
  421. <a href="http://matematiikkalehtisolmu.fi/2007/3/Dubna.pdf">Article</a>
  422. </div>
  423. </li>
  424. </ol>
  425. </p>
  426. </section>
  427. <section>
  428. <a class="anchor" id="descriptions"></a>
  429. <h2>Description of projects</h2>
  430. <dl>
  431. <dt>
  432. <a class="anchor" id="desc_PipesProceedings1"></a>
  433. <a href="#PipesProceedings1">
  434. <span class="ref-authors">F. Zouari, M. Louati,
  435. E. Blåsten, and M.&nbsp;S. Ghidaoui,</span>
  436. <span class="ref-title">Multiple defects detection and
  437. characterization in pipes.</span>
  438. </a>
  439. </dt>
  440. <dd>
  441. <p>
  442. This is a continuation and generalization of the work
  443. done for pipe <a href="#Pipes1">area
  444. reconstruction</a>. We extend that method to the
  445. detection of leaks and discrete blockages. Because of
  446. a mathematical non-uniqueness to this one-dimensional
  447. inverse problem, certain configurations of defects
  448. cannot be uniquely identified from certain others. We
  449. propose a solution to this problem: measure the
  450. impulse-response function from both ends of the pipe.
  451. </p>
  452. </dd>
  453. <dt>
  454. <a class="anchor" id="desc_Blasten-Li-Liu-Wang-2018"></a>
  455. <a href="#Blasten-Li-Liu-Wang-2018">
  456. <span class="ref-authors">E. Blåsten, H. Li, H. Liu, Y. Wang</span>
  457. <span class="ref-title">Localization and
  458. geometrization in plasmon resonances and geometric
  459. structures of Neumann-Poincaré eigenfunctions</span>
  460. </a>
  461. </dt>
  462. <dd>
  463. <p>
  464. This article provides a new point of view to plasmon
  465. resonance. The motivation comes from high curvature
  466. scattering by myself and
  467. Liu <a href="#Blasten-Liu-2018">[2018]</a>. Usually
  468. plasmon resonance occurs around particles that are
  469. smaller than the wavelength of the incident
  470. light. Previously we showed that small scatterers
  471. always scatter, but also that the same phenomenon
  472. occurs near certain high curvature points of large
  473. scatterers. In this manuscript we study several
  474. theoretical and numerical examples, and conclude that
  475. the same is true of plasmon resonance. In other words,
  476. plasmon resonance occurs not only for small particles,
  477. but also near high curvature points on the boundary of
  478. large particles!
  479. </p>
  480. </dd>
  481. <dt>
  482. <a class="anchor" id="desc_Blasten-Vesalainen-2018"></a>
  483. <a href="#Blasten-Vesalainen-2018">
  484. <span class="ref-authors">E. Blåsten, E. V. Vesalainen</span>
  485. <span class="ref-title">Non-Scattering Energies and
  486. Transmission Eigenvalues
  487. in <i>H<sup>n</sup></i></span>
  488. </a>
  489. </dt>
  490. <dd>
  491. <p>
  492. The article concerns scattering theory for the
  493. Helmholtz and Schrödinger equations in hyperbolic
  494. spaces. We show that corners always scatter there too
  495. despite there being so-called transmission
  496. eigenvalues, which we show also. This brings the
  497. results of myself, Päivärinta and
  498. Sylvester <a href="#BlastenPaivarintaSylvester2014">[2014]</a>,
  499. and Hu, Salo,
  500. Vesalainen <a href="http://dx.doi.org/10.1137/15M1032958">[2015]</a>
  501. into the setting of hyperbolic manifolds.
  502. </p>
  503. </dd>
  504. <dt>
  505. <a class="anchor" id="desc_Blasten-Liu-2018"></a>
  506. <a href="#Blasten-Liu-2018">
  507. <span class="ref-authors">E. Blåsten, H. Liu</span>
  508. <span class="ref-title">Scattering by curvatures,
  509. radiationless sources, transmission eigenfunctions and
  510. inverse scattering problems</span>
  511. </a>
  512. </dt>
  513. <dd>
  514. <p>
  515. We study how high curvature affects wave
  516. scattering. Our previous work focused on having a
  517. corner point in the boundary of a penetrable
  518. scatterer, and this had various consequences: corners
  519. always scatter, the shape of polyhedral scatterers can
  520. be determined by a single measurement, and smooth
  521. enough transmission eigenfunctions vanish at convex
  522. corners. In essence these properties stay true with
  523. slight modifications if the corner is replaced by high
  524. curvature point.
  525. </p>
  526. <p>
  527. Our research shows a somewhat surprising result: an
  528. active source or inactive scatterer cannot produce a
  529. zero far-field if it is small (as measured by the
  530. wavenumber), or if its boundary has an admissible high
  531. curvature point. This fact is
  532. counter-intuitive. Surely small scatterers are barely
  533. seen, however the mathematical model implies that it
  534. cannot be completely invisible.
  535. </p>
  536. <p>
  537. An additional consequence of this study is that a
  538. single measurement of the complete far-field of a
  539. scattered wave determines the rough location and exact
  540. number of small well-separated scatterers. This gives
  541. a theoretical proof for the results by Griesmaier,
  542. Hanke,
  543. Raasch <a href="https://doi.org/10.1137/110855880">2013a</a>
  544. and <a href="https://doi.org/10.1137/130908658">2013b</a>.
  545. </p>
  546. </dd>
  547. <dt>
  548. <a class="anchor" id="desc_BlastenLin2018"></a>
  549. <a href="#BlastenLin2018">
  550. <span class="ref-authors">E. Blåsten, Y.-H. Lin</span>
  551. <span class="ref-title">Radiating and non-radiating
  552. sources in elasticity</span>
  553. </a>
  554. </dt>
  555. <dd>
  556. <p>
  557. We consider the inverse source problem for the Navier
  558. system, in other words linear isotropic elasticity. We
  559. consider a homogeneous background, and waves created
  560. by a force applied to part of the domain. The force
  561. can be inhomogeneous and anisotropic.
  562. </p>
  563. <p>
  564. We show two things. First of all the literature seemed
  565. to lack an example of a <em>non-radiating source</em>
  566. for elasticity. We show that a constant force applied
  567. on a disc causes no scattered elastic waves beyond the
  568. disc at a fixed frequency, if the radius of the disc,
  569. frequency and elastic parameters are in a given
  570. algebraic relation.
  571. </p>
  572. <p>
  573. Secondly, we show that if an inhomogeneous force is
  574. applied on a region which has a corner on its exterior
  575. boundary, and if the magnitude of the force is nonzero
  576. there, then no matter how the rest of region, or the
  577. rest of the force looks like, this force would always
  578. cause scattered waves that can be detected in the
  579. far-field.
  580. </p>
  581. </dd>
  582. <dt>
  583. <a class="anchor" id="desc_Blasten2018"></a>
  584. <a href="#Blasten2018">
  585. <span class="ref-authors">E. Blåsten,</span>
  586. <span class="ref-title">Nonradiating sources and
  587. transmission eigenfunctions vanish at corners and
  588. edges</span>
  589. </a>
  590. </dt>
  591. <dd>
  592. <p>
  593. This paper considers the inverse source problem,
  594. namely we do not send an incident wave, and are
  595. instead using data provided by an unknown source
  596. itself. We show that so called <em>nonradiating
  597. sources</em> cannot have sharp corner or edge jumps on
  598. their boundary. This also implies a simpler proof for
  599. the result of <a href="#BlastenLiu2017a">Blåsten, Liu
  600. 2017a</a> assuming that the transmission
  601. eigenfunctions are smooth enough. Furthermore it gives
  602. uniqueness for the shape determination of convex
  603. polyhedral sources.
  604. </p>
  605. <p>
  606. The method has some similarities with Ikehata's
  607. enclosure method. A major difference is that we use a
  608. more complicated probing function which allows us to
  609. consider non-convex geometry. This function is the
  610. exponential of a complex square root. The branch is
  611. chosen such that the modulus of this function decays
  612. in all directions except the branch cut.
  613. </p>
  614. </dd>
  615. <dt>
  616. <a class="anchor" id="desc_Pipes1"></a>
  617. <a href="#Pipes1">
  618. <span class="ref-authors">F. Zouari, E. Blåsten,
  619. M. Louati, and M.&nbsp;S. Ghidaoui,</span>
  620. <span class="ref-title">Internal pipe area
  621. reconstruction as a tool for blockage
  622. detection</span>
  623. </a>
  624. </dt>
  625. <dd>
  626. <p>
  627. Water supply systems around the cities of the world
  628. suffer from various defects occasionally: the pipes
  629. can deteriorate, start leaking or become blocked by
  630. mineral deposits. We introduce a new method for
  631. detecting the location and shape of such blockages
  632. from an impulse-response measurement at the pipe
  633. end. Such <em>non-invasive</em> methods avoid the
  634. expenses of having to dig out and open the pipe just
  635. to inspect it. The method is based on determining the
  636. internal cross-sectional area of the pipe at any
  637. location inside it.
  638. </p>
  639. <p>
  640. The area reconstruction method is introduced, both
  641. from an engineering point of view and a mathematical
  642. one. It is furthermore compared numerically to other
  643. state of the art blockage detection algorithms. We
  644. conclude that in noiseless numerical experiments this
  645. method is superior to others, especially when the
  646. number of blockages is unknown, or the blockages have
  647. irregular shape.
  648. </p>
  649. </dd>
  650. <dt>
  651. <a class="anchor" id="desc_Blasten2017"></a>
  652. <a href="#Blasten2017">
  653. <span class="ref-authors">Blåsten,</span>
  654. <span class="ref-title">Well-posedness of the Goursat
  655. problem and stability for point source inverse
  656. backscattering</span>
  657. </a>
  658. </dt>
  659. <dd>
  660. <p>
  661. The topic of this paper is on the inverse
  662. backscattering method by Rakesh and Uhlmann, which
  663. they use both for
  664. the <a href="https://doi.org/10.1088/0266-5611/30/6/065005">ordinary</a>
  665. and <a href="http://www.ams.org/books/conm/644/">point-source</a>
  666. backscattering. Their method lives in the time-domain
  667. and works for potentials that are <em>angularly
  668. controlled</em>. Our primary goal is to prove
  669. stability for their uniqueness result of point-source
  670. inverse backscattering.
  671. </p>
  672. <p>
  673. A difficulty arising in the proof relates to required
  674. norm-estimates. It is very difficult to find suitable
  675. estimates for the direct point-source problem, or a
  676. related problem which is called the Goursat problem.
  677. </p>
  678. <p>
  679. The Goursat problem is the wave equation with boundary
  680. data given on a characteristic cone. Some call it
  681. the <em>characteristic initial value problem</em>. We
  682. prove well-posedness for it. That is, we show that
  683. given the initial data and coefficients, the solution
  684. exists, is unique (in a chosen function space), and
  685. depends continuously on the inputs. This then leads to
  686. the well-posedness of the point-source problem for the
  687. wave equation.
  688. </p>
  689. </dd>
  690. <dt>
  691. <a class="anchor" id="desc_BlastenLiu2017b"></a>
  692. <a href="#BlastenLiu2017b">
  693. <span class="ref-authors">Blåsten, Liu,</span>
  694. <span class="ref-title">Recovering piecewise constant
  695. refractive indices by a single far-field
  696. pattern</span>
  697. </a>
  698. </dt>
  699. <dd>
  700. <p>
  701. We improve past corner scattering results in two
  702. ways. Compared to the earlier
  703. papers <a href="http://dx.doi.org/10.1137/15M1032958">Hu,
  704. Salo, Vesalainen 2015</a>
  705. and <a href="#BlastenLiu2016">Blåsten, Liu 2016</a>
  706. the results now apply to arbritrary three-dimensional
  707. convex polyhedra instead of just rectangular boxes. A
  708. second improvement is more useful: we show that a
  709. single far-field pattern not only determines the shape
  710. of a convex polyhedral scatterer, as known before, but
  711. also the values of the potential function at the
  712. vertices.
  713. </p>
  714. <p>
  715. Using the corner value recovery and Holmgren's
  716. uniqueness theorem we are able to show the following
  717. under certain geometric conditions: given a single
  718. incident wave, two polyhedral piecewise constant
  719. potentials produce the same far-field pattern only if
  720. the potentials are the same.
  721. </p>
  722. <p>
  723. Depending on application, the geometric a-priori
  724. conditions might be bothersome. However if the
  725. potentials are assumed to be piecewise constant on a
  726. square lattice, no matter how fine the mesh is, then
  727. our results apply. We hope that this would give ideas
  728. for novel reconstruction methods in engineering.
  729. </p>
  730. </dd>
  731. <dt>
  732. <a class="anchor" id="desc_BlastenTzouWang2017"></a>
  733. <a href="#BlastenTzouWang2017">
  734. <span class="ref-authors">Blåsten, Tzou, Wang,</span>
  735. <span class="ref-title">Uniqueness for the inverse
  736. boundary value problem with singular potentials in
  737. 2D</span>
  738. </a>
  739. </dt>
  740. <dd>
  741. <p>
  742. In this paper we improve the integrability condition
  743. used
  744. in <a href="#BlastenImanuvilovYamamoto2015">Blåsten,
  745. Imanuvilov, Yamamoto 2015</a>. We show that the
  746. Dirichlet-Neumann map of a potential defined on a
  747. two-dimensional bounded domain determines uniquely the
  748. potential. Previously this could be done for almost
  749. square-integrable potentials. In this paper we improve
  750. that bound up to almost 4/3-integrable potentials.
  751. </p>
  752. <p>
  753. Our improvement is based on two techniques. Firstly we
  754. use the fact that if two potentials have the same
  755. boundary data, then their difference is smoother (and
  756. hence more integrable) than either of the original
  757. potentials. Secondly we prove a more refined estimate
  758. for the Cauchy operators conjugated by a complex
  759. Gaussian function.
  760. </p>
  761. </dd>
  762. <dt>
  763. <a class="anchor" id="desc_BlastenLiLiuWang2017"></a>
  764. <a href="#BlastenLiLiuWang2017">
  765. <span class="ref-authors">Blåsten, Li, Liu, Wang,</span>
  766. <span class="ref-title"> On vanishing and localizing
  767. of transmission eigenfunctions near singular points:
  768. A numerical study</span>
  769. </a>
  770. </dt>
  771. <dd>
  772. <p>
  773. We study numerically the observations proved
  774. in <a href="#BlastenLiu2017a">Blåsten, Liu 2017</a> in
  775. a more general setting. Namely, we study where the
  776. energy of interior transmission eigenfunctions are
  777. located in domains with corners, edges or cusps.
  778. </p>
  779. <p>
  780. We find the following: transmission eigenfunctions
  781. indeed do vanish on corners and edges of various
  782. domain in two and three dimensions. The order of
  783. vanishing also seems to depend inversely on the
  784. magnitude of the angle. If the angle is less than &pi;
  785. then the eigenfunction decays when approacing the
  786. corner. If the angle is larger than &pi; then the
  787. eigenfunction blows up at the corner. This is a
  788. completely new finding in the study of the interior
  789. transmission problem.
  790. </p>
  791. <p>
  792. The method used for calculating the transmission
  793. eigenfunctions is by first transforming the interior
  794. transmission problem into an integral formulation, and
  795. then using a finite element approximation. The
  796. resulting sparse non-Hermitean discrete eigenvalue
  797. problem is solved by the <code>sptarn</code>-function
  798. in MATLAB.
  799. </p>
  800. </dd>
  801. <dt>
  802. <a class="anchor" id="desc_BlastenLiu2017a"></a>
  803. <a href="#BlastenLiu2017a">
  804. <span class="ref-authors">Blåsten, Liu,</span>
  805. <span class="ref-title"> On vanishing near corners of
  806. transmission eigenfunctions</span>
  807. </a>
  808. </dt>
  809. <dd>
  810. <p>
  811. We prove that transmission eigenfunctions carry
  812. geometrical information about their domain. Namely,
  813. that under some conditions the eigenfunctions vanish
  814. at corner points. To achieve this we also show a lower
  815. bound for the energy of the far-field pattern of a
  816. Herglotz wave scattered by penetrable polygonal
  817. scatterer. We have written an
  818. addendum <a href="https://arxiv.org/abs/1710.08089">arXiv:1710.08089</a>
  819. that relaxes the assumptions of the theorem.
  820. </p>
  821. <p>
  822. This is a first result showing intrinsic properties of
  823. the transmission eigenfunctions. Just as in spectral
  824. theory, the transmission eigenvalues have been studied
  825. in great detail previously. Big challenges have
  826. prevented touching the eigenfunctions until now.
  827. </p>
  828. <p>
  829. A related numerical work, which is still in progress,
  830. raises many interesting theoretical questions: what's
  831. the effect on the angle of the corner? what about
  832. complex transmission eigenvalues? what about
  833. localization?
  834. </p>
  835. </dd>
  836. <dt>
  837. <a class="anchor" id="desc_BlastenLiu2016"></a>
  838. <a href="#BlastenLiu2016">
  839. <span class="ref-authors">Blåsten, Liu,</span>
  840. <span class="ref-title">On corners scattering stably
  841. and stable shape determination by a single far-field
  842. pattern</span>
  843. </a>
  844. </dt>
  845. <dd>
  846. <p>
  847. In this work we prove stability estimates for
  848. penetrable potential support recovery and also corner
  849. scattering by incident plane-waves. The corresponding
  850. uniqueness results are
  851. in <a href="#BlastenPaivarintaSylvester2014">[BPS2014]</a>,
  852. <a href="https://arxiv.org/abs/1404.2513">[PSV]</a>
  853. and <a href="http://dx.doi.org/10.1137/15M1032958">[HSV2016]</a>.
  854. </p>
  855. <p>
  856. A new key tool we show is a quantitative Rellich's
  857. theorem for penetrable scatterers. This means that if
  858. the scattered waves created by two potentials are
  859. close to each other at infinity, then the values of
  860. the these waves are close to each other on the
  861. boundary of the obstacle.
  862. </p>
  863. <p>
  864. The stability of corner scattering means that given
  865. any incident plane-wave of unit modulus, and a
  866. penetrable potential having a sharp corner, the energy
  867. of the far-field pattern has a uniform lower
  868. bound. This raises questions on whether interior
  869. transmission eigenfunctions could in fact be
  870. approximated by the more general Herglotz incident
  871. waves as is commonly believed.
  872. </p>
  873. </dd>
  874. <dt>
  875. <a class="anchor" id="desc_BlastenSylvester2016"></a>
  876. <a href="#BlastenSylvester2016">
  877. <span class="ref-authors">Blåsten, Sylvester,</span>
  878. <span class="ref-title">Translation-Invariant
  879. Estimates for Operators with Simple
  880. Characteristics</span>
  881. </a>
  882. </dt>
  883. <dd>
  884. <p>
  885. The goal of this work is to prove new estimates for
  886. constant coefficient partial differential
  887. equations. The estimates have a simple formulation
  888. (they are seminorm estimates) and are invariant under
  889. geometric transformations of the Euclidean space. Once
  890. a solution to an inhomogeneous PDE satisfies our
  891. estimate the Agmon-Hörmander estimates from scattering
  892. theory are a trivial corollary. We prove the estimates
  893. for a wide class of PDE's, including all second order
  894. operators with real coefficients, and give some
  895. examples showing that the method can still be
  896. generalized, for example to systems of PDE's.
  897. </p>
  898. </dd>
  899. <dt>
  900. <a class="anchor" id="desc_BlastenImanuvilovYamamoto2015"></a>
  901. <a href="#BlastenImanuvilovYamamoto2015">
  902. <span class="ref-authors">Blåsten, Imanuvilov, Yamamoto,</span>
  903. <span class="ref-title">Stability and uniqueness for a
  904. two-dimensional inverse boundary value problem for
  905. less regular potentials</span>
  906. </a>
  907. </dt>
  908. <dd>
  909. <p>
  910. This article combines methods from my PhD
  911. thesis <a class="referenceNbr"
  912. href="#Blasten2013">[2013]</a> and a manuscript by
  913. Imanuvilov and Yamamoto <a class="referenceNbr"
  914. href="http://arxiv.org/abs/1208.3775">[2012]</a> to
  915. solve the Gel'Fand-Calderón problem. The new unified
  916. method allowed for a simpler proof of uniqueness for
  917. potentials which are just integrable and stability for
  918. potentials having a fractional derivative of any
  919. positive order.
  920. </p>
  921. <p>
  922. The change from Bukhgeim's
  923. method <a class="referenceNbr"
  924. href="http://dx.doi.org/10.1515/jiip.2008.002">[2008]</a>
  925. is a smarter choice for the first two terms in the
  926. Neumann series of the complex geometric optics
  927. solutions.
  928. </p>
  929. </dd>
  930. <dt>
  931. <a class="anchor" id="desc_BlastenPaivarintaSylvester2014"></a>
  932. <a href="#BlastenPaivarintaSylvester2014">
  933. <span class="ref-authors">Blåsten, Päivärinta,
  934. Sylvester,</span>
  935. <span class="ref-title">Corners Always Scatter</span>
  936. </a>
  937. </dt>
  938. <dd>
  939. <p>
  940. In this paper we proved that in single-frequency
  941. Helmholtz scattering, no matter which incident wave
  942. (Herglotz wave) and no matter at which frequency, a
  943. potential with a jump shaped like a 90&deg; sharp
  944. corner will always produce a non-trivial scattered
  945. wave. This implies that transmission eigenvalues are
  946. not the same as <em>non-scattering energies</em>,
  947. i.e. energies at which the the relative scattering
  948. operator (which maps the asymptotics of the incident
  949. wave to the asymptotics of the scattered wave) has a
  950. non-trivial kernel. This is in contrast to the
  951. radially symmetric case where these two concepts were
  952. known to be the same.
  953. </p>
  954. <p>
  955. A key-ingredient for the proof is a new resolvent-type
  956. estimate that uses norms from the Fourier transforms
  957. of Besov spaces. These give a better local
  958. integrability than past estimates by Agmon and
  959. Hörmander <a class="referenceNbr"
  960. href="http://dx.doi.org/10.1007/BF02786703">[1976]</a>
  961. or Sylvester and Uhlmann <a class="referenceNbr"
  962. href="http://dx.doi.org/10.2307/1971291">[1987]</a>.
  963. </p>
  964. </dd>
  965. <dt>
  966. <a class="anchor" id="desc_BlastenPaivarinta2013"></a>
  967. <a href="#BlastenPaivarinta2013">
  968. <span class="ref-authors">Blåsten, Päivärinta,</span>
  969. <span class="ref-title">Completeness of generalized
  970. transmission eigenstates</span>
  971. </a>
  972. </dt>
  973. <dd>
  974. <p>
  975. This article answers a question posed by Cakoni,
  976. Gintides and
  977. Haddar <a href="http://dx.doi.org/10.1137/090769338"
  978. class="referenceNbr">[2010]</a>:
  979. <blockquote>
  980. Although the results of this paper provide an
  981. important step forward in understanding the spectral
  982. properties of the interior transmission problem,
  983. many questions still remain. We think that some
  984. interesting open problems in this direction are ...
  985. and the completeness of the eigensystem of the
  986. interior transmission problem.
  987. </blockquote>
  988. </p>
  989. <p>
  990. We proved that the eigensystems associated with all
  991. the transmission eigenvalues form a complete set. We
  992. used the consept of <em>parameter-ellipticity</em> by
  993. Agranovich and Vishik, analytic Fredholm theory, and
  994. Nevanlinna theory for operator-valued meromorphic
  995. functions. These imply that a fourth-order operator
  996. related to the transmission eigenvalue problem
  997. satisfies three assumptions that are stated in the
  998. language of meromorphic functions. These then imply
  999. the completeness of the eigensystem.
  1000. </p>
  1001. </dd>
  1002. <dt>
  1003. <a class="anchor" id="desc_Blasten2013"></a>
  1004. <a href="#Blasten2013">
  1005. <span class="ref-authors">Blåsten,</span>
  1006. <span class="ref-title">On the Gel’Fand-Calderón
  1007. inverse problem in two dimensions</span>
  1008. </a>
  1009. </dt>
  1010. <dd>
  1011. <p>
  1012. This is my PhD thesis, succesfully defended at the
  1013. University of Helsinki in 2013. In it I prove
  1014. stability for the Gel'Fand-Calderón problem with
  1015. rough, or non-smooth potential, using the methods of
  1016. Bukhgeim <a class="referenceNbr"
  1017. href="http://dx.doi.org/10.1515/jiip.2008.002">[2008]</a>.
  1018. </p>
  1019. <p>
  1020. The problem of uniqueness for the Gel'Fand-Calderón
  1021. problem had been open in two dimensions for at least
  1022. twenty years and Bukhgeim was the first one to manage
  1023. to solve it for a general potential. His arguments
  1024. work when the potential has one derivative. Using
  1025. function theory and interpolation theory, I managed to
  1026. prove stability in addition to uniqueness, and for
  1027. potentials that have any positive fractional
  1028. derivative.
  1029. </p>
  1030. </dd>
  1031. <dt>
  1032. <a class="anchor" id="desc_Blasten2010"></a>
  1033. <a href="#Blasten2010">
  1034. <span class="ref-authors">Blåsten,</span>
  1035. <span class="ref-title">The Inverse Problem of the
  1036. Schrödinger Equation in the Plane: A Dissection of
  1037. Bukhgeim's Result</span>
  1038. </a>
  1039. </dt>
  1040. <dd>
  1041. <p>
  1042. In this licentiate thesis I studied and explained
  1043. Bukhgeim's solution to the Gel'Fand-Calderón problem
  1044. in two dimensions <a class="referenceNbr"
  1045. href="http://dx.doi.org/10.1515/jiip.2008.002">[2008]</a>.
  1046. </p>
  1047. <p>
  1048. The Finnish licentiate degree is an elective
  1049. intermediate degree between master's degree, which is
  1050. five years of university-level study, and the doctor's
  1051. degree, which totals nine to ten years of study.
  1052. </p>
  1053. </dd>
  1054. <dt>
  1055. <a class="anchor" id="desc_Blasten2008"></a>
  1056. <a href="#Blasten2008">
  1057. <span class="ref-authors">Blåsten,</span>
  1058. <span class="ref-title">Distribuutioteorian alkeet ja
  1059. sovellutuksia</span>
  1060. </a>
  1061. </dt>
  1062. <dd>
  1063. <p>
  1064. An English translation of the title would be <q>An
  1065. introduction to the theory of distributions and its
  1066. applications</q>. This is my master's thesis, written
  1067. in Finnish. In it I state and prove elementary results
  1068. from distribution theory. The more advanced topics
  1069. include the Fourier transform, how to define the
  1070. division of arbitrary polynomials in one dimension and
  1071. the division by homogeneous polynomials in arbitrary
  1072. dimensions.
  1073. </p>
  1074. </dd>
  1075. </dl>
  1076. </section>
  1077. <section>
  1078. <a class="anchor" id="talks"></a>
  1079. <p>
  1080. <h2>Conference and Seminar Talks</h2>
  1081. <ol reversed>
  1082. <li>
  1083. <span class="ref-title">Inverse problems with one
  1084. measurement,</span>
  1085. <span class="ref-journal">Inverse Days 2018; Aalto
  1086. University, Finland,</span>
  1087. <span class="ref-year">12 December 2018.</span>
  1088. <div class="ref-links">
  1089. <a href="https://math.aalto.fi/en/research/applied/inverseproblems/inverse_days-2018/">Event</a>
  1090. <a href="pdf/blasten_talk_2018_helsinki.pdf">Talk</a>
  1091. </div>
  1092. </li>
  1093. <li>
  1094. <span class="ref-title">Inverse problems with one
  1095. measurement,</span>
  1096. <span class="ref-journal">Inverse problems, PDE and
  1097. geometry; University of Jyväskylä, Finland,</span>
  1098. <span class="ref-year">22 August 2018.</span>
  1099. <div class="ref-links">
  1100. <a href="https://www.jyu.fi/science/en/maths/research/inverse-problems/inverse-problems-pde-and-geometry-2018">Event</a>
  1101. <a href="pdf/blasten_talk_2018_jyvaskyla.pdf">Talk</a>
  1102. </div>
  1103. </li>
  1104. <li>
  1105. <span class="ref-title">Inverse problems with one
  1106. measurement,</span>
  1107. <span class="ref-journal">The 9th International
  1108. Conference on Inverse Problems and Related Topics;
  1109. National University of Singapore, Singapore,</span>
  1110. <span class="ref-year">15 August 2018.</span>
  1111. <div class="ref-links">
  1112. <a href="https://www.ece.nus.edu.sg/stfpage/elechenx/Conference/index.htm">Event</a>
  1113. <a href="pdf/blasten_talk_2018_singapore.pdf">Talk</a>
  1114. </div>
  1115. </li>
  1116. <li>
  1117. <span class="ref-title">Applications of corner
  1118. scattering: intrinsic properties of transmission
  1119. eigenfunctions and single wave probing,</span>
  1120. <span class="ref-journal">School of Mathematical
  1121. Sciences, Fudan University, China,</span>
  1122. <span class="ref-year">5 December 2017.</span>
  1123. <div class="ref-links">
  1124. <a href="http://math.fudan.edu.cn/show.aspx?info_lb=765&flag=527&info_id=5565">Event</a>
  1125. <a href="pdf/blasten_talk_2017_shanghai.pdf">Talk</a>
  1126. </div>
  1127. </li>
  1128. <li>
  1129. <span class="ref-title">Planar inverse boundary value
  1130. problem for <i>L<sup>p</sup></i> potentials
  1131. with <i>p&gt;4/3</i>,</span>
  1132. <span class="ref-journal">Analysis Seminar, Department
  1133. of Mathematics and Statistics; University of
  1134. Jyväskylä, Finland,</span>
  1135. <span class="ref-year">23 August 2017.</span>
  1136. </li>
  1137. <li>
  1138. <span class="ref-title">Inverse backscattering with
  1139. point-source waves,</span>
  1140. <span class="ref-journal">Inverse Problems Seminar,
  1141. Department of Mathematics and Statistics; University
  1142. of Helsinki, Finland,</span>
  1143. <span class="ref-year">17 August 2017.</span>
  1144. <div class="ref-links">
  1145. <a href="pdf/blasten_talk_2017_UH.pdf">Notes</a>
  1146. </div>
  1147. </li>
  1148. <li>
  1149. <span class="ref-title">Corners always scatter &mdash;
  1150. quantitative results,</span>
  1151. <span class="ref-journal">Applied Inverse Problems
  1152. Conference 2017; Zhejiang University, Hangzhou,
  1153. China,</span>
  1154. <span class="ref-year">31 May 2017.</span>
  1155. <div class="ref-links">
  1156. <a href="http://aip2017.csp.escience.cn/dct/page/70004">Programme</a>
  1157. <a href="http://aip2017.csp.escience.cn/dct/page/1">Event</a>
  1158. <a href="pdf/blasten_talk_2017_AIP.pdf">Talk</a>
  1159. </div>
  1160. </li>
  1161. <li>
  1162. <span class="ref-title">Transmission eigenfunction
  1163. localization,</span>
  1164. <span class="ref-journal">Annual meeting of the Hong
  1165. Kong Mathematical Society; The Hong Kong University
  1166. of Science and Technology, Hong Kong,</span>
  1167. <span class="ref-year">20 May 2017.</span>
  1168. <div class="ref-links">
  1169. <a href="pdf/blasten_talk_2017_HKMS.pdf">Talk</a>
  1170. </div>
  1171. </li>
  1172. <li>
  1173. <span class="ref-title">Topics in Corner Scattering:
  1174. Non-Scattering Waves, Potential Probing with a
  1175. Single Incident Wave, and the Interior Transmission
  1176. Problem,</span>
  1177. <span class="ref-journal">NCTS PDE and Analysis
  1178. Seminar; National Center for Theoretical Sciences,
  1179. National Taiwan University, Taipei, Taiwan,</span>
  1180. <span class="ref-year">9 Marh 2017.</span>
  1181. <div class="ref-links">
  1182. <a href="pdf/blasten_talk_2017_taipei.pdf">Talk</a>
  1183. </div>
  1184. </li>
  1185. <li>
  1186. <span class="ref-title">Inverse scattering using a
  1187. single incident wave,</span>
  1188. <span class="ref-journal">2<sup>nd</sup> East Asia
  1189. Section of IPIA, Young Scholars Symposium; National
  1190. Center for Theoretical Sciences, National Taiwan
  1191. University, Taipei, Taiwan,</span>
  1192. <span class="ref-year">5 November 2016.</span>
  1193. <div class="ref-links">
  1194. <a href="pdf/taipei2016_programme.pdf">Programme</a>
  1195. <a href="pdf/blasten_talk_2016_taipei.pdf">Talk</a>
  1196. </div>
  1197. </li>
  1198. <li>
  1199. <span class="ref-title">Non-scattering energies, new
  1200. resolvent estimates and other projects,</span>
  1201. <span class="ref-journal">1<sup>st</sup> East Asia
  1202. Symposium of IPIA; South University of Science and
  1203. Technology, Shenzhen, China,</span>
  1204. <span class="ref-year">29 February 2016.</span>
  1205. <div class="ref-links">
  1206. <a href="pdf/shenzhen2016_programme.pdf">Programme</a>
  1207. <a href="pdf/blasten_talk_2016_shenzhen.pdf">Talk</a>
  1208. </div>
  1209. </li>
  1210. <li>
  1211. <span class="ref-title">Non-scattering energies and
  1212. interior transmission eigenvalues,</span>
  1213. <span class="ref-journal">Workshop on Inverse Problems
  1214. and Related Topics; Zhejiang University, Hangzhou,
  1215. China,</span>
  1216. <span class="ref-year">9 December 2015.</span>
  1217. <div class="ref-links">
  1218. <a href="pdf/hangzhou2015_programme.pdf">Programme</a>
  1219. <a href="pdf/blasten_talk_2015_hangzhou.pdf">Talk</a>
  1220. </div>
  1221. </li>
  1222. <li>
  1223. <span class="ref-title">A new viewpoint to scattering
  1224. theory à la Hörmander,</span>
  1225. <span class="ref-journal">Spectral and Analytic
  1226. Inverse Problems, Thematic Programme on Inverse
  1227. Problems; Institut Henri Poincaré, Paris,
  1228. France,</span>
  1229. <span class="ref-year">4 May 2015.</span>
  1230. <div class="ref-links">
  1231. <a href="http://www.ihp.fr/en/CEB/T2-2015">Programme</a>
  1232. <a href="http://www.ihp.fr/en/CEB/T2-2015/workshop1">Event</a>
  1233. <a href="pdf/blasten_talk_2015_paris.pdf">Talk</a>
  1234. </div>
  1235. </li>
  1236. <li>
  1237. <span class="ref-title">Solving the Inverse Problem
  1238. for the 2D Schrödinger Equation with
  1239. Lp-potential,</span>
  1240. <span class="ref-journal">17<sup>th</sup> Annual
  1241. Workshop on Applications and generalizations of
  1242. complex analysis; University of Aveiro, Aveiro,
  1243. Portugal,</span>
  1244. <span class="ref-year">21 March 2015.</span>
  1245. <div class="ref-links">
  1246. <a href="http://sweet.ua.pt/pceres/complex2015/Webpage/Workshop.html">Event</a>
  1247. <a href="pdf/blasten_talk_2015_aveiro.pdf">Talk</a>
  1248. </div>
  1249. </li>
  1250. <li>
  1251. <span class="ref-title">Solving the Inverse Problem
  1252. for the 2D Schrödinger Equation with
  1253. Lp-potential,</span>
  1254. <span class="ref-journal">The 10<sup>th</sup> AIMS
  1255. Conference on Dynamical Systems, Differential
  1256. Equations and Applications; Instituto de Ciencias
  1257. Matemáticas (ICMAT) and the Universidad Autónoma de
  1258. Madrid (UAM), Madrid, Spain,</span>
  1259. <span class="ref-year">9 July 2014.</span>
  1260. <div class="ref-links">
  1261. <a href="http://aimsciences.org/conferences/2014/">Event</a>
  1262. <a href="pdf/blasten_talk_2014_madrid.pdf">Talk</a>
  1263. </div>
  1264. </li>
  1265. <li>
  1266. <span class="ref-title">Completeness of the
  1267. generalized transmission eigenstates,</span>
  1268. <span class="ref-journal">International Conference on
  1269. Novel Directions in Inverse Scattering; University
  1270. of Delaware, Delaware, USA,</span>
  1271. <span class="ref-year">29 July 2013.</span>
  1272. <div class="ref-links">
  1273. <a href="http://www.cmap.polytechnique.fr/~colton/">Event</a>
  1274. <a href="pdf/blasten_talk_2013_delaware.pdf">Talk</a>
  1275. </div>
  1276. </li>
  1277. </ol>
  1278. </p>
  1279. </section>
  1280. </section>
  1281. </div>
  1282. </boby>
  1283. </html>