123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- #| -*-Scheme-*-
- Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
- 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Massachusetts
- Institute of Technology
- This file is part of MIT/GNU Scheme.
- MIT/GNU Scheme is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or (at
- your option) any later version.
- MIT/GNU Scheme is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with MIT/GNU Scheme; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
- USA.
- |#
- ;;; In simple cases, if one knows the function and its derivative,
- ;;; Newton's method is a quick-and-dirty way to find a root.
- ;;; However, one must start close to the root to get it to converge.
- (declare (usual-integrations))
- (define (newton-search f&df x0 eps)
- (define (newton-improve xn)
- (f&df xn
- (lambda (fn dfn)
- (- xn (/ fn dfn)))))
- (let lp ((xn x0))
- (let ((xn+1 (newton-improve xn)))
- (if (close-enuf? xn xn+1 eps)
- (average xn xn+1)
- (lp xn+1)))))
- #|
- (newton-search
- (lambda (x cont)
- (write-line x)
- (cont (cos x) (- (sin x))))
- 1.0
- 1e-15)
- 1.
- 1.6420926159343308
- 1.5706752771612507
- 1.5707963267954879
- 1.5707963267948966
- ;Value: 1.5707963267948966
- ;;; If the root is multiple, the convergence is much slower
- ;;; and much less accurate.
- (newton-search
- (lambda (x cont)
- (write-line x)
- (cont (- 1.0 (sin x)) (- (cos x))))
- 1
- 1e-15)
- 1
- 1.2934079930260234
- 1.4329983666650792
- ;;; 28 iterations here
- 1.570796311871084
- 1.570796319310356
- ;Value: 1.570796319310356
- |#
- ;;; Kahan's hack speeds up search for multiple roots, but costs
- ;;; a bit for simple roots.
- (define (newton-kahan-search f&df x0 x1 eps)
- (define (kahan-trick x)
- (let ((z (round (abs x))))
- (if *kahan-wallp* (write-line `(kahan ,z)))
- z))
- (define (psi x) (f&df x /))
- (define (secant-improve xn psn xn-1 psn-1)
- (- xn
- (* psn
- (kahan-trick (/ (- xn xn-1)
- (- psn psn-1))))))
- (let lp ((xn x1) (psn (psi x1)) (xn-1 x0) (psn-1 (psi x0)))
- (if (close-enuf? xn xn-1 eps)
- (average xn xn-1)
- (let ((xn+1 (secant-improve xn psn xn-1 psn-1)))
- (lp xn+1 (psi xn+1) xn psn)))))
- (define *kahan-wallp* #f)
- #|
- ;;; for example
- (newton-kahan-search
- (lambda (x cont)
- (write-line x)
- (cont (cos x) (- (sin x))))
- 1.0
- 2.0
- 1e-15)
- 1.
- 2.
- 1.5423424456397141
- 1.5708040082580965
- 1.5707963267948966
- 1.5707963267948966
- ;Value: 1.5707963267948966
- ;;; Kahan's method really speeds things up here, but it
- ;;; doesn't make the result more accurate.
- (newton-kahan-search
- (lambda (x cont)
- (write-line x)
- (cont (- 1.0 (sin x)) (- (cos x))))
- 1.0
- 2.0
- 1e-15)
- 1.
- 2.
- 1.564083803078276
- 1.5707963519994068
- 1.5707963255702555
- 1.5707963255702555
- ;Value: 1.5707963255702555
- |#
|