be.scm 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. #| -*-Scheme-*-
  2. Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
  3. 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
  4. 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Massachusetts
  5. Institute of Technology
  6. This file is part of MIT/GNU Scheme.
  7. MIT/GNU Scheme is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or (at
  10. your option) any later version.
  11. MIT/GNU Scheme is distributed in the hope that it will be useful, but
  12. WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with MIT/GNU Scheme; if not, write to the Free Software
  17. Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
  18. USA.
  19. |#
  20. (declare (usual-integrations))
  21. ;;; Backwards Euler implicit integrator.
  22. #|
  23. ((advance-generator
  24. ((quality-control c-euler 1) ;integration method
  25. (lambda (v) v) ;x' = x
  26. 0.0001 ;qc error tolerated
  27. 1.0e-5)) ;corrector convergence
  28. #(1.0) ;initial state (at t = t0)
  29. 1.0 ;proceed to t = t0 + 1
  30. 0.1 ;first step no larger than .1
  31. 0.5 ;no step larger than .5
  32. (lambda (ns dt h cont)
  33. (pp ns)
  34. (cont))
  35. (lambda (ns dt sdt)
  36. ;; assert ns = #(2.718...)
  37. ;; assert dt = 1.000...+-
  38. (list ns dt sdt)))
  39. |#
  40. (define* (c-euler f qc-tolerance #:optional convergence-tolerance)
  41. (let ((error-measure
  42. (parse-error-measure
  43. (if (default-object? convergence-tolerance) qc-tolerance convergence-tolerance))))
  44. (lambda (xn)
  45. (let ((d (f xn)))
  46. (define (estep dt succeed fail)
  47. (let* ((predicted (vector+vector xn (scalar*vector dt d)))
  48. (corrected
  49. (vector+vector xn (scalar*vector dt (f predicted)))))
  50. (let lp ((predicted predicted) (corrected corrected) (count 1))
  51. (let ((verr (error-measure predicted corrected)))
  52. (if (< verr 2.0)
  53. (succeed corrected count)
  54. (let* ((ncorr
  55. (vector+vector xn (scalar*vector dt (f corrected))))
  56. (nverr (error-measure ncorr corrected)))
  57. (if (< nverr verr)
  58. (lp corrected ncorr (fix:+ count 1))
  59. (begin (if pc-wallp? (write-line `(pc failed: ,nverr ,verr)))
  60. (fail)))))))))
  61. estep))))